aboutsummaryrefslogtreecommitdiffstats
path: root/recipes/obsolete/linux/linux-mtx-2-2.4.27/17-lmsensors.2.8.8.patch
diff options
context:
space:
mode:
Diffstat (limited to 'recipes/obsolete/linux/linux-mtx-2-2.4.27/17-lmsensors.2.8.8.patch')
-rw-r--r--recipes/obsolete/linux/linux-mtx-2-2.4.27/17-lmsensors.2.8.8.patch40940
1 files changed, 40940 insertions, 0 deletions
diff --git a/recipes/obsolete/linux/linux-mtx-2-2.4.27/17-lmsensors.2.8.8.patch b/recipes/obsolete/linux/linux-mtx-2-2.4.27/17-lmsensors.2.8.8.patch
new file mode 100644
index 0000000000..3b288e6351
--- /dev/null
+++ b/recipes/obsolete/linux/linux-mtx-2-2.4.27/17-lmsensors.2.8.8.patch
@@ -0,0 +1,40940 @@
+--- linux-old/drivers/i2c/i2c-ali1535.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-ali1535.c Mon Dec 13 20:18:40 2004
+@@ -0,0 +1,601 @@
++/*
++ i2c-ali1535.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2000 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>,
++ Mark D. Studebaker <mdsxyz123@yahoo.com>,
++ Dan Eaton <dan.eaton@rocketlogix.com> and
++ Stephen Rousset<stephen.rousset@rocketlogix.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ This is the driver for the SMB Host controller on
++ Acer Labs Inc. (ALI) M1535 South Bridge.
++
++ The M1535 is a South bridge for portable systems.
++ It is very similar to the M15x3 South bridges also produced
++ by Acer Labs Inc. Some of the registers within the part
++ have moved and some have been redefined slightly. Additionally,
++ the sequencing of the SMBus transactions has been modified
++ to be more consistent with the sequencing recommended by
++ the manufacturer and observed through testing. These
++ changes are reflected in this driver and can be identified
++ by comparing this driver to the i2c-ali15x3 driver.
++ For an overview of these chips see http://www.acerlabs.com
++
++ The SMB controller is part of the 7101 device, which is an
++ ACPI-compliant Power Management Unit (PMU).
++
++ The whole 7101 device has to be enabled for the SMB to work.
++ You can't just enable the SMB alone.
++ The SMB and the ACPI have separate I/O spaces.
++ We make sure that the SMB is enabled. We leave the ACPI alone.
++
++ This driver controls the SMB Host only.
++
++ This driver does not use interrupts.
++*/
++
++
++/* Note: we assume there can only be one ALI1535, with one SMBus interface */
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#include <asm/semaphore.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++
++/* ALI1535 SMBus address offsets */
++#define SMBHSTSTS (0 + ali1535_smba)
++#define SMBHSTTYP (1 + ali1535_smba)
++#define SMBHSTPORT (2 + ali1535_smba)
++#define SMBHSTCMD (7 + ali1535_smba)
++#define SMBHSTADD (3 + ali1535_smba)
++#define SMBHSTDAT0 (4 + ali1535_smba)
++#define SMBHSTDAT1 (5 + ali1535_smba)
++#define SMBBLKDAT (6 + ali1535_smba)
++
++/* PCI Address Constants */
++#define SMBCOM 0x004
++#define SMBREV 0x008
++#define SMBCFG 0x0D1
++#define SMBBA 0x0E2
++#define SMBHSTCFG 0x0F0
++#define SMBCLK 0x0F2
++
++/* Other settings */
++#define MAX_TIMEOUT 500 /* times 1/100 sec */
++#define ALI1535_SMB_IOSIZE 32
++
++/*
++*/
++#define ALI1535_SMB_DEFAULTBASE 0x8040
++
++/* ALI1535 address lock bits */
++#define ALI1535_LOCK 0x06 < dwe >
++
++/* ALI1535 command constants */
++#define ALI1535_QUICK 0x00
++#define ALI1535_BYTE 0x10
++#define ALI1535_BYTE_DATA 0x20
++#define ALI1535_WORD_DATA 0x30
++#define ALI1535_BLOCK_DATA 0x40
++#define ALI1535_I2C_READ 0x60
++
++#define ALI1535_DEV10B_EN 0x80 /* Enable 10-bit addressing in */
++ /* I2C read */
++#define ALI1535_T_OUT 0x08 /* Time-out Command (write) */
++#define ALI1535_A_HIGH_BIT9 0x08 /* Bit 9 of 10-bit address in */
++ /* Alert-Response-Address */
++ /* (read) */
++#define ALI1535_KILL 0x04 /* Kill Command (write) */
++#define ALI1535_A_HIGH_BIT8 0x04 /* Bit 8 of 10-bit address in */
++ /* Alert-Response-Address */
++ /* (read) */
++
++#define ALI1535_D_HI_MASK 0x03 /* Mask for isolating bits 9-8 */
++ /* of 10-bit address in I2C */
++ /* Read Command */
++
++/* ALI1535 status register bits */
++#define ALI1535_STS_IDLE 0x04
++#define ALI1535_STS_BUSY 0x08 /* host busy */
++#define ALI1535_STS_DONE 0x10 /* transaction complete */
++#define ALI1535_STS_DEV 0x20 /* device error */
++#define ALI1535_STS_BUSERR 0x40 /* bus error */
++#define ALI1535_STS_FAIL 0x80 /* failed bus transaction */
++#define ALI1535_STS_ERR 0xE0 /* all the bad error bits */
++
++#define ALI1535_BLOCK_CLR 0x04 /* reset block data index */
++
++/* ALI1535 device address register bits */
++#define ALI1535_RD_ADDR 0x01 /* Read/Write Bit in Device */
++ /* Address field */
++ /* -> Write = 0 */
++ /* -> Read = 1 */
++#define ALI1535_SMBIO_EN 0x04 /* SMB I/O Space enable */
++
++static int ali1535_transaction(void);
++
++static unsigned short ali1535_smba = 0;
++DECLARE_MUTEX(i2c_ali1535_sem);
++
++
++/* Detect whether a ALI1535 can be found, and initialize it, where necessary.
++ Note the differences between kernels with the old PCI BIOS interface and
++ newer kernels with the real PCI interface. In compat.h some things are
++ defined to make the transition easier. */
++int ali1535_setup(struct pci_dev *ALI1535_dev)
++{
++ int error_return = 0;
++ unsigned char temp;
++
++/* Check the following things:
++ - SMB I/O address is initialized
++ - Device is enabled
++ - We can use the addresses
++*/
++
++/* Determine the address of the SMBus area */
++ pci_read_config_word(ALI1535_dev, SMBBA, &ali1535_smba);
++ ali1535_smba &= (0xffff & ~(ALI1535_SMB_IOSIZE - 1));
++ if (ali1535_smba == 0) {
++ printk
++ ("i2c-ali1535.o: ALI1535_smb region uninitialized - upgrade BIOS?\n");
++ error_return = -ENODEV;
++ }
++
++ if (error_return == -ENODEV)
++ goto END;
++
++ if (check_region(ali1535_smba, ALI1535_SMB_IOSIZE)) {
++ printk
++ ("i2c-ali1535.o: ALI1535_smb region 0x%x already in use!\n",
++ ali1535_smba);
++ error_return = -ENODEV;
++ }
++
++ if (error_return == -ENODEV)
++ goto END;
++
++ /* check if whole device is enabled */
++ pci_read_config_byte(ALI1535_dev, SMBCFG, &temp);
++ if ((temp & ALI1535_SMBIO_EN) == 0) {
++ printk
++ ("i2c-ali1535.o: SMB device not enabled - upgrade BIOS?\n");
++ error_return = -ENODEV;
++ goto END;
++ }
++
++/* Is SMB Host controller enabled? */
++ pci_read_config_byte(ALI1535_dev, SMBHSTCFG, &temp);
++ if ((temp & 1) == 0) {
++ printk
++ ("i2c-ali1535.o: SMBus controller not enabled - upgrade BIOS?\n");
++ error_return = -ENODEV;
++ goto END;
++ }
++
++/* set SMB clock to 74KHz as recommended in data sheet */
++ pci_write_config_byte(ALI1535_dev, SMBCLK, 0x20);
++
++ /* Everything is happy, let's grab the memory and set things up. */
++ request_region(ali1535_smba, ALI1535_SMB_IOSIZE, "ali1535-smb");
++
++#ifdef DEBUG
++/*
++ The interrupt routing for SMB is set up in register 0x77 in the
++ 1533 ISA Bridge device, NOT in the 7101 device.
++ Don't bother with finding the 1533 device and reading the register.
++ if ((....... & 0x0F) == 1)
++ printk("i2c-ali1535.o: ALI1535 using Interrupt 9 for SMBus.\n");
++*/
++ pci_read_config_byte(ALI1535_dev, SMBREV, &temp);
++ printk("i2c-ali1535.o: SMBREV = 0x%X\n", temp);
++ printk("i2c-ali1535.o: ALI1535_smba = 0x%X\n", ali1535_smba);
++#endif /* DEBUG */
++
++ END:
++ return error_return;
++}
++
++
++/* Another internally used function */
++int ali1535_transaction(void)
++{
++ int temp;
++ int result = 0;
++ int timeout = 0;
++
++#ifdef DEBUG
++ printk
++ ("i2c-ali1535.o: Transaction (pre): STS=%02x, TYP=%02x, CMD=%02x, ADD=%02x, DAT0=%02x, "
++ "DAT1=%02x\n", inb_p(SMBHSTSTS), inb_p(SMBHSTTYP),
++ inb_p(SMBHSTCMD), inb_p(SMBHSTADD), inb_p(SMBHSTDAT0),
++ inb_p(SMBHSTDAT1));
++#endif
++
++ /* get status */
++ temp = inb_p(SMBHSTSTS);
++
++ /* Make sure the SMBus host is ready to start transmitting */
++ /* Check the busy bit first */
++ if (temp & ALI1535_STS_BUSY) {
++/*
++ If the host controller is still busy, it may have timed out in the previous transaction,
++ resulting in a "SMBus Timeout" printk.
++ I've tried the following to reset a stuck busy bit.
++ 1. Reset the controller with an KILL command.
++ (this doesn't seem to clear the controller if an external device is hung)
++ 2. Reset the controller and the other SMBus devices with a T_OUT command.
++ (this clears the host busy bit if an external device is hung,
++ but it comes back upon a new access to a device)
++ 3. Disable and reenable the controller in SMBHSTCFG
++ Worst case, nothing seems to work except power reset.
++*/
++/* Abort - reset the host controller */
++/*
++#ifdef DEBUG
++ printk("i2c-ali1535.o: Resetting host controller to clear busy condition\n",temp);
++#endif
++ outb_p(ALI1535_KILL, SMBHSTTYP);
++ temp = inb_p(SMBHSTSTS);
++ if (temp & ALI1535_STS_BUSY) {
++*/
++
++/*
++ Try resetting entire SMB bus, including other devices -
++ This may not work either - it clears the BUSY bit but
++ then the BUSY bit may come back on when you try and use the chip again.
++ If that's the case you are stuck.
++*/
++ printk
++ ("i2c-ali1535.o: Resetting entire SMB Bus to clear busy condition (%02x)\n",
++ temp);
++ outb_p(ALI1535_T_OUT, SMBHSTTYP);
++ temp = inb_p(SMBHSTSTS);
++ }
++/*
++ }
++*/
++
++ /* now check the error bits and the busy bit */
++ if (temp & (ALI1535_STS_ERR | ALI1535_STS_BUSY)) {
++ /* do a clear-on-write */
++ outb_p(0xFF, SMBHSTSTS);
++ if ((temp = inb_p(SMBHSTSTS)) &
++ (ALI1535_STS_ERR | ALI1535_STS_BUSY)) {
++ /* this is probably going to be correctable only by a power reset
++ as one of the bits now appears to be stuck */
++ /* This may be a bus or device with electrical problems. */
++ printk
++ ("i2c-ali1535.o: SMBus reset failed! (0x%02x) - controller or device on bus is probably hung\n",
++ temp);
++ return -1;
++ }
++ } else {
++ /* check and clear done bit */
++ if (temp & ALI1535_STS_DONE) {
++ outb_p(temp, SMBHSTSTS);
++ }
++ }
++
++ /* start the transaction by writing anything to the start register */
++ outb_p(0xFF, SMBHSTPORT);
++
++ /* We will always wait for a fraction of a second! */
++ timeout = 0;
++ do {
++ i2c_delay(1);
++ temp = inb_p(SMBHSTSTS);
++ } while (((temp & ALI1535_STS_BUSY) && !(temp & ALI1535_STS_IDLE))
++ && (timeout++ < MAX_TIMEOUT));
++
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ result = -1;
++ printk("i2c-ali1535.o: SMBus Timeout!\n");
++ }
++
++ if (temp & ALI1535_STS_FAIL) {
++ result = -1;
++#ifdef DEBUG
++ printk("i2c-ali1535.o: Error: Failed bus transaction\n");
++#endif
++ }
++
++/*
++ Unfortunately the ALI SMB controller maps "no response" and "bus collision"
++ into a single bit. No reponse is the usual case so don't do a printk.
++ This means that bus collisions go unreported.
++*/
++ if (temp & ALI1535_STS_BUSERR) {
++ result = -1;
++#ifdef DEBUG
++ printk
++ ("i2c-ali1535.o: Error: no response or bus collision ADD=%02x\n",
++ inb_p(SMBHSTADD));
++#endif
++ }
++
++/* haven't ever seen this */
++ if (temp & ALI1535_STS_DEV) {
++ result = -1;
++ printk("i2c-ali1535.o: Error: device error\n");
++ }
++
++/*
++ check to see if the "command complete" indication is set
++ */
++ if (!(temp & ALI1535_STS_DONE)) {
++ result = -1;
++ printk("i2c-ali1535.o: Error: command never completed\n");
++ }
++#ifdef DEBUG
++ printk
++ ("i2c-ali1535.o: Transaction (post): STS=%02x, TYP=%02x, CMD=%02x, ADD=%02x, "
++ "DAT0=%02x, DAT1=%02x\n", inb_p(SMBHSTSTS), inb_p(SMBHSTTYP),
++ inb_p(SMBHSTCMD), inb_p(SMBHSTADD), inb_p(SMBHSTDAT0),
++ inb_p(SMBHSTDAT1));
++#endif
++
++/*
++ take consequent actions for error conditions
++ */
++ if (!(temp & ALI1535_STS_DONE)) {
++ /* issue "kill" to reset host controller */
++ outb_p(ALI1535_KILL,SMBHSTTYP);
++ outb_p(0xFF,SMBHSTSTS);
++ }
++ else if (temp & ALI1535_STS_ERR) {
++ /* issue "timeout" to reset all devices on bus */
++ outb_p(ALI1535_T_OUT,SMBHSTTYP);
++ outb_p(0xFF,SMBHSTSTS);
++ }
++
++ return result;
++}
++
++/* Return -1 on error. */
++s32 ali1535_access(struct i2c_adapter * adap, u16 addr,
++ unsigned short flags, char read_write, u8 command,
++ int size, union i2c_smbus_data * data)
++{
++ int i, len;
++ int temp;
++ int timeout;
++ s32 result = 0;
++
++ down(&i2c_ali1535_sem);
++/* make sure SMBus is idle */
++ temp = inb_p(SMBHSTSTS);
++ for (timeout = 0;
++ (timeout < MAX_TIMEOUT) && !(temp & ALI1535_STS_IDLE);
++ timeout++) {
++ i2c_delay(1);
++ temp = inb_p(SMBHSTSTS);
++ }
++ if (timeout >= MAX_TIMEOUT) {
++ printk("i2c-ali1535.o: Idle wait Timeout! STS=0x%02x\n",
++ temp);
++ }
++
++/* clear status register (clear-on-write) */
++ outb_p(0xFF, SMBHSTSTS);
++
++ switch (size) {
++ case I2C_SMBUS_QUICK:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ size = ALI1535_QUICK;
++ outb_p(size, SMBHSTTYP); /* output command */
++ break;
++ case I2C_SMBUS_BYTE:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ size = ALI1535_BYTE;
++ outb_p(size, SMBHSTTYP); /* output command */
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(command, SMBHSTCMD);
++ break;
++ case I2C_SMBUS_BYTE_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ size = ALI1535_BYTE_DATA;
++ outb_p(size, SMBHSTTYP); /* output command */
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(data->byte, SMBHSTDAT0);
++ break;
++ case I2C_SMBUS_WORD_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ size = ALI1535_WORD_DATA;
++ outb_p(size, SMBHSTTYP); /* output command */
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ outb_p(data->word & 0xff, SMBHSTDAT0);
++ outb_p((data->word & 0xff00) >> 8, SMBHSTDAT1);
++ }
++ break;
++ case I2C_SMBUS_BLOCK_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ size = ALI1535_BLOCK_DATA;
++ outb_p(size, SMBHSTTYP); /* output command */
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ len = data->block[0];
++ if (len < 0) {
++ len = 0;
++ data->block[0] = len;
++ }
++ if (len > 32) {
++ len = 32;
++ data->block[0] = len;
++ }
++ outb_p(len, SMBHSTDAT0);
++ outb_p(inb_p(SMBHSTTYP) | ALI1535_BLOCK_CLR, SMBHSTTYP); /* Reset SMBBLKDAT */
++ for (i = 1; i <= len; i++)
++ outb_p(data->block[i], SMBBLKDAT);
++ }
++ break;
++ default:
++ printk
++ (KERN_WARNING "i2c-ali1535.o: Unsupported transaction %d\n", size);
++ result = -1;
++ goto EXIT;
++ }
++
++ if (ali1535_transaction()) /* Error in transaction */
++ {
++ result = -1;
++ goto EXIT;
++ }
++
++ if ((read_write == I2C_SMBUS_WRITE) || (size == ALI1535_QUICK))
++ {
++ result = 0;
++ goto EXIT;
++ }
++
++ switch (size) {
++ case ALI1535_BYTE: /* Result put in SMBHSTDAT0 */
++ data->byte = inb_p(SMBHSTDAT0);
++ break;
++ case ALI1535_BYTE_DATA:
++ data->byte = inb_p(SMBHSTDAT0);
++ break;
++ case ALI1535_WORD_DATA:
++ data->word = inb_p(SMBHSTDAT0) + (inb_p(SMBHSTDAT1) << 8);
++ break;
++ case ALI1535_BLOCK_DATA:
++ len = inb_p(SMBHSTDAT0);
++ if (len > 32)
++ len = 32;
++ data->block[0] = len;
++ outb_p(inb_p(SMBHSTTYP) | ALI1535_BLOCK_CLR, SMBHSTTYP); /* Reset SMBBLKDAT */
++ for (i = 1; i <= data->block[0]; i++) {
++ data->block[i] = inb_p(SMBBLKDAT);
++#ifdef DEBUG
++ printk
++ ("i2c-ali1535.o: Blk: len=%d, i=%d, data=%02x\n",
++ len, i, data->block[i]);
++#endif /* DEBUG */
++ }
++ break;
++ }
++EXIT:
++ up(&i2c_ali1535_sem);
++ return result;
++}
++
++
++u32 ali1535_func(struct i2c_adapter *adapter)
++{
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
++ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
++ I2C_FUNC_SMBUS_BLOCK_DATA;
++}
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-i2c SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = ali1535_access,
++ .functionality = ali1535_func,
++};
++
++static struct i2c_adapter ali1535_adapter = {
++ .owner = THIS_MODULE,
++ .name = "unset",
++ .id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_ALI1535,
++ .algo = &smbus_algorithm,
++};
++
++
++static struct pci_device_id ali1535_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_AL,
++ .device = PCI_DEVICE_ID_AL_M7101,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit ali1535_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ if (ali1535_setup(dev)) {
++ printk
++ ("i2c-ali1535.o: ALI1535 not detected, module not inserted.\n");
++ return -ENODEV;
++ }
++
++ sprintf(ali1535_adapter.name, "SMBus ALI1535 adapter at %04x",
++ ali1535_smba);
++ return i2c_add_adapter(&ali1535_adapter);
++}
++
++static void __devexit ali1535_remove(struct pci_dev *dev)
++{
++ i2c_del_adapter(&ali1535_adapter);
++ release_region(ali1535_smba, ALI1535_SMB_IOSIZE);
++}
++
++
++static struct pci_driver ali1535_driver = {
++ .name = "ali1535 smbus",
++ .id_table = ali1535_ids,
++ .probe = ali1535_probe,
++ .remove = __devexit_p(ali1535_remove),
++};
++
++static int __init i2c_ali1535_init(void)
++{
++ printk("i2c-ali1535.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return pci_module_init(&ali1535_driver);
++}
++
++
++static void __exit i2c_ali1535_exit(void)
++{
++ pci_unregister_driver(&ali1535_driver);
++}
++
++#ifdef RLX
++EXPORT_SYMBOL(ali1535_smba);
++EXPORT_SYMBOL(ali1535_access);
++EXPORT_SYMBOL(i2c_ali1535_sem);
++#endif
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl>, Philip Edelbrock <phil@netroedge.com>, "
++ "Mark D. Studebaker <mdsxyz123@yahoo.com> and Dan Eaton <dan.eaton@rocketlogix.com>");
++MODULE_DESCRIPTION("ALI1535 SMBus driver");
++MODULE_LICENSE("GPL");
++
++module_init(i2c_ali1535_init);
++module_exit(i2c_ali1535_exit);
++
+--- linux-old/drivers/i2c/i2c-ali15x3.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-ali15x3.c Mon Dec 13 20:18:40 2004
+@@ -0,0 +1,533 @@
++/*
++ ali15x3.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1999 Frodo Looijaard <frodol@dds.nl> and
++ Philip Edelbrock <phil@netroedge.com> and
++ Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ This is the driver for the SMB Host controller on
++ Acer Labs Inc. (ALI) M1541 and M1543C South Bridges.
++
++ The M1543C is a South bridge for desktop systems.
++ The M1533 is a South bridge for portable systems.
++ They are part of the following ALI chipsets:
++ "Aladdin Pro 2": Includes the M1621 Slot 1 North bridge
++ with AGP and 100MHz CPU Front Side bus
++ "Aladdin V": Includes the M1541 Socket 7 North bridge
++ with AGP and 100MHz CPU Front Side bus
++ "Aladdin IV": Includes the M1541 Socket 7 North bridge
++ with host bus up to 83.3 MHz.
++ For an overview of these chips see http://www.acerlabs.com
++
++ The M1533/M1543C devices appear as FOUR separate devices
++ on the PCI bus. An output of lspci will show something similar
++ to the following:
++
++ 00:02.0 USB Controller: Acer Laboratories Inc. M5237
++ 00:03.0 Bridge: Acer Laboratories Inc. M7101
++ 00:07.0 ISA bridge: Acer Laboratories Inc. M1533
++ 00:0f.0 IDE interface: Acer Laboratories Inc. M5229
++
++ The SMB controller is part of the 7101 device, which is an
++ ACPI-compliant Power Management Unit (PMU).
++
++ The whole 7101 device has to be enabled for the SMB to work.
++ You can't just enable the SMB alone.
++ The SMB and the ACPI have separate I/O spaces.
++ We make sure that the SMB is enabled. We leave the ACPI alone.
++
++ This driver controls the SMB Host only.
++ The SMB Slave controller on the M15X3 is not enabled.
++
++ This driver does not use interrupts.
++*/
++
++/* Note: we assume there can only be one ALI15X3, with one SMBus interface */
++
++/* #define DEBUG 1 */
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_compat.h>
++
++/* ALI15X3 SMBus address offsets */
++#define SMBHSTSTS (0 + ali15x3_smba)
++#define SMBHSTCNT (1 + ali15x3_smba)
++#define SMBHSTSTART (2 + ali15x3_smba)
++#define SMBHSTCMD (7 + ali15x3_smba)
++#define SMBHSTADD (3 + ali15x3_smba)
++#define SMBHSTDAT0 (4 + ali15x3_smba)
++#define SMBHSTDAT1 (5 + ali15x3_smba)
++#define SMBBLKDAT (6 + ali15x3_smba)
++
++/* PCI Address Constants */
++#define SMBCOM 0x004
++#define SMBBA 0x014
++#define SMBATPC 0x05B /* used to unlock xxxBA registers */
++#define SMBHSTCFG 0x0E0
++#define SMBSLVC 0x0E1
++#define SMBCLK 0x0E2
++#define SMBREV 0x008
++
++/* Other settings */
++#define MAX_TIMEOUT 200 /* times 1/100 sec */
++#define ALI15X3_SMB_IOSIZE 32
++
++/* this is what the Award 1004 BIOS sets them to on a ASUS P5A MB.
++ We don't use these here. If the bases aren't set to some value we
++ tell user to upgrade BIOS and we fail.
++*/
++#define ALI15X3_SMB_DEFAULTBASE 0xE800
++
++/* ALI15X3 address lock bits */
++#define ALI15X3_LOCK 0x06
++
++/* ALI15X3 command constants */
++#define ALI15X3_ABORT 0x02
++#define ALI15X3_T_OUT 0x04
++#define ALI15X3_QUICK 0x00
++#define ALI15X3_BYTE 0x10
++#define ALI15X3_BYTE_DATA 0x20
++#define ALI15X3_WORD_DATA 0x30
++#define ALI15X3_BLOCK_DATA 0x40
++#define ALI15X3_BLOCK_CLR 0x80
++
++/* ALI15X3 status register bits */
++#define ALI15X3_STS_IDLE 0x04
++#define ALI15X3_STS_BUSY 0x08
++#define ALI15X3_STS_DONE 0x10
++#define ALI15X3_STS_DEV 0x20 /* device error */
++#define ALI15X3_STS_COLL 0x40 /* collision or no response */
++#define ALI15X3_STS_TERM 0x80 /* terminated by abort */
++#define ALI15X3_STS_ERR 0xE0 /* all the bad error bits */
++
++
++/* If force_addr is set to anything different from 0, we forcibly enable
++ the device at the given address. */
++static int force_addr = 0;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Initialize the base address of the i2c controller");
++
++static unsigned short ali15x3_smba = 0;
++
++static int ali15x3_setup(struct pci_dev *ALI15X3_dev)
++{
++ u16 a;
++ unsigned char temp;
++
++ /* Check the following things:
++ - SMB I/O address is initialized
++ - Device is enabled
++ - We can use the addresses
++ */
++
++ /* Unlock the register.
++ The data sheet says that the address registers are read-only
++ if the lock bits are 1, but in fact the address registers
++ are zero unless you clear the lock bits.
++ */
++ pci_read_config_byte(ALI15X3_dev, SMBATPC, &temp);
++ if (temp & ALI15X3_LOCK) {
++ temp &= ~ALI15X3_LOCK;
++ pci_write_config_byte(ALI15X3_dev, SMBATPC, temp);
++ }
++
++ /* Determine the address of the SMBus area */
++ pci_read_config_word(ALI15X3_dev, SMBBA, &ali15x3_smba);
++ ali15x3_smba &= (0xffff & ~(ALI15X3_SMB_IOSIZE - 1));
++ if (ali15x3_smba == 0 && force_addr == 0) {
++ dev_err(ALI15X3_dev, "ALI15X3_smb region uninitialized "
++ "- upgrade BIOS or use force_addr=0xaddr\n");
++ return -ENODEV;
++ }
++
++ if(force_addr)
++ ali15x3_smba = force_addr & ~(ALI15X3_SMB_IOSIZE - 1);
++
++ if (!request_region(ali15x3_smba, ALI15X3_SMB_IOSIZE, "ali15x3-smb")) {
++ dev_err(ALI15X3_dev,
++ "ALI15X3_smb region 0x%x already in use!\n",
++ ali15x3_smba);
++ return -ENODEV;
++ }
++
++ if(force_addr) {
++ dev_info(ALI15X3_dev, "forcing ISA address 0x%04X\n",
++ ali15x3_smba);
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_write_config_word(ALI15X3_dev, SMBBA, ali15x3_smba))
++ return -ENODEV;
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_word(ALI15X3_dev, SMBBA, &a))
++ return -ENODEV;
++ if ((a & ~(ALI15X3_SMB_IOSIZE - 1)) != ali15x3_smba) {
++ /* make sure it works */
++ dev_err(ALI15X3_dev,
++ "force address failed - not supported?\n");
++ return -ENODEV;
++ }
++ }
++ /* check if whole device is enabled */
++ pci_read_config_byte(ALI15X3_dev, SMBCOM, &temp);
++ if ((temp & 1) == 0) {
++ dev_info(ALI15X3_dev, "enabling SMBus device\n");
++ pci_write_config_byte(ALI15X3_dev, SMBCOM, temp | 0x01);
++ }
++
++ /* Is SMB Host controller enabled? */
++ pci_read_config_byte(ALI15X3_dev, SMBHSTCFG, &temp);
++ if ((temp & 1) == 0) {
++ dev_info(ALI15X3_dev, "enabling SMBus controller\n");
++ pci_write_config_byte(ALI15X3_dev, SMBHSTCFG, temp | 0x01);
++ }
++
++ /* set SMB clock to 74KHz as recommended in data sheet */
++ pci_write_config_byte(ALI15X3_dev, SMBCLK, 0x20);
++
++ /*
++ The interrupt routing for SMB is set up in register 0x77 in the
++ 1533 ISA Bridge device, NOT in the 7101 device.
++ Don't bother with finding the 1533 device and reading the register.
++ if ((....... & 0x0F) == 1)
++ dev_dbg(ALI15X3_dev, "ALI15X3 using Interrupt 9 for SMBus.\n");
++ */
++ pci_read_config_byte(ALI15X3_dev, SMBREV, &temp);
++ dev_dbg(ALI15X3_dev, "SMBREV = 0x%X\n", temp);
++ dev_dbg(ALI15X3_dev, "iALI15X3_smba = 0x%X\n", ali15x3_smba);
++
++ return 0;
++}
++
++/* Another internally used function */
++static int ali15x3_transaction(struct i2c_adapter *adap)
++{
++ int temp;
++ int result = 0;
++ int timeout = 0;
++
++ dev_dbg(adap, "Transaction (pre): STS=%02x, CNT=%02x, CMD=%02x, "
++ "ADD=%02x, DAT0=%02x, DAT1=%02x\n", inb_p(SMBHSTSTS),
++ inb_p(SMBHSTCNT), inb_p(SMBHSTCMD), inb_p(SMBHSTADD),
++ inb_p(SMBHSTDAT0), inb_p(SMBHSTDAT1));
++
++ /* get status */
++ temp = inb_p(SMBHSTSTS);
++
++ /* Make sure the SMBus host is ready to start transmitting */
++ /* Check the busy bit first */
++ if (temp & ALI15X3_STS_BUSY) {
++ /*
++ If the host controller is still busy, it may have timed out in the
++ previous transaction, resulting in a "SMBus Timeout" Dev.
++ I've tried the following to reset a stuck busy bit.
++ 1. Reset the controller with an ABORT command.
++ (this doesn't seem to clear the controller if an external
++ device is hung)
++ 2. Reset the controller and the other SMBus devices with a
++ T_OUT command. (this clears the host busy bit if an
++ external device is hung, but it comes back upon a new access
++ to a device)
++ 3. Disable and reenable the controller in SMBHSTCFG
++ Worst case, nothing seems to work except power reset.
++ */
++ /* Abort - reset the host controller */
++ /*
++ Try resetting entire SMB bus, including other devices -
++ This may not work either - it clears the BUSY bit but
++ then the BUSY bit may come back on when you try and use the chip again.
++ If that's the case you are stuck.
++ */
++ dev_info(adap, "Resetting entire SMB Bus to "
++ "clear busy condition (%02x)\n", temp);
++ outb_p(ALI15X3_T_OUT, SMBHSTCNT);
++ temp = inb_p(SMBHSTSTS);
++ }
++
++ /* now check the error bits and the busy bit */
++ if (temp & (ALI15X3_STS_ERR | ALI15X3_STS_BUSY)) {
++ /* do a clear-on-write */
++ outb_p(0xFF, SMBHSTSTS);
++ if ((temp = inb_p(SMBHSTSTS)) &
++ (ALI15X3_STS_ERR | ALI15X3_STS_BUSY)) {
++ /* this is probably going to be correctable only by a power reset
++ as one of the bits now appears to be stuck */
++ /* This may be a bus or device with electrical problems. */
++ dev_err(adap, "SMBus reset failed! (0x%02x) - "
++ "controller or device on bus is probably hung\n",
++ temp);
++ return -1;
++ }
++ } else {
++ /* check and clear done bit */
++ if (temp & ALI15X3_STS_DONE) {
++ outb_p(temp, SMBHSTSTS);
++ }
++ }
++
++ /* start the transaction by writing anything to the start register */
++ outb_p(0xFF, SMBHSTSTART);
++
++ /* We will always wait for a fraction of a second! */
++ timeout = 0;
++ do {
++ i2c_delay(1);
++ temp = inb_p(SMBHSTSTS);
++ } while ((!(temp & (ALI15X3_STS_ERR | ALI15X3_STS_DONE)))
++ && (timeout++ < MAX_TIMEOUT));
++
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ result = -1;
++ dev_err(adap, "SMBus Timeout!\n");
++ }
++
++ if (temp & ALI15X3_STS_TERM) {
++ result = -1;
++ dev_dbg(adap, "Error: Failed bus transaction\n");
++ }
++
++ /*
++ Unfortunately the ALI SMB controller maps "no response" and "bus
++ collision" into a single bit. No reponse is the usual case so don't
++ do a printk.
++ This means that bus collisions go unreported.
++ */
++ if (temp & ALI15X3_STS_COLL) {
++ result = -1;
++ dev_dbg(adap,
++ "Error: no response or bus collision ADD=%02x\n",
++ inb_p(SMBHSTADD));
++ }
++
++ /* haven't ever seen this */
++ if (temp & ALI15X3_STS_DEV) {
++ result = -1;
++ dev_err(adap, "Error: device error\n");
++ }
++ dev_dbg(adap, "Transaction (post): STS=%02x, CNT=%02x, CMD=%02x, "
++ "ADD=%02x, DAT0=%02x, DAT1=%02x\n", inb_p(SMBHSTSTS),
++ inb_p(SMBHSTCNT), inb_p(SMBHSTCMD), inb_p(SMBHSTADD),
++ inb_p(SMBHSTDAT0), inb_p(SMBHSTDAT1));
++ return result;
++}
++
++/* Return -1 on error. */
++static s32 ali15x3_access(struct i2c_adapter * adap, u16 addr,
++ unsigned short flags, char read_write, u8 command,
++ int size, union i2c_smbus_data * data)
++{
++ int i, len;
++ int temp;
++ int timeout;
++
++ /* clear all the bits (clear-on-write) */
++ outb_p(0xFF, SMBHSTSTS);
++ /* make sure SMBus is idle */
++ temp = inb_p(SMBHSTSTS);
++ for (timeout = 0;
++ (timeout < MAX_TIMEOUT) && !(temp & ALI15X3_STS_IDLE);
++ timeout++) {
++ i2c_delay(1);
++ temp = inb_p(SMBHSTSTS);
++ }
++ if (timeout >= MAX_TIMEOUT) {
++ dev_err(adap, "Idle wait Timeout! STS=0x%02x\n", temp);
++ }
++
++ switch (size) {
++ case I2C_SMBUS_QUICK:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ size = ALI15X3_QUICK;
++ break;
++ case I2C_SMBUS_BYTE:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(command, SMBHSTCMD);
++ size = ALI15X3_BYTE;
++ break;
++ case I2C_SMBUS_BYTE_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(data->byte, SMBHSTDAT0);
++ size = ALI15X3_BYTE_DATA;
++ break;
++ case I2C_SMBUS_WORD_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ outb_p(data->word & 0xff, SMBHSTDAT0);
++ outb_p((data->word & 0xff00) >> 8, SMBHSTDAT1);
++ }
++ size = ALI15X3_WORD_DATA;
++ break;
++ case I2C_SMBUS_BLOCK_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ len = data->block[0];
++ if (len < 0) {
++ len = 0;
++ data->block[0] = len;
++ }
++ if (len > 32) {
++ len = 32;
++ data->block[0] = len;
++ }
++ outb_p(len, SMBHSTDAT0);
++ /* Reset SMBBLKDAT */
++ outb_p(inb_p(SMBHSTCNT) | ALI15X3_BLOCK_CLR, SMBHSTCNT);
++ for (i = 1; i <= len; i++)
++ outb_p(data->block[i], SMBBLKDAT);
++ }
++ size = ALI15X3_BLOCK_DATA;
++ break;
++ default:
++ printk
++ (KERN_WARNING "i2c-ali15x3.o: Unsupported transaction %d\n", size);
++ return -1;
++ }
++
++ outb_p(size, SMBHSTCNT); /* output command */
++
++ if (ali15x3_transaction(adap)) /* Error in transaction */
++ return -1;
++
++ if ((read_write == I2C_SMBUS_WRITE) || (size == ALI15X3_QUICK))
++ return 0;
++
++
++ switch (size) {
++ case ALI15X3_BYTE: /* Result put in SMBHSTDAT0 */
++ data->byte = inb_p(SMBHSTDAT0);
++ break;
++ case ALI15X3_BYTE_DATA:
++ data->byte = inb_p(SMBHSTDAT0);
++ break;
++ case ALI15X3_WORD_DATA:
++ data->word = inb_p(SMBHSTDAT0) + (inb_p(SMBHSTDAT1) << 8);
++ break;
++ case ALI15X3_BLOCK_DATA:
++ len = inb_p(SMBHSTDAT0);
++ if (len > 32)
++ len = 32;
++ data->block[0] = len;
++ /* Reset SMBBLKDAT */
++ outb_p(inb_p(SMBHSTCNT) | ALI15X3_BLOCK_CLR, SMBHSTCNT);
++ for (i = 1; i <= data->block[0]; i++) {
++ data->block[i] = inb_p(SMBBLKDAT);
++ dev_dbg(adap, "Blk: len=%d, i=%d, data=%02x\n",
++ len, i, data->block[i]);
++ }
++ break;
++ }
++ return 0;
++}
++
++static u32 ali15x3_func(struct i2c_adapter *adapter)
++{
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
++ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
++ I2C_FUNC_SMBUS_BLOCK_DATA;
++}
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = ali15x3_access,
++ .functionality = ali15x3_func,
++};
++
++static struct i2c_adapter ali15x3_adapter = {
++ .owner = THIS_MODULE,
++ .id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_ALI15X3,
++ .algo = &smbus_algorithm,
++ .name = "unset",
++};
++
++static struct pci_device_id ali15x3_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_AL,
++ .device = PCI_DEVICE_ID_AL_M7101,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit ali15x3_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ if (ali15x3_setup(dev)) {
++ dev_err(dev,
++ "ALI15X3 not detected, module not inserted.\n");
++ return -ENODEV;
++ }
++
++ snprintf(ali15x3_adapter.name, 32,
++ "SMBus ALI15X3 adapter at %04x", ali15x3_smba);
++ return i2c_add_adapter(&ali15x3_adapter);
++}
++
++static void __devexit ali15x3_remove(struct pci_dev *dev)
++{
++ i2c_del_adapter(&ali15x3_adapter);
++ release_region(ali15x3_smba, ALI15X3_SMB_IOSIZE);
++}
++
++static struct pci_driver ali15x3_driver = {
++ .name = "ali15x3 smbus",
++ .id_table = ali15x3_ids,
++ .probe = ali15x3_probe,
++ .remove = __devexit_p(ali15x3_remove),
++};
++
++static int __init i2c_ali15x3_init(void)
++{
++ printk("i2c-ali15x3.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return pci_module_init(&ali15x3_driver);
++}
++
++static void __exit i2c_ali15x3_exit(void)
++{
++ pci_unregister_driver(&ali15x3_driver);
++}
++
++MODULE_AUTHOR ("Frodo Looijaard <frodol@dds.nl>, "
++ "Philip Edelbrock <phil@netroedge.com>, "
++ "and Mark D. Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("ALI15X3 SMBus driver");
++MODULE_LICENSE("GPL");
++
++module_init(i2c_ali15x3_init);
++module_exit(i2c_ali15x3_exit);
+--- linux-old/drivers/i2c/i2c-amd756.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-amd756.c Mon Dec 13 20:18:41 2004
+@@ -0,0 +1,425 @@
++/*
++ amd756.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++
++ Copyright (c) 1999-2002 Merlin Hughes <merlin@merlin.org>
++
++ Shamelessly ripped from i2c-piix4.c:
++
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> and
++ Philip Edelbrock <phil@netroedge.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ 2002-04-08: Added nForce support. (Csaba Halasz)
++ 2002-10-03: Fixed nForce PnP I/O port. (Michael Steil)
++ 2002-12-28: Rewritten into something that resembles a Linux driver (hch)
++ 2003-11-29: Added back AMD8111 removed by the previous rewrite.
++ (Philip Pokorny)
++ 2004-02-15: Don't register driver to avoid driver conflicts.
++ (Daniel Rune Jensen)
++*/
++
++/*
++ Supports AMD756, AMD766, AMD768, AMD8111 and nVidia nForce
++ Note: we assume there can only be one device, with one SMBus interface.
++*/
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++#define DRV_NAME "i2c-amd756"
++
++/* AMD756 SMBus address offsets */
++#define SMB_ADDR_OFFSET 0xE0
++#define SMB_IOSIZE 16
++#define SMB_GLOBAL_STATUS (0x0 + amd756_ioport)
++#define SMB_GLOBAL_ENABLE (0x2 + amd756_ioport)
++#define SMB_HOST_ADDRESS (0x4 + amd756_ioport)
++#define SMB_HOST_DATA (0x6 + amd756_ioport)
++#define SMB_HOST_COMMAND (0x8 + amd756_ioport)
++#define SMB_HOST_BLOCK_DATA (0x9 + amd756_ioport)
++#define SMB_HAS_DATA (0xA + amd756_ioport)
++#define SMB_HAS_DEVICE_ADDRESS (0xC + amd756_ioport)
++#define SMB_HAS_HOST_ADDRESS (0xE + amd756_ioport)
++#define SMB_SNOOP_ADDRESS (0xF + amd756_ioport)
++
++/* PCI Address Constants */
++
++/* address of I/O space */
++#define SMBBA 0x058 /* mh */
++#define SMBBANFORCE 0x014
++
++/* general configuration */
++#define SMBGCFG 0x041 /* mh */
++
++/* silicon revision code */
++#define SMBREV 0x008
++
++/* Other settings */
++#define MAX_TIMEOUT 500
++
++/* AMD756 constants */
++#define AMD756_QUICK 0x00
++#define AMD756_BYTE 0x01
++#define AMD756_BYTE_DATA 0x02
++#define AMD756_WORD_DATA 0x03
++#define AMD756_PROCESS_CALL 0x04
++#define AMD756_BLOCK_DATA 0x05
++
++
++static unsigned short amd756_ioport = 0;
++
++/*
++ SMBUS event = I/O 28-29 bit 11
++ see E0 for the status bits and enabled in E2
++
++*/
++
++#define GS_ABRT_STS (1 << 0)
++#define GS_COL_STS (1 << 1)
++#define GS_PRERR_STS (1 << 2)
++#define GS_HST_STS (1 << 3)
++#define GS_HCYC_STS (1 << 4)
++#define GS_TO_STS (1 << 5)
++#define GS_SMB_STS (1 << 11)
++
++#define GS_CLEAR_STS (GS_ABRT_STS | GS_COL_STS | GS_PRERR_STS | \
++ GS_HCYC_STS | GS_TO_STS )
++
++#define GE_CYC_TYPE_MASK (7)
++#define GE_HOST_STC (1 << 3)
++#define GE_ABORT (1 << 5)
++
++
++static int amd756_transaction(void)
++{
++ int temp;
++ int result = 0;
++ int timeout = 0;
++
++ pr_debug(DRV_NAME
++ ": Transaction (pre): GS=%04x, GE=%04x, ADD=%04x, DAT=%04x\n",
++ inw_p(SMB_GLOBAL_STATUS), inw_p(SMB_GLOBAL_ENABLE),
++ inw_p(SMB_HOST_ADDRESS), inb_p(SMB_HOST_DATA));
++
++ /* Make sure the SMBus host is ready to start transmitting */
++ if ((temp = inw_p(SMB_GLOBAL_STATUS)) & (GS_HST_STS | GS_SMB_STS)) {
++ pr_debug(DRV_NAME ": SMBus busy (%04x). Waiting... \n", temp);
++ do {
++ i2c_delay(1);
++ temp = inw_p(SMB_GLOBAL_STATUS);
++ } while ((temp & (GS_HST_STS | GS_SMB_STS)) &&
++ (timeout++ < MAX_TIMEOUT));
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ pr_debug(DRV_NAME ": Busy wait timeout (%04x)\n", temp);
++ goto abort;
++ }
++ timeout = 0;
++ }
++
++ /* start the transaction by setting the start bit */
++ outw_p(inw(SMB_GLOBAL_ENABLE) | GE_HOST_STC, SMB_GLOBAL_ENABLE);
++
++ /* We will always wait for a fraction of a second! */
++ do {
++ i2c_delay(1);
++ temp = inw_p(SMB_GLOBAL_STATUS);
++ } while ((temp & GS_HST_STS) && (timeout++ < MAX_TIMEOUT));
++
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ pr_debug(DRV_NAME ": Completion timeout!\n");
++ goto abort;
++ }
++
++ if (temp & GS_PRERR_STS) {
++ result = -1;
++ pr_debug(DRV_NAME ": SMBus Protocol error (no response)!\n");
++ }
++
++ if (temp & GS_COL_STS) {
++ result = -1;
++ printk(KERN_WARNING DRV_NAME ": SMBus collision!\n");
++ }
++
++ if (temp & GS_TO_STS) {
++ result = -1;
++ pr_debug(DRV_NAME ": SMBus protocol timeout!\n");
++ }
++
++ if (temp & GS_HCYC_STS)
++ pr_debug(DRV_NAME ": SMBus protocol success!\n");
++
++ outw_p(GS_CLEAR_STS, SMB_GLOBAL_STATUS);
++
++#ifdef DEBUG
++ if (((temp = inw_p(SMB_GLOBAL_STATUS)) & GS_CLEAR_STS) != 0x00) {
++ pr_debug(DRV_NAME
++ ": Failed reset at end of transaction (%04x)\n", temp);
++ }
++
++ pr_debug(DRV_NAME
++ ": Transaction (post): GS=%04x, GE=%04x, ADD=%04x, DAT=%04x\n",
++ inw_p(SMB_GLOBAL_STATUS), inw_p(SMB_GLOBAL_ENABLE),
++ inw_p(SMB_HOST_ADDRESS), inb_p(SMB_HOST_DATA));
++#endif
++
++ return result;
++
++ abort:
++ printk(KERN_WARNING DRV_NAME ": Sending abort.\n");
++ outw_p(inw(SMB_GLOBAL_ENABLE) | GE_ABORT, SMB_GLOBAL_ENABLE);
++ i2c_delay(100);
++ outw_p(GS_CLEAR_STS, SMB_GLOBAL_STATUS);
++ return -1;
++}
++
++/* Return -1 on error. */
++
++static s32 amd756_access(struct i2c_adapter * adap, u16 addr,
++ unsigned short flags, char read_write,
++ u8 command, int size, union i2c_smbus_data * data)
++{
++ int i, len;
++
++ /** TODO: Should I supporte the 10-bit transfers? */
++ switch (size) {
++ /* TODO: proc call is supported, I'm just not sure what to do here... */
++ case I2C_SMBUS_QUICK:
++ outw_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMB_HOST_ADDRESS);
++ size = AMD756_QUICK;
++ break;
++ case I2C_SMBUS_BYTE:
++ outw_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMB_HOST_ADDRESS);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(command, SMB_HOST_DATA);
++ size = AMD756_BYTE;
++ break;
++ case I2C_SMBUS_BYTE_DATA:
++ outw_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMB_HOST_ADDRESS);
++ outb_p(command, SMB_HOST_COMMAND);
++ if (read_write == I2C_SMBUS_WRITE)
++ outw_p(data->byte, SMB_HOST_DATA);
++ size = AMD756_BYTE_DATA;
++ break;
++ case I2C_SMBUS_WORD_DATA:
++ outw_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMB_HOST_ADDRESS);
++ outb_p(command, SMB_HOST_COMMAND);
++ if (read_write == I2C_SMBUS_WRITE)
++ outw_p(data->word, SMB_HOST_DATA); /* TODO: endian???? */
++ size = AMD756_WORD_DATA;
++ break;
++ case I2C_SMBUS_BLOCK_DATA:
++ outw_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMB_HOST_ADDRESS);
++ outb_p(command, SMB_HOST_COMMAND);
++ if (read_write == I2C_SMBUS_WRITE) {
++ len = data->block[0];
++ if (len < 0)
++ len = 0;
++ if (len > 32)
++ len = 32;
++ outw_p(len, SMB_HOST_DATA);
++ /* i = inw_p(SMBHSTCNT); Reset SMBBLKDAT */
++ for (i = 1; i <= len; i++)
++ outb_p(data->block[i],
++ SMB_HOST_BLOCK_DATA);
++ }
++ size = AMD756_BLOCK_DATA;
++ break;
++ default:
++ printk
++ (KERN_WARNING "i2c-amd756.o: Unsupported transaction %d\n", size);
++ return -1;
++ }
++
++ /* How about enabling interrupts... */
++ outw_p(size & GE_CYC_TYPE_MASK, SMB_GLOBAL_ENABLE);
++
++ if (amd756_transaction()) /* Error in transaction */
++ return -1;
++
++ if ((read_write == I2C_SMBUS_WRITE) || (size == AMD756_QUICK))
++ return 0;
++
++
++ switch (size) {
++ case AMD756_BYTE:
++ data->byte = inw_p(SMB_HOST_DATA);
++ break;
++ case AMD756_BYTE_DATA:
++ data->byte = inw_p(SMB_HOST_DATA);
++ break;
++ case AMD756_WORD_DATA:
++ data->word = inw_p(SMB_HOST_DATA); /* TODO: endian???? */
++ break;
++ case AMD756_BLOCK_DATA:
++ data->block[0] = inw_p(SMB_HOST_DATA) & 0x3f;
++ if(data->block[0] > 32)
++ data->block[0] = 32;
++ /* i = inw_p(SMBHSTCNT); Reset SMBBLKDAT */
++ for (i = 1; i <= data->block[0]; i++)
++ data->block[i] = inb_p(SMB_HOST_BLOCK_DATA);
++ break;
++ }
++
++ return 0;
++}
++
++static u32 amd756_func(struct i2c_adapter *adapter)
++{
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
++ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
++ I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_PROC_CALL;
++}
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = amd756_access,
++ .functionality = amd756_func,
++};
++
++static struct i2c_adapter amd756_adapter = {
++ .owner = THIS_MODULE,
++ .name = "unset",
++ .id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_AMD756,
++ .algo = &smbus_algorithm,
++};
++
++enum chiptype { AMD756, AMD766, AMD768, NFORCE, AMD8111 };
++
++static struct pci_device_id amd756_ids[] __devinitdata = {
++ {PCI_VENDOR_ID_AMD, 0x740B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AMD756 },
++ {PCI_VENDOR_ID_AMD, 0x7413, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AMD766 },
++ {PCI_VENDOR_ID_AMD, 0x7443, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AMD768 },
++ {PCI_VENDOR_ID_AMD, 0x746B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AMD8111 },
++ {PCI_VENDOR_ID_NVIDIA, 0x01B4, PCI_ANY_ID, PCI_ANY_ID, 0, 0, NFORCE },
++ { 0, }
++};
++
++static int __devinit amd756_probe(struct pci_dev *pdev,
++ const struct pci_device_id *id)
++{
++ int nforce = (id->driver_data == NFORCE);
++ int error;
++ u8 temp;
++
++ if (amd756_ioport) {
++ printk(KERN_ERR DRV_NAME ": Only one device supported. "
++ "(you have a strange motherboard, btw..)\n");
++ return -ENODEV;
++ }
++
++ if (nforce) {
++ if (PCI_FUNC(pdev->devfn) != 1)
++ return -ENODEV;
++
++ pci_read_config_word(pdev, SMBBANFORCE, &amd756_ioport);
++ amd756_ioport &= 0xfffc;
++ } else { /* amd */
++ if (PCI_FUNC(pdev->devfn) != 3)
++ return -ENODEV;
++
++ pci_read_config_byte(pdev, SMBGCFG, &temp);
++ if ((temp & 128) == 0) {
++ printk(KERN_ERR DRV_NAME
++ ": Error: SMBus controller I/O not enabled!\n");
++ return -ENODEV;
++ }
++
++ /* Determine the address of the SMBus areas */
++ /* Technically it is a dword but... */
++ pci_read_config_word(pdev, SMBBA, &amd756_ioport);
++ amd756_ioport &= 0xff00;
++ amd756_ioport += SMB_ADDR_OFFSET;
++ }
++
++ if (!request_region(amd756_ioport, SMB_IOSIZE, "amd756-smbus")) {
++ printk(KERN_ERR DRV_NAME
++ ": SMB region 0x%x already in use!\n", amd756_ioport);
++ return -ENODEV;
++ }
++
++#ifdef DEBUG
++ pci_read_config_byte(pdev, SMBREV, &temp);
++ printk(KERN_DEBUG DRV_NAME ": SMBREV = 0x%X\n", temp);
++ printk(KERN_DEBUG DRV_NAME ": AMD756_smba = 0x%X\n", amd756_ioport);
++#endif
++
++ sprintf(amd756_adapter.name,
++ "SMBus AMD756 adapter at %04x", amd756_ioport);
++
++ error = i2c_add_adapter(&amd756_adapter);
++ if (error) {
++ printk(KERN_ERR DRV_NAME
++ ": Adapter registration failed, module not inserted.\n");
++ goto out_err;
++ }
++
++ return 0;
++
++ out_err:
++ release_region(amd756_ioport, SMB_IOSIZE);
++ return error;
++}
++
++
++static int __init i2c_amd756_init(void)
++{
++ struct pci_dev *dev;
++ const struct pci_device_id *id;
++
++ printk(KERN_INFO "i2c-amd756.o version %s (%s)\n", LM_VERSION, LM_DATE);
++
++ pci_for_each_dev(dev) {
++ id = pci_match_device(amd756_ids, dev);
++ if (id && amd756_probe(dev, id) >= 0)
++ return 0;
++ }
++
++ return -ENODEV;
++}
++
++
++static void __exit i2c_amd756_exit(void)
++{
++ i2c_del_adapter(&amd756_adapter);
++ release_region(amd756_ioport, SMB_IOSIZE);
++}
++
++MODULE_AUTHOR("Merlin Hughes <merlin@merlin.org>");
++MODULE_DESCRIPTION("AMD756/766/768/8111 and nVidia nForce SMBus driver");
++MODULE_LICENSE("GPL");
++
++module_init(i2c_amd756_init)
++module_exit(i2c_amd756_exit)
+--- linux-old/drivers/i2c/i2c-amd8111.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-amd8111.c Mon Dec 13 20:18:41 2004
+@@ -0,0 +1,421 @@
++/*
++ * SMBus 2.0 driver for AMD-8111 IO-Hub.
++ *
++ * Copyright (c) 2002 Vojtech Pavlik
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation version 2.
++ */
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/init.h>
++#include <linux/i2c.h>
++#include <linux/delay.h>
++#include <linux/slab.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++#ifndef I2C_HW_SMBUS_AMD8111
++#error Your i2c is too old - i2c-2.7.0 or greater required!
++#endif
++
++/* kernel 2.4.9 needs this */
++#ifndef min_t
++#define min_t(type,x,y) min(type,x,y)
++#endif
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR ("Vojtech Pavlik <vojtech@suse.cz>");
++MODULE_DESCRIPTION("AMD8111 SMBus 2.0 driver");
++
++struct amd_smbus {
++ struct pci_dev *dev;
++ struct i2c_adapter adapter;
++ int base;
++ int size;
++};
++
++/*
++ * AMD PCI control registers definitions.
++ */
++
++#define AMD_PCI_MISC 0x48
++
++#define AMD_PCI_MISC_SCI 0x04 /* deliver SCI */
++#define AMD_PCI_MISC_INT 0x02 /* deliver PCI IRQ */
++#define AMD_PCI_MISC_SPEEDUP 0x01 /* 16x clock speedup */
++
++/*
++ * ACPI 2.0 chapter 13 PCI interface definitions.
++ */
++
++#define AMD_EC_DATA 0x00 /* data register */
++#define AMD_EC_SC 0x04 /* status of controller */
++#define AMD_EC_CMD 0x04 /* command register */
++#define AMD_EC_ICR 0x08 /* interrupt control register */
++
++#define AMD_EC_SC_SMI 0x04 /* smi event pending */
++#define AMD_EC_SC_SCI 0x02 /* sci event pending */
++#define AMD_EC_SC_BURST 0x01 /* burst mode enabled */
++#define AMD_EC_SC_CMD 0x08 /* byte in data reg is command */
++#define AMD_EC_SC_IBF 0x02 /* data ready for embedded controller */
++#define AMD_EC_SC_OBF 0x01 /* data ready for host */
++
++#define AMD_EC_CMD_RD 0x80 /* read EC */
++#define AMD_EC_CMD_WR 0x81 /* write EC */
++#define AMD_EC_CMD_BE 0x82 /* enable burst mode */
++#define AMD_EC_CMD_BD 0x83 /* disable burst mode */
++#define AMD_EC_CMD_QR 0x84 /* query EC */
++
++/*
++ * ACPI 2.0 chapter 13 access of registers of the EC
++ */
++
++unsigned int amd_ec_wait_write(struct amd_smbus *smbus)
++{
++ int timeout = 500;
++
++ while (timeout-- && (inb(smbus->base + AMD_EC_SC) & AMD_EC_SC_IBF))
++ udelay(1);
++
++ if (!timeout) {
++ printk(KERN_WARNING "i2c-amd8111.c: Timeout while waiting for IBF to clear\n");
++ return -1;
++ }
++
++ return 0;
++}
++
++unsigned int amd_ec_wait_read(struct amd_smbus *smbus)
++{
++ int timeout = 500;
++
++ while (timeout-- && (~inb(smbus->base + AMD_EC_SC) & AMD_EC_SC_OBF))
++ udelay(1);
++
++ if (!timeout) {
++ printk(KERN_WARNING "i2c-amd8111.c: Timeout while waiting for OBF to set\n");
++ return -1;
++ }
++
++ return 0;
++}
++
++unsigned int amd_ec_read(struct amd_smbus *smbus, unsigned char address, unsigned char *data)
++{
++ if (amd_ec_wait_write(smbus))
++ return -1;
++ outb(AMD_EC_CMD_RD, smbus->base + AMD_EC_CMD);
++
++ if (amd_ec_wait_write(smbus))
++ return -1;
++ outb(address, smbus->base + AMD_EC_DATA);
++
++ if (amd_ec_wait_read(smbus))
++ return -1;
++ *data = inb(smbus->base + AMD_EC_DATA);
++
++ return 0;
++}
++
++unsigned int amd_ec_write(struct amd_smbus *smbus, unsigned char address, unsigned char data)
++{
++ if (amd_ec_wait_write(smbus))
++ return -1;
++ outb(AMD_EC_CMD_WR, smbus->base + AMD_EC_CMD);
++
++ if (amd_ec_wait_write(smbus))
++ return -1;
++ outb(address, smbus->base + AMD_EC_DATA);
++
++ if (amd_ec_wait_write(smbus))
++ return -1;
++ outb(data, smbus->base + AMD_EC_DATA);
++
++ return 0;
++}
++
++/*
++ * ACPI 2.0 chapter 13 SMBus 2.0 EC register model
++ */
++
++#define AMD_SMB_PRTCL 0x00 /* protocol, PEC */
++#define AMD_SMB_STS 0x01 /* status */
++#define AMD_SMB_ADDR 0x02 /* address */
++#define AMD_SMB_CMD 0x03 /* command */
++#define AMD_SMB_DATA 0x04 /* 32 data registers */
++#define AMD_SMB_BCNT 0x24 /* number of data bytes */
++#define AMD_SMB_ALRM_A 0x25 /* alarm address */
++#define AMD_SMB_ALRM_D 0x26 /* 2 bytes alarm data */
++
++#define AMD_SMB_STS_DONE 0x80
++#define AMD_SMB_STS_ALRM 0x40
++#define AMD_SMB_STS_RES 0x20
++#define AMD_SMB_STS_STATUS 0x1f
++
++#define AMD_SMB_STATUS_OK 0x00
++#define AMD_SMB_STATUS_FAIL 0x07
++#define AMD_SMB_STATUS_DNAK 0x10
++#define AMD_SMB_STATUS_DERR 0x11
++#define AMD_SMB_STATUS_CMD_DENY 0x12
++#define AMD_SMB_STATUS_UNKNOWN 0x13
++#define AMD_SMB_STATUS_ACC_DENY 0x17
++#define AMD_SMB_STATUS_TIMEOUT 0x18
++#define AMD_SMB_STATUS_NOTSUP 0x19
++#define AMD_SMB_STATUS_BUSY 0x1A
++#define AMD_SMB_STATUS_PEC 0x1F
++
++#define AMD_SMB_PRTCL_WRITE 0x00
++#define AMD_SMB_PRTCL_READ 0x01
++#define AMD_SMB_PRTCL_QUICK 0x02
++#define AMD_SMB_PRTCL_BYTE 0x04
++#define AMD_SMB_PRTCL_BYTE_DATA 0x06
++#define AMD_SMB_PRTCL_WORD_DATA 0x08
++#define AMD_SMB_PRTCL_BLOCK_DATA 0x0a
++#define AMD_SMB_PRTCL_PROC_CALL 0x0c
++#define AMD_SMB_PRTCL_BLOCK_PROC_CALL 0x0d
++#define AMD_SMB_PRTCL_I2C_BLOCK_DATA 0x4a
++#define AMD_SMB_PRTCL_PEC 0x80
++
++
++s32 amd8111_access(struct i2c_adapter * adap, u16 addr, unsigned short flags,
++ char read_write, u8 command, int size, union i2c_smbus_data * data)
++{
++ struct amd_smbus *smbus = adap->algo_data;
++ unsigned char protocol, len, pec, temp[2];
++ int i;
++
++ protocol = (read_write == I2C_SMBUS_READ) ? AMD_SMB_PRTCL_READ : AMD_SMB_PRTCL_WRITE;
++ pec = (flags & I2C_CLIENT_PEC) ? AMD_SMB_PRTCL_PEC : 0;
++
++ switch (size) {
++
++ case I2C_SMBUS_QUICK:
++ protocol |= AMD_SMB_PRTCL_QUICK;
++ read_write = I2C_SMBUS_WRITE;
++ break;
++
++ case I2C_SMBUS_BYTE:
++ if (read_write == I2C_SMBUS_WRITE)
++ amd_ec_write(smbus, AMD_SMB_CMD, command);
++ protocol |= AMD_SMB_PRTCL_BYTE;
++ break;
++
++ case I2C_SMBUS_BYTE_DATA:
++ amd_ec_write(smbus, AMD_SMB_CMD, command);
++ if (read_write == I2C_SMBUS_WRITE)
++ amd_ec_write(smbus, AMD_SMB_DATA, data->byte);
++ protocol |= AMD_SMB_PRTCL_BYTE_DATA;
++ break;
++
++ case I2C_SMBUS_WORD_DATA:
++ amd_ec_write(smbus, AMD_SMB_CMD, command);
++ if (read_write == I2C_SMBUS_WRITE) {
++ amd_ec_write(smbus, AMD_SMB_DATA, data->word);
++ amd_ec_write(smbus, AMD_SMB_DATA + 1, data->word >> 8);
++ }
++ protocol |= AMD_SMB_PRTCL_WORD_DATA | pec;
++ break;
++
++ case I2C_SMBUS_BLOCK_DATA:
++ amd_ec_write(smbus, AMD_SMB_CMD, command);
++ if (read_write == I2C_SMBUS_WRITE) {
++ len = min_t(u8, data->block[0], 32);
++ amd_ec_write(smbus, AMD_SMB_BCNT, len);
++ for (i = 0; i < len; i++)
++ amd_ec_write(smbus, AMD_SMB_DATA + i, data->block[i + 1]);
++ }
++ protocol |= AMD_SMB_PRTCL_BLOCK_DATA | pec;
++ break;
++
++ case I2C_SMBUS_I2C_BLOCK_DATA:
++ len = min_t(u8, data->block[0], 32);
++ amd_ec_write(smbus, AMD_SMB_CMD, command);
++ amd_ec_write(smbus, AMD_SMB_BCNT, len);
++ if (read_write == I2C_SMBUS_WRITE)
++ for (i = 0; i < len; i++)
++ amd_ec_write(smbus, AMD_SMB_DATA + i, data->block[i + 1]);
++ protocol |= AMD_SMB_PRTCL_I2C_BLOCK_DATA;
++ break;
++
++ case I2C_SMBUS_PROC_CALL:
++ amd_ec_write(smbus, AMD_SMB_CMD, command);
++ amd_ec_write(smbus, AMD_SMB_DATA, data->word);
++ amd_ec_write(smbus, AMD_SMB_DATA + 1, data->word >> 8);
++ protocol = AMD_SMB_PRTCL_PROC_CALL | pec;
++ read_write = I2C_SMBUS_READ;
++ break;
++
++ case I2C_SMBUS_BLOCK_PROC_CALL:
++ protocol |= pec;
++ len = min_t(u8, data->block[0], 31);
++ amd_ec_write(smbus, AMD_SMB_CMD, command);
++ amd_ec_write(smbus, AMD_SMB_BCNT, len);
++ for (i = 0; i < len; i++)
++ amd_ec_write(smbus, AMD_SMB_DATA + i, data->block[i + 1]);
++ protocol = AMD_SMB_PRTCL_BLOCK_PROC_CALL | pec;
++ read_write = I2C_SMBUS_READ;
++ break;
++
++ case I2C_SMBUS_WORD_DATA_PEC:
++ case I2C_SMBUS_BLOCK_DATA_PEC:
++ case I2C_SMBUS_PROC_CALL_PEC:
++ case I2C_SMBUS_BLOCK_PROC_CALL_PEC:
++ printk(KERN_WARNING "i2c-amd8111.c: Unexpected software PEC transaction %d\n.", size);
++ return -1;
++
++ default:
++ printk(KERN_WARNING "i2c-amd8111.c: Unsupported transaction %d\n", size);
++ return -1;
++ }
++
++ amd_ec_write(smbus, AMD_SMB_ADDR, addr << 1);
++ amd_ec_write(smbus, AMD_SMB_PRTCL, protocol);
++
++ amd_ec_read(smbus, AMD_SMB_STS, temp + 0);
++
++ if (~temp[0] & AMD_SMB_STS_DONE) {
++ udelay(500);
++ amd_ec_read(smbus, AMD_SMB_STS, temp + 0);
++ }
++
++ if (~temp[0] & AMD_SMB_STS_DONE) {
++ i2c_delay(HZ/100);
++ amd_ec_read(smbus, AMD_SMB_STS, temp + 0);
++ }
++
++ if ((~temp[0] & AMD_SMB_STS_DONE) || (temp[0] & AMD_SMB_STS_STATUS))
++ return -1;
++
++ if (read_write == I2C_SMBUS_WRITE)
++ return 0;
++
++ switch (size) {
++
++ case I2C_SMBUS_BYTE:
++ case I2C_SMBUS_BYTE_DATA:
++ amd_ec_read(smbus, AMD_SMB_DATA, &data->byte);
++ break;
++
++ case I2C_SMBUS_WORD_DATA:
++ case I2C_SMBUS_PROC_CALL:
++ amd_ec_read(smbus, AMD_SMB_DATA, temp + 0);
++ amd_ec_read(smbus, AMD_SMB_DATA + 1, temp + 1);
++ data->word = (temp[1] << 8) | temp[0];
++ break;
++
++ case I2C_SMBUS_BLOCK_DATA:
++ case I2C_SMBUS_BLOCK_PROC_CALL:
++ amd_ec_read(smbus, AMD_SMB_BCNT, &len);
++ len = min_t(u8, len, 32);
++ case I2C_SMBUS_I2C_BLOCK_DATA:
++ for (i = 0; i < len; i++)
++ amd_ec_read(smbus, AMD_SMB_DATA + i, data->block + i + 1);
++ data->block[0] = len;
++ break;
++ }
++
++ return 0;
++}
++
++
++u32 amd8111_func(struct i2c_adapter *adapter)
++{
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
++ I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_BLOCK_DATA |
++ I2C_FUNC_SMBUS_PROC_CALL | I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
++ I2C_FUNC_SMBUS_I2C_BLOCK | I2C_FUNC_SMBUS_HWPEC_CALC;
++}
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus 2.0 adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = amd8111_access,
++ .functionality = amd8111_func,
++};
++
++
++static struct pci_device_id amd8111_ids[] __devinitdata = {
++ { 0x1022, 0x746a, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
++ { 0, }
++};
++
++static int __devinit amd8111_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ struct amd_smbus *smbus;
++ int error;
++
++ if (~pci_resource_flags(dev, 0) & IORESOURCE_IO)
++ return -1;
++
++ if (!(smbus = (void*)kmalloc(sizeof(struct amd_smbus), GFP_KERNEL)))
++ return -1;
++ memset(smbus, 0, sizeof(struct amd_smbus));
++
++ pci_set_drvdata(dev, smbus);
++ smbus->dev = dev;
++ smbus->base = pci_resource_start(dev, 0);
++ smbus->size = pci_resource_len(dev, 0);
++
++ if (!request_region(smbus->base, smbus->size, "amd8111 SMBus 2.0")) {
++ kfree(smbus);
++ return -1;
++ }
++
++ smbus->adapter.owner = THIS_MODULE;
++ sprintf(smbus->adapter.name, "SMBus2 AMD8111 adapter at %04x", smbus->base);
++ smbus->adapter.id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_AMD8111;
++ smbus->adapter.algo = &smbus_algorithm;
++ smbus->adapter.algo_data = smbus;
++
++ error = i2c_add_adapter(&smbus->adapter);
++ if (error) {
++ printk(KERN_WARNING "i2c-amd8111.c: Failed to register adapter.\n");
++ release_region(smbus->base, smbus->size);
++ kfree(smbus);
++ return -1;
++ }
++
++ pci_write_config_dword(smbus->dev, AMD_PCI_MISC, 0);
++
++ printk(KERN_INFO "i2c-amd8111.c: AMD8111 SMBus 2.0 adapter at %#x\n", smbus->base);
++ return 0;
++}
++
++
++static void __devexit amd8111_remove(struct pci_dev *dev)
++{
++ struct amd_smbus *smbus = (void*) pci_get_drvdata(dev);
++ i2c_del_adapter(&smbus->adapter);
++ release_region(smbus->base, smbus->size);
++ kfree(smbus);
++}
++
++static struct pci_driver amd8111_driver = {
++ .name = "amd8111 smbus 2.0",
++ .id_table = amd8111_ids,
++ .probe = amd8111_probe,
++ .remove = __devexit_p(amd8111_remove),
++};
++
++static int __init i2c_amd8111_init(void)
++{
++ printk(KERN_INFO "i2c-amd8111.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return pci_module_init(&amd8111_driver);
++}
++
++
++static void __exit i2c_amd8111_exit(void)
++{
++ pci_unregister_driver(&amd8111_driver);
++}
++
++module_init(i2c_amd8111_init);
++module_exit(i2c_amd8111_exit);
+--- linux-old/drivers/i2c/i2c-hydra.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-hydra.c Mon Dec 13 20:18:41 2004
+@@ -0,0 +1,175 @@
++/*
++ i2c-hydra.c - Part of lm_sensors, Linux kernel modules
++ for hardware monitoring
++
++ i2c Support for the Apple `Hydra' Mac I/O
++
++ Copyright (c) 1999 Geert Uytterhoeven <geert@linux-m68k.org>
++
++ Based on i2c Support for Via Technologies 82C586B South Bridge
++ Copyright (c) 1998, 1999 Kyösti Mälkki <kmalkki@cc.hut.fi>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/types.h>
++#include <linux/i2c.h>
++#include <linux/i2c-algo-bit.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#include <asm/system.h>
++#include <asm/param.h> /* for HZ */
++
++MODULE_LICENSE("GPL");
++
++
++#define HYDRA_CACHE_PD 0x00000030
++
++#define HYDRA_CPD_PD0 0x00000001 /* CachePD lines */
++#define HYDRA_CPD_PD1 0x00000002
++#define HYDRA_CPD_PD2 0x00000004
++#define HYDRA_CPD_PD3 0x00000008
++
++#define HYDRA_SCLK HYDRA_CPD_PD0
++#define HYDRA_SDAT HYDRA_CPD_PD1
++#define HYDRA_SCLK_OE 0x00000010
++#define HYDRA_SDAT_OE 0x00000020
++
++static unsigned long hydra_base;
++
++static inline void pdregw(u32 val)
++{
++ writel(val, hydra_base + HYDRA_CACHE_PD);
++}
++
++static inline u32 pdregr(void)
++{
++ u32 val = readl(hydra_base + HYDRA_CACHE_PD);
++ return val;
++}
++
++static void bit_hydra_setscl(void *data, int state)
++{
++ u32 val = pdregr();
++ if (state)
++ val &= ~HYDRA_SCLK_OE;
++ else {
++ val &= ~HYDRA_SCLK;
++ val |= HYDRA_SCLK_OE;
++ }
++ pdregw(val);
++ pdregr(); /* flush posted write */
++}
++
++static void bit_hydra_setsda(void *data, int state)
++{
++ u32 val = pdregr();
++ if (state)
++ val &= ~HYDRA_SDAT_OE;
++ else {
++ val &= ~HYDRA_SDAT;
++ val |= HYDRA_SDAT_OE;
++ }
++ pdregw(val);
++ pdregr(); /* flush posted write */
++}
++
++static int bit_hydra_getscl(void *data)
++{
++ return (pdregr() & HYDRA_SCLK) != 0;
++}
++
++static int bit_hydra_getsda(void *data)
++{
++ return (pdregr() & HYDRA_SDAT) != 0;
++}
++
++/* ------------------------------------------------------------------------ */
++
++static struct i2c_algo_bit_data bit_hydra_data = {
++ .setsda = bit_hydra_setsda,
++ .setscl = bit_hydra_setscl,
++ .getsda = bit_hydra_getsda,
++ .getscl = bit_hydra_getscl,
++ .udelay = 5,
++ .mdelay = 5,
++ .timeout = HZ
++};
++
++static struct i2c_adapter bit_hydra_ops = {
++ .owner = THIS_MODULE,
++ .name = "Hydra i2c",
++ .id = I2C_HW_B_HYDRA,
++ .algo_data = &bit_hydra_data,
++};
++
++static struct pci_device_id hydra_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_APPLE,
++ .device = PCI_DEVICE_ID_APPLE_HYDRA,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit hydra_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ unsigned int base_addr;
++
++ base_addr = dev->resource[0].start;
++ hydra_base = (unsigned long) ioremap(base_addr, 0x100);
++
++ pdregw(0); /* clear SCLK_OE and SDAT_OE */
++ return i2c_bit_add_bus(&bit_hydra_ops);
++}
++
++static void __devexit hydra_remove(struct pci_dev *dev)
++{
++ pdregw(0); /* clear SCLK_OE and SDAT_OE */
++ i2c_bit_del_bus(&bit_hydra_ops);
++ iounmap((void *) hydra_base);
++}
++
++
++static struct pci_driver hydra_driver = {
++ .name = "hydra smbus",
++ .id_table = hydra_ids,
++ .probe = hydra_probe,
++ .remove = __devexit_p(hydra_remove),
++};
++
++static int __init i2c_hydra_init(void)
++{
++ return pci_module_init(&hydra_driver);
++}
++
++
++static void __exit i2c_hydra_exit(void)
++{
++ pci_unregister_driver(&hydra_driver);
++}
++
++
++
++MODULE_AUTHOR("Geert Uytterhoeven <geert@linux-m68k.org>");
++MODULE_DESCRIPTION("i2c for Apple Hydra Mac I/O");
++
++module_init(i2c_hydra_init);
++module_exit(i2c_hydra_exit);
++
+--- linux-old/drivers/i2c/i2c-i801.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-i801.c Mon Dec 13 20:18:41 2004
+@@ -0,0 +1,656 @@
++/*
++ i801.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>, and Mark D. Studebaker
++ <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ SUPPORTED DEVICES PCI ID
++ 82801AA 2413
++ 82801AB 2423
++ 82801BA 2443
++ 82801CA/CAM 2483
++ 82801DB 24C3 (HW PEC supported, 32 byte buffer not supported)
++ 82801EB 24D3 (HW PEC supported, 32 byte buffer not supported)
++ 6300ESB 25A4 ("")
++ ICH6 266A
++ This driver supports several versions of Intel's I/O Controller Hubs (ICH).
++ For SMBus support, they are similar to the PIIX4 and are part
++ of Intel's '810' and other chipsets.
++ See the doc/busses/i2c-i801 file for details.
++ I2C Block Read and Process Call are not supported.
++*/
++
++/* Note: we assume there can only be one I801, with one SMBus interface */
++
++/* #define DEBUG 1 */
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/init.h>
++#include <linux/i2c.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_compat.h>
++
++/* 82801DB is undefined before kernel 2.4.19 */
++#ifndef PCI_DEVICE_ID_INTEL_82801DB_3
++#define PCI_DEVICE_ID_INTEL_82801DB_3 0x24c3
++#endif
++
++#ifdef I2C_FUNC_SMBUS_BLOCK_DATA_PEC
++#define HAVE_PEC
++#endif
++
++/* I801 SMBus address offsets */
++#define SMBHSTSTS (0 + i801_smba)
++#define SMBHSTCNT (2 + i801_smba)
++#define SMBHSTCMD (3 + i801_smba)
++#define SMBHSTADD (4 + i801_smba)
++#define SMBHSTDAT0 (5 + i801_smba)
++#define SMBHSTDAT1 (6 + i801_smba)
++#define SMBBLKDAT (7 + i801_smba)
++#define SMBPEC (8 + i801_smba) /* ICH4 only */
++#define SMBAUXSTS (12 + i801_smba) /* ICH4 only */
++#define SMBAUXCTL (13 + i801_smba) /* ICH4 only */
++
++/* PCI Address Constants */
++#define SMBBA 0x020
++#define SMBHSTCFG 0x040
++#define SMBREV 0x008
++
++/* Host configuration bits for SMBHSTCFG */
++#define SMBHSTCFG_HST_EN 1
++#define SMBHSTCFG_SMB_SMI_EN 2
++#define SMBHSTCFG_I2C_EN 4
++
++/* Other settings */
++#define MAX_TIMEOUT 100
++#define ENABLE_INT9 0 /* set to 0x01 to enable - untested */
++
++/* I801 command constants */
++#define I801_QUICK 0x00
++#define I801_BYTE 0x04
++#define I801_BYTE_DATA 0x08
++#define I801_WORD_DATA 0x0C
++#define I801_PROC_CALL 0x10 /* later chips only, unimplemented */
++#define I801_BLOCK_DATA 0x14
++#define I801_I2C_BLOCK_DATA 0x18 /* unimplemented */
++#define I801_BLOCK_LAST 0x34
++#define I801_I2C_BLOCK_LAST 0x38 /* unimplemented */
++#define I801_START 0x40
++#define I801_PEC_EN 0x80 /* ICH4 only */
++
++/* insmod parameters */
++
++/* If force_addr is set to anything different from 0, we forcibly enable
++ the I801 at the given address. VERY DANGEROUS! */
++static int force_addr = 0;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Forcibly enable the I801 at the given address. "
++ "EXTREMELY DANGEROUS!");
++
++static int i801_transaction(void);
++static int i801_block_transaction(union i2c_smbus_data *data,
++ char read_write, int command);
++
++static unsigned short i801_smba;
++static struct pci_dev *I801_dev;
++static int isich4;
++
++static int i801_setup(struct pci_dev *dev)
++{
++ int error_return = 0;
++ unsigned char temp;
++
++ /* Note: we keep on searching until we have found 'function 3' */
++ if(PCI_FUNC(dev->devfn) != 3)
++ return -ENODEV;
++
++ I801_dev = dev;
++ if (dev->device == PCI_DEVICE_ID_INTEL_82801DB_3 ||
++ dev->device == 0x24d3 ||
++ dev->device == 0x25a4)
++ isich4 = 1;
++ else
++ isich4 = 0;
++
++ /* Determine the address of the SMBus areas */
++ if (force_addr) {
++ i801_smba = force_addr & 0xfff0;
++ } else {
++ pci_read_config_word(I801_dev, SMBBA, &i801_smba);
++ i801_smba &= 0xfff0;
++ if(i801_smba == 0) {
++ dev_err(dev, "SMB base address uninitialized"
++ "- upgrade BIOS or use force_addr=0xaddr\n");
++ return -ENODEV;
++ }
++ }
++
++ if (!request_region(i801_smba, (isich4 ? 16 : 8), "i801-smbus")) {
++ dev_err(dev, "I801_smb region 0x%x already in use!\n",
++ i801_smba);
++ error_return = -EBUSY;
++ goto END;
++ }
++
++ pci_read_config_byte(I801_dev, SMBHSTCFG, &temp);
++ temp &= ~SMBHSTCFG_I2C_EN; /* SMBus timing */
++ pci_write_config_byte(I801_dev, SMBHSTCFG, temp);
++
++ /* If force_addr is set, we program the new address here. Just to make
++ sure, we disable the device first. */
++ if (force_addr) {
++ pci_write_config_byte(I801_dev, SMBHSTCFG, temp & 0xfe);
++ pci_write_config_word(I801_dev, SMBBA, i801_smba);
++ pci_write_config_byte(I801_dev, SMBHSTCFG, temp | 0x01);
++ dev_warn(dev, "WARNING: I801 SMBus interface set to "
++ "new address %04x!\n", i801_smba);
++ } else if ((temp & 1) == 0) {
++ pci_write_config_byte(I801_dev, SMBHSTCFG, temp | 1);
++ dev_warn(dev, "enabling SMBus device\n");
++ }
++
++ if (temp & 0x02)
++ dev_dbg(dev, "I801 using Interrupt SMI# for SMBus.\n");
++ else
++ dev_dbg(dev, "I801 using PCI Interrupt for SMBus.\n");
++
++ pci_read_config_byte(I801_dev, SMBREV, &temp);
++ dev_dbg(dev, "SMBREV = 0x%X\n", temp);
++ dev_dbg(dev, "I801_smba = 0x%X\n", i801_smba);
++
++END:
++ return error_return;
++}
++
++
++static int i801_transaction(void)
++{
++ int temp;
++ int result = 0;
++ int timeout = 0;
++
++ dev_dbg(I801_dev, "Transaction (pre): CNT=%02x, CMD=%02x,"
++ "ADD=%02x, DAT0=%02x, DAT1=%02x\n", inb_p(SMBHSTCNT),
++ inb_p(SMBHSTCMD), inb_p(SMBHSTADD), inb_p(SMBHSTDAT0),
++ inb_p(SMBHSTDAT1));
++
++ /* Make sure the SMBus host is ready to start transmitting */
++ /* 0x1f = Failed, Bus_Err, Dev_Err, Intr, Host_Busy */
++ if ((temp = (0x1f & inb_p(SMBHSTSTS))) != 0x00) {
++ dev_dbg(I801_dev, "SMBus busy (%02x). Resetting... \n",
++ temp);
++ outb_p(temp, SMBHSTSTS);
++ if ((temp = (0x1f & inb_p(SMBHSTSTS))) != 0x00) {
++ dev_dbg(I801_dev, "Failed! (%02x)\n", temp);
++ return -1;
++ } else {
++ dev_dbg(I801_dev, "Successfull!\n");
++ }
++ }
++
++ outb_p(inb(SMBHSTCNT) | I801_START, SMBHSTCNT);
++
++ /* We will always wait for a fraction of a second! */
++ do {
++ i2c_delay(1);
++ temp = inb_p(SMBHSTSTS);
++ } while ((temp & 0x01) && (timeout++ < MAX_TIMEOUT));
++
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ dev_dbg(I801_dev, "SMBus Timeout!\n");
++ result = -1;
++ }
++
++ if (temp & 0x10) {
++ result = -1;
++ dev_dbg(I801_dev, "Error: Failed bus transaction\n");
++ }
++
++ if (temp & 0x08) {
++ result = -1;
++ dev_err(I801_dev, "Bus collision! SMBus may be locked "
++ "until next hard reset. (sorry!)\n");
++ /* Clock stops and slave is stuck in mid-transmission */
++ }
++
++ if (temp & 0x04) {
++ result = -1;
++ dev_dbg(I801_dev, "Error: no response!\n");
++ }
++
++ if ((inb_p(SMBHSTSTS) & 0x1f) != 0x00)
++ outb_p(inb(SMBHSTSTS), SMBHSTSTS);
++
++ if ((temp = (0x1f & inb_p(SMBHSTSTS))) != 0x00) {
++ dev_dbg(I801_dev, "Failed reset at end of transaction"
++ "(%02x)\n", temp);
++ }
++ dev_dbg(I801_dev, "Transaction (post): CNT=%02x, CMD=%02x, "
++ "ADD=%02x, DAT0=%02x, DAT1=%02x\n", inb_p(SMBHSTCNT),
++ inb_p(SMBHSTCMD), inb_p(SMBHSTADD), inb_p(SMBHSTDAT0),
++ inb_p(SMBHSTDAT1));
++ return result;
++}
++
++/* All-inclusive block transaction function */
++static int i801_block_transaction(union i2c_smbus_data *data, char read_write,
++ int command)
++{
++ int i, len;
++ int smbcmd;
++ int temp;
++ int result = 0;
++ int timeout;
++ unsigned char hostc, errmask;
++
++ if (command == I2C_SMBUS_I2C_BLOCK_DATA) {
++ if (read_write == I2C_SMBUS_WRITE) {
++ /* set I2C_EN bit in configuration register */
++ pci_read_config_byte(I801_dev, SMBHSTCFG, &hostc);
++ pci_write_config_byte(I801_dev, SMBHSTCFG,
++ hostc | SMBHSTCFG_I2C_EN);
++ } else {
++ dev_err(I801_dev,
++ "I2C_SMBUS_I2C_BLOCK_READ not DB!\n");
++ return -1;
++ }
++ }
++
++ if (read_write == I2C_SMBUS_WRITE) {
++ len = data->block[0];
++ if (len < 1)
++ len = 1;
++ if (len > 32)
++ len = 32;
++ outb_p(len, SMBHSTDAT0);
++ outb_p(data->block[1], SMBBLKDAT);
++ } else {
++ len = 32; /* max for reads */
++ }
++
++ if(isich4 && command != I2C_SMBUS_I2C_BLOCK_DATA) {
++ /* set 32 byte buffer */
++ }
++
++ for (i = 1; i <= len; i++) {
++ if (i == len && read_write == I2C_SMBUS_READ)
++ smbcmd = I801_BLOCK_LAST;
++ else
++ smbcmd = I801_BLOCK_DATA;
++ outb_p(smbcmd | ENABLE_INT9, SMBHSTCNT);
++
++ dev_dbg(I801_dev, "Block (pre %d): CNT=%02x, CMD=%02x, "
++ "ADD=%02x, DAT0=%02x, BLKDAT=%02x\n", i,
++ inb_p(SMBHSTCNT), inb_p(SMBHSTCMD), inb_p(SMBHSTADD),
++ inb_p(SMBHSTDAT0), inb_p(SMBBLKDAT));
++
++ /* Make sure the SMBus host is ready to start transmitting */
++ temp = inb_p(SMBHSTSTS);
++ if (i == 1) {
++ /* Erronenous conditions before transaction:
++ * Byte_Done, Failed, Bus_Err, Dev_Err, Intr, Host_Busy */
++ errmask=0x9f;
++ } else {
++ /* Erronenous conditions during transaction:
++ * Failed, Bus_Err, Dev_Err, Intr */
++ errmask=0x1e;
++ }
++ if (temp & errmask) {
++ dev_dbg(I801_dev, "SMBus busy (%02x). "
++ "Resetting... \n", temp);
++ outb_p(temp, SMBHSTSTS);
++ if (((temp = inb_p(SMBHSTSTS)) & errmask) != 0x00) {
++ dev_err(I801_dev,
++ "Reset failed! (%02x)\n", temp);
++ result = -1;
++ goto END;
++ }
++ if (i != 1) {
++ /* if die in middle of block transaction, fail */
++ result = -1;
++ goto END;
++ }
++ }
++
++ if (i == 1)
++ outb_p(inb(SMBHSTCNT) | I801_START, SMBHSTCNT);
++
++ /* We will always wait for a fraction of a second! */
++ timeout = 0;
++ do {
++ temp = inb_p(SMBHSTSTS);
++ i2c_delay(1);
++ }
++ while ((!(temp & 0x80))
++ && (timeout++ < MAX_TIMEOUT));
++
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ result = -1;
++ dev_dbg(I801_dev, "SMBus Timeout!\n");
++ }
++
++ if (temp & 0x10) {
++ result = -1;
++ dev_dbg(I801_dev,
++ "Error: Failed bus transaction\n");
++ } else if (temp & 0x08) {
++ result = -1;
++ dev_err(I801_dev, "Bus collision!\n");
++ } else if (temp & 0x04) {
++ result = -1;
++ dev_dbg(I801_dev, "Error: no response!\n");
++ }
++
++ if (i == 1 && read_write == I2C_SMBUS_READ) {
++ len = inb_p(SMBHSTDAT0);
++ if (len < 1)
++ len = 1;
++ if (len > 32)
++ len = 32;
++ data->block[0] = len;
++ }
++
++ /* Retrieve/store value in SMBBLKDAT */
++ if (read_write == I2C_SMBUS_READ)
++ data->block[i] = inb_p(SMBBLKDAT);
++ if (read_write == I2C_SMBUS_WRITE && i+1 <= len)
++ outb_p(data->block[i+1], SMBBLKDAT);
++ if ((temp & 0x9e) != 0x00)
++ outb_p(temp, SMBHSTSTS); /* signals SMBBLKDAT ready */
++
++ if ((temp = (0x1e & inb_p(SMBHSTSTS))) != 0x00) {
++ dev_dbg(I801_dev,
++ "Bad status (%02x) at end of transaction\n",
++ temp);
++ }
++ dev_dbg(I801_dev, "Block (post %d): CNT=%02x, CMD=%02x, "
++ "ADD=%02x, DAT0=%02x, BLKDAT=%02x\n", i,
++ inb_p(SMBHSTCNT), inb_p(SMBHSTCMD), inb_p(SMBHSTADD),
++ inb_p(SMBHSTDAT0), inb_p(SMBBLKDAT));
++
++ if (result < 0)
++ goto END;
++ }
++
++#ifdef HAVE_PEC
++ if(isich4 && command == I2C_SMBUS_BLOCK_DATA_PEC) {
++ /* wait for INTR bit as advised by Intel */
++ timeout = 0;
++ do {
++ temp = inb_p(SMBHSTSTS);
++ i2c_delay(1);
++ } while ((!(temp & 0x02))
++ && (timeout++ < MAX_TIMEOUT));
++
++ if (timeout >= MAX_TIMEOUT) {
++ dev_dbg(I801_dev, "PEC Timeout!\n");
++ }
++ outb_p(temp, SMBHSTSTS);
++ }
++#endif
++ result = 0;
++END:
++ if (command == I2C_SMBUS_I2C_BLOCK_DATA) {
++ /* restore saved configuration register value */
++ pci_write_config_byte(I801_dev, SMBHSTCFG, hostc);
++ }
++ return result;
++}
++
++/* Return -1 on error. */
++static s32 i801_access(struct i2c_adapter * adap, u16 addr,
++ unsigned short flags, char read_write, u8 command,
++ int size, union i2c_smbus_data * data)
++{
++ int hwpec = 0;
++ int block = 0;
++ int ret, xact = 0;
++
++#ifdef HAVE_PEC
++ if(isich4)
++ hwpec = (flags & I2C_CLIENT_PEC) != 0;
++#endif
++
++ switch (size) {
++ case I2C_SMBUS_QUICK:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ xact = I801_QUICK;
++ break;
++ case I2C_SMBUS_BYTE:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(command, SMBHSTCMD);
++ xact = I801_BYTE;
++ break;
++ case I2C_SMBUS_BYTE_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(data->byte, SMBHSTDAT0);
++ xact = I801_BYTE_DATA;
++ break;
++ case I2C_SMBUS_WORD_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ outb_p(data->word & 0xff, SMBHSTDAT0);
++ outb_p((data->word & 0xff00) >> 8, SMBHSTDAT1);
++ }
++ xact = I801_WORD_DATA;
++ break;
++ case I2C_SMBUS_BLOCK_DATA:
++ case I2C_SMBUS_I2C_BLOCK_DATA:
++#ifdef HAVE_PEC
++ case I2C_SMBUS_BLOCK_DATA_PEC:
++ if(hwpec && size == I2C_SMBUS_BLOCK_DATA)
++ size = I2C_SMBUS_BLOCK_DATA_PEC;
++#endif
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ block = 1;
++ break;
++ case I2C_SMBUS_PROC_CALL:
++ default:
++ dev_err(I801_dev, "Unsupported transaction %d\n", size);
++ return -1;
++ }
++
++#ifdef HAVE_PEC
++ if(isich4 && hwpec) {
++ if(size != I2C_SMBUS_QUICK &&
++ size != I2C_SMBUS_I2C_BLOCK_DATA)
++ outb_p(1, SMBAUXCTL); /* enable HW PEC */
++ }
++#endif
++ if(block)
++ ret = i801_block_transaction(data, read_write, size);
++ else {
++ outb_p(xact | ENABLE_INT9, SMBHSTCNT);
++ ret = i801_transaction();
++ }
++
++#ifdef HAVE_PEC
++ if(isich4 && hwpec) {
++ if(size != I2C_SMBUS_QUICK &&
++ size != I2C_SMBUS_I2C_BLOCK_DATA)
++ outb_p(0, SMBAUXCTL);
++ }
++#endif
++
++ if(block)
++ return ret;
++ if(ret)
++ return -1;
++ if ((read_write == I2C_SMBUS_WRITE) || (xact == I801_QUICK))
++ return 0;
++
++ switch (xact & 0x7f) {
++ case I801_BYTE: /* Result put in SMBHSTDAT0 */
++ case I801_BYTE_DATA:
++ data->byte = inb_p(SMBHSTDAT0);
++ break;
++ case I801_WORD_DATA:
++ data->word = inb_p(SMBHSTDAT0) + (inb_p(SMBHSTDAT1) << 8);
++ break;
++ }
++ return 0;
++}
++
++
++static u32 i801_func(struct i2c_adapter *adapter)
++{
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
++ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
++ I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_WRITE_I2C_BLOCK
++#ifdef HAVE_PEC
++ | (isich4 ? I2C_FUNC_SMBUS_BLOCK_DATA_PEC |
++ I2C_FUNC_SMBUS_HWPEC_CALC
++ : 0)
++#endif
++ ;
++}
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = i801_access,
++ .functionality = i801_func,
++};
++
++static struct i2c_adapter i801_adapter = {
++ .owner = THIS_MODULE,
++ .id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_I801,
++ .algo = &smbus_algorithm,
++ .name = "unset",
++};
++
++static struct pci_device_id i801_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82801AA_3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82801AB_3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82801BA_2,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82801CA_3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82801DB_3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = 0x24d3, /* 82801EB ICH5 */
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = 0x25a4, /* PCI_DEVICE_ID_INTEL_ESB_4 */
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = 0x266a, /* PCI_DEVICE_ID_INTEL_ICH6_16 */
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit i801_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++
++ if (i801_setup(dev)) {
++ dev_warn(dev,
++ "I801 not detected, module not inserted.\n");
++ return -ENODEV;
++ }
++
++ snprintf(i801_adapter.name, 32,
++ "SMBus I801 adapter at %04x", i801_smba);
++ return i2c_add_adapter(&i801_adapter);
++}
++
++static void __devexit i801_remove(struct pci_dev *dev)
++{
++ i2c_del_adapter(&i801_adapter);
++ release_region(i801_smba, (isich4 ? 16 : 8));
++}
++
++static struct pci_driver i801_driver = {
++ .name = "i801 smbus",
++ .id_table = i801_ids,
++ .probe = i801_probe,
++ .remove = __devexit_p(i801_remove),
++};
++
++static int __init i2c_i801_init(void)
++{
++ printk(KERN_INFO "i2c-i801 version %s (%s)\n", LM_VERSION, LM_DATE);
++ return pci_module_init(&i801_driver);
++}
++
++static void __exit i2c_i801_exit(void)
++{
++ pci_unregister_driver(&i801_driver);
++}
++
++MODULE_AUTHOR ("Frodo Looijaard <frodol@dds.nl>, "
++ "Philip Edelbrock <phil@netroedge.com>, "
++ "and Mark D. Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("I801 SMBus driver");
++MODULE_LICENSE("GPL");
++
++module_init(i2c_i801_init);
++module_exit(i2c_i801_exit);
+--- linux-old/drivers/i2c/i2c-i810.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-i810.c Mon Dec 13 20:18:41 2004
+@@ -0,0 +1,310 @@
++/*
++ i2c-i810.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999, 2000 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>,
++ Ralph Metzler <rjkm@thp.uni-koeln.de>, and
++ Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ Based on code written by Ralph Metzler <rjkm@thp.uni-koeln.de> and
++ Simon Vogl
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++/*
++ This interfaces to the I810/I815 to provide access to
++ the DDC Bus and the I2C Bus.
++
++ SUPPORTED DEVICES PCI ID
++ i810AA 7121
++ i810AB 7123
++ i810E 7125
++ i815 1132
++*/
++
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/i2c.h>
++#include <linux/i2c-algo-bit.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#include <asm/param.h> /* for HZ */
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++#ifndef PCI_DEVICE_ID_INTEL_82815_2
++#define PCI_DEVICE_ID_INTEL_82815_2 0x1132
++#endif
++
++/* GPIO register locations */
++#define I810_IOCONTROL_OFFSET 0x5000
++#define I810_HVSYNC 0x00 /* not used */
++#define I810_GPIOA 0x10
++#define I810_GPIOB 0x14
++
++/* bit locations in the registers */
++#define SCL_DIR_MASK 0x0001
++#define SCL_DIR 0x0002
++#define SCL_VAL_MASK 0x0004
++#define SCL_VAL_OUT 0x0008
++#define SCL_VAL_IN 0x0010
++#define SDA_DIR_MASK 0x0100
++#define SDA_DIR 0x0200
++#define SDA_VAL_MASK 0x0400
++#define SDA_VAL_OUT 0x0800
++#define SDA_VAL_IN 0x1000
++
++/* initialization states */
++#define INIT1 0x1
++#define INIT2 0x2
++#define INIT3 0x4
++
++/* delays */
++#define CYCLE_DELAY 10
++#define TIMEOUT (HZ / 2)
++
++
++static void config_i810(struct pci_dev *dev);
++
++
++static unsigned long ioaddr;
++
++/* The i810 GPIO registers have individual masks for each bit
++ so we never have to read before writing. Nice. */
++
++static void bit_i810i2c_setscl(void *data, int val)
++{
++ writel((val ? SCL_VAL_OUT : 0) | SCL_DIR | SCL_DIR_MASK | SCL_VAL_MASK,
++ ioaddr + I810_GPIOB);
++ readl(ioaddr + I810_GPIOB); /* flush posted write */
++}
++
++static void bit_i810i2c_setsda(void *data, int val)
++{
++ writel((val ? SDA_VAL_OUT : 0) | SDA_DIR | SDA_DIR_MASK | SDA_VAL_MASK,
++ ioaddr + I810_GPIOB);
++ readl(ioaddr + I810_GPIOB); /* flush posted write */
++}
++
++/* The GPIO pins are open drain, so the pins could always remain outputs.
++ However, some chip versions don't latch the inputs unless they
++ are set as inputs.
++ We rely on the i2c-algo-bit routines to set the pins high before
++ reading the input from other chips. Following guidance in the 815
++ prog. ref. guide, we do a "dummy write" of 0 to the register before
++ reading which forces the input value to be latched. We presume this
++ applies to the 810 as well; shouldn't hurt anyway. This is necessary to get
++ i2c_algo_bit bit_test=1 to pass. */
++
++static int bit_i810i2c_getscl(void *data)
++{
++ writel(SCL_DIR_MASK, ioaddr + I810_GPIOB);
++ writel(0, ioaddr + I810_GPIOB);
++ return (0 != (readl(ioaddr + I810_GPIOB) & SCL_VAL_IN));
++}
++
++static int bit_i810i2c_getsda(void *data)
++{
++ writel(SDA_DIR_MASK, ioaddr + I810_GPIOB);
++ writel(0, ioaddr + I810_GPIOB);
++ return (0 != (readl(ioaddr + I810_GPIOB) & SDA_VAL_IN));
++}
++
++static void bit_i810ddc_setscl(void *data, int val)
++{
++ writel((val ? SCL_VAL_OUT : 0) | SCL_DIR | SCL_DIR_MASK | SCL_VAL_MASK,
++ ioaddr + I810_GPIOA);
++ readl(ioaddr + I810_GPIOA); /* flush posted write */
++}
++
++static void bit_i810ddc_setsda(void *data, int val)
++{
++ writel((val ? SDA_VAL_OUT : 0) | SDA_DIR | SDA_DIR_MASK | SDA_VAL_MASK,
++ ioaddr + I810_GPIOA);
++ readl(ioaddr + I810_GPIOA); /* flush posted write */
++}
++
++static int bit_i810ddc_getscl(void *data)
++{
++ writel(SCL_DIR_MASK, ioaddr + I810_GPIOA);
++ writel(0, ioaddr + I810_GPIOA);
++ return (0 != (readl(ioaddr + I810_GPIOA) & SCL_VAL_IN));
++}
++
++static int bit_i810ddc_getsda(void *data)
++{
++ writel(SDA_DIR_MASK, ioaddr + I810_GPIOA);
++ writel(0, ioaddr + I810_GPIOA);
++ return (0 != (readl(ioaddr + I810_GPIOA) & SDA_VAL_IN));
++}
++
++
++/* Configures the chip */
++void config_i810(struct pci_dev *dev)
++{
++ unsigned long cadr;
++
++ /* map I810 memory */
++ cadr = dev->resource[1].start;
++ cadr += I810_IOCONTROL_OFFSET;
++ cadr &= PCI_BASE_ADDRESS_MEM_MASK;
++ ioaddr = (unsigned long)ioremap_nocache(cadr, 0x1000);
++ if(ioaddr) {
++ bit_i810i2c_setscl(NULL, 1);
++ bit_i810i2c_setsda(NULL, 1);
++ bit_i810ddc_setscl(NULL, 1);
++ bit_i810ddc_setsda(NULL, 1);
++ }
++}
++
++
++static struct i2c_algo_bit_data i810_i2c_bit_data = {
++ .setsda = bit_i810i2c_setsda,
++ .setscl = bit_i810i2c_setscl,
++ .getsda = bit_i810i2c_getsda,
++ .getscl = bit_i810i2c_getscl,
++ .udelay = CYCLE_DELAY,
++ .mdelay = CYCLE_DELAY,
++ .timeout = TIMEOUT,
++};
++
++static struct i2c_adapter i810_i2c_adapter = {
++ .owner = THIS_MODULE,
++ .name = "I810/I815 I2C Adapter",
++ .id = I2C_HW_B_I810,
++ .algo_data = &i810_i2c_bit_data,
++};
++
++static struct i2c_algo_bit_data i810_ddc_bit_data = {
++ .setsda = bit_i810ddc_setsda,
++ .setscl = bit_i810ddc_setscl,
++ .getsda = bit_i810ddc_getsda,
++ .getscl = bit_i810ddc_getscl,
++ .udelay = CYCLE_DELAY,
++ .mdelay = CYCLE_DELAY,
++ .timeout = TIMEOUT,
++};
++
++static struct i2c_adapter i810_ddc_adapter = {
++ .owner = THIS_MODULE,
++ .name = "I810/I815 DDC Adapter",
++ .id = I2C_HW_B_I810,
++ .algo_data = &i810_ddc_bit_data,
++};
++
++
++static struct pci_device_id i810_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82810_IG1,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82810_IG3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = 0x7125,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82815_2,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = 0x2562,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit i810_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ int retval;
++
++ config_i810(dev);
++ printk("i2c-i810.o: i810/i815 found.\n");
++
++ retval = i2c_bit_add_bus(&i810_i2c_adapter);
++ if(retval)
++ return retval;
++ retval = i2c_bit_add_bus(&i810_ddc_adapter);
++ if(retval)
++ i2c_bit_del_bus(&i810_i2c_adapter);
++ return retval;
++}
++
++static void __devexit i810_remove(struct pci_dev *dev)
++{
++ i2c_bit_del_bus(&i810_ddc_adapter);
++ i2c_bit_del_bus(&i810_i2c_adapter);
++}
++
++
++/* Don't register driver to avoid driver conflicts */
++/*
++static struct pci_driver i810_driver = {
++ .name = "i810 smbus",
++ .id_table = i810_ids,
++ .probe = i810_probe,
++ .remove = __devexit_p(i810_remove),
++};
++*/
++
++static int __init i2c_i810_init(void)
++{
++ struct pci_dev *dev;
++ const struct pci_device_id *id;
++
++ printk("i2c-i810.o version %s (%s)\n", LM_VERSION, LM_DATE);
++/*
++ return pci_module_init(&i810_driver);
++*/
++ pci_for_each_dev(dev) {
++ id = pci_match_device(i810_ids, dev);
++ if(id)
++ if(i810_probe(dev, id) >= 0)
++ return 0;
++ }
++ return -ENODEV;
++}
++
++static void __exit i2c_i810_exit(void)
++{
++/*
++ pci_unregister_driver(&i810_driver);
++*/
++ i810_remove(NULL);
++ iounmap((void *)ioaddr);
++}
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl>, Philip Edelbrock <phil@netroedge.com>, Ralph Metzler <rjkm@thp.uni-koeln.de>, and Mark D. Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("I810/I815 I2C/DDC driver");
++
++module_init(i2c_i810_init);
++module_exit(i2c_i810_exit);
+--- linux-old/drivers/i2c/i2c-isa.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-isa.c Mon Dec 13 20:18:41 2004
+@@ -0,0 +1,74 @@
++/*
++ i2c-isa.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* This implements an i2c algorithm/adapter for ISA bus. Not that this is
++ on first sight very useful; almost no functionality is preserved.
++ Except that it makes writing drivers for chips which can be on both
++ the SMBus and the ISA bus very much easier. See lm78.c for an example
++ of this. */
++
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/errno.h>
++#include <linux/i2c.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++static u32 isa_func(struct i2c_adapter *adapter);
++
++/* This is the actual algorithm we define */
++static struct i2c_algorithm isa_algorithm = {
++ .name = "ISA bus algorithm",
++ .id = I2C_ALGO_ISA,
++ .functionality = isa_func,
++};
++
++/* There can only be one... */
++static struct i2c_adapter isa_adapter = {
++ .owner = THIS_MODULE,
++ .name = "ISA main adapter",
++ .id = I2C_ALGO_ISA | I2C_HW_ISA,
++ .algo = &isa_algorithm,
++};
++
++/* We can't do a thing... */
++static u32 isa_func(struct i2c_adapter *adapter)
++{
++ return 0;
++}
++
++static int __init i2c_isa_init(void)
++{
++ printk("i2c-isa.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_adapter(&isa_adapter);
++}
++
++static void __exit i2c_isa_exit(void)
++{
++ i2c_del_adapter(&isa_adapter);
++}
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>");
++MODULE_DESCRIPTION("ISA bus access through i2c");
++MODULE_LICENSE("GPL");
++
++module_init(i2c_isa_init);
++module_exit(i2c_isa_exit);
+--- linux-old/drivers/i2c/i2c-nforce2.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-nforce2.c Mon Dec 13 20:18:41 2004
+@@ -0,0 +1,409 @@
++/*
++ SMBus driver for nVidia nForce2 MCP
++
++ Copyright (c) 2003 Hans-Frieder Vogt <hfvogt@arcor.de>,
++ Based on
++ SMBus 2.0 driver for AMD-8111 IO-Hub
++ Copyright (c) 2002 Vojtech Pavlik
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ SUPPORTED DEVICES PCI ID
++ nForce2 MCP 0064
++
++ This driver supports the 2 SMBuses that are included in the MCP2 of the
++ nForce2 chipset.
++*/
++
++/* Note: we assume there can only be one nForce2, with two SMBus interfaces */
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/init.h>
++#include <linux/i2c.h>
++#include <linux/delay.h>
++#include <linux/slab.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/* kernel 2.4.9 needs this */
++#ifndef min_t
++#define min_t(type,x,y) min(type,x,y)
++#endif
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR ("Hans-Frieder Vogt <hfvogt@arcor.de>");
++MODULE_DESCRIPTION("nForce2 SMBus driver");
++
++#ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_SMBUS
++#define PCI_DEVICE_ID_NVIDIA_NFORCE2_SMBUS 0x0064
++#endif
++
++
++struct nforce2_smbus {
++ struct pci_dev *dev;
++ struct i2c_adapter adapter;
++ int base;
++ int size;
++};
++
++
++/*
++ * nVidia nForce2 SMBus control register definitions
++ */
++#define NFORCE_PCI_SMB1 0x50
++#define NFORCE_PCI_SMB2 0x54
++
++
++/*
++ * ACPI 2.0 chapter 13 SMBus 2.0 EC register model
++ */
++#define NVIDIA_SMB_PRTCL (smbus->base + 0x00) /* protocol, PEC */
++#define NVIDIA_SMB_STS (smbus->base + 0x01) /* status */
++#define NVIDIA_SMB_ADDR (smbus->base + 0x02) /* address */
++#define NVIDIA_SMB_CMD (smbus->base + 0x03) /* command */
++#define NVIDIA_SMB_DATA (smbus->base + 0x04) /* 32 data registers */
++#define NVIDIA_SMB_BCNT (smbus->base + 0x24) /* number of data bytes */
++#define NVIDIA_SMB_ALRM_A (smbus->base + 0x25) /* alarm address */
++#define NVIDIA_SMB_ALRM_D (smbus->base + 0x26) /* 2 bytes alarm data */
++
++#define NVIDIA_SMB_STS_DONE 0x80
++#define NVIDIA_SMB_STS_ALRM 0x40
++#define NVIDIA_SMB_STS_RES 0x20
++#define NVIDIA_SMB_STS_STATUS 0x1f
++
++#define NVIDIA_SMB_PRTCL_WRITE 0x00
++#define NVIDIA_SMB_PRTCL_READ 0x01
++#define NVIDIA_SMB_PRTCL_QUICK 0x02
++#define NVIDIA_SMB_PRTCL_BYTE 0x04
++#define NVIDIA_SMB_PRTCL_BYTE_DATA 0x06
++#define NVIDIA_SMB_PRTCL_WORD_DATA 0x08
++#define NVIDIA_SMB_PRTCL_BLOCK_DATA 0x0a
++#define NVIDIA_SMB_PRTCL_PROC_CALL 0x0c
++#define NVIDIA_SMB_PRTCL_BLOCK_PROC_CALL 0x0d
++#define NVIDIA_SMB_PRTCL_I2C_BLOCK_DATA 0x4a
++#define NVIDIA_SMB_PRTCL_PEC 0x80
++
++
++/* Other settings */
++#define MAX_TIMEOUT 256
++
++
++
++static s32 nforce2_access(struct i2c_adapter *adap, u16 addr,
++ unsigned short flags, char read_write,
++ u8 command, int size, union i2c_smbus_data *data);
++/*
++static int nforce2_block_transaction(union i2c_smbus_data *data,
++ char read_write, int i2c_enable);
++ */
++static u32 nforce2_func(struct i2c_adapter *adapter);
++
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = nforce2_access,
++ .functionality = nforce2_func,
++};
++
++/* Return -1 on error. See smbus.h for more information */
++s32 nforce2_access(struct i2c_adapter * adap, u16 addr, unsigned short flags,
++ char read_write, u8 command, int size,
++ union i2c_smbus_data * data)
++{
++ struct nforce2_smbus *smbus = adap->algo_data;
++ unsigned char protocol, pec, temp;
++ unsigned char len = 0; /* to keep the compiler quiet */
++ int timeout = 0;
++ int i;
++
++ protocol = (read_write == I2C_SMBUS_READ) ? NVIDIA_SMB_PRTCL_READ : NVIDIA_SMB_PRTCL_WRITE;
++ pec = (flags & I2C_CLIENT_PEC) ? NVIDIA_SMB_PRTCL_PEC : 0;
++
++ switch (size) {
++
++ case I2C_SMBUS_QUICK:
++ protocol |= NVIDIA_SMB_PRTCL_QUICK;
++ read_write = I2C_SMBUS_WRITE;
++ break;
++
++ case I2C_SMBUS_BYTE:
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(command, NVIDIA_SMB_CMD);
++ protocol |= NVIDIA_SMB_PRTCL_BYTE;
++ break;
++
++ case I2C_SMBUS_BYTE_DATA:
++ outb_p(command, NVIDIA_SMB_CMD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(data->byte, NVIDIA_SMB_DATA);
++ protocol |= NVIDIA_SMB_PRTCL_BYTE_DATA;
++ break;
++
++ case I2C_SMBUS_WORD_DATA:
++ outb_p(command, NVIDIA_SMB_CMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ outb_p(data->word, NVIDIA_SMB_DATA);
++ outb_p(data->word >> 8, NVIDIA_SMB_DATA+1);
++ }
++ protocol |= NVIDIA_SMB_PRTCL_WORD_DATA | pec;
++ break;
++
++ case I2C_SMBUS_BLOCK_DATA:
++ outb_p(command, NVIDIA_SMB_CMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ len = min_t(u8, data->block[0], 32);
++ outb_p(len, NVIDIA_SMB_BCNT);
++ for (i = 0; i < len; i++)
++ outb_p(data->block[i + 1], NVIDIA_SMB_DATA+i);
++ }
++ protocol |= NVIDIA_SMB_PRTCL_BLOCK_DATA | pec;
++ break;
++
++ case I2C_SMBUS_I2C_BLOCK_DATA:
++ len = min_t(u8, data->block[0], 32);
++ outb_p(command, NVIDIA_SMB_CMD);
++ outb_p(len, NVIDIA_SMB_BCNT);
++ if (read_write == I2C_SMBUS_WRITE)
++ for (i = 0; i < len; i++)
++ outb_p(data->block[i + 1], NVIDIA_SMB_DATA+i);
++ protocol |= NVIDIA_SMB_PRTCL_I2C_BLOCK_DATA;
++ break;
++
++ case I2C_SMBUS_PROC_CALL:
++ printk(KERN_WARNING "i2c-nforce2.o: I2C_SMBUS_PROC_CALL not supported!\n");
++ return -1;
++ /*
++ outb_p(command, NVIDIA_SMB_CMD);
++ outb_p(data->word, NVIDIA_SMB_DATA);
++ outb_p(data->word >> 8, NVIDIA_SMB_DATA + 1);
++ protocol = NVIDIA_SMB_PRTCL_PROC_CALL | pec;
++ read_write = I2C_SMBUS_READ;
++ break;
++ */
++
++ case I2C_SMBUS_BLOCK_PROC_CALL:
++ printk(KERN_WARNING "i2c-nforce2.o: I2C_SMBUS_BLOCK_PROC_CALL not supported!\n");
++ return -1;
++ /*
++ protocol |= pec;
++ len = min_t(u8, data->block[0], 31);
++ outb_p(command, NVIDIA_SMB_CMD);
++ outb_p(len, NVIDIA_SMB_BCNT);
++ for (i = 0; i < len; i++)
++ outb_p(data->block[i + 1], NVIDIA_SMB_DATA + i);
++ protocol = NVIDIA_SMB_PRTCL_BLOCK_PROC_CALL | pec;
++ read_write = I2C_SMBUS_READ;
++ break;
++ */
++
++ case I2C_SMBUS_WORD_DATA_PEC:
++ case I2C_SMBUS_BLOCK_DATA_PEC:
++ case I2C_SMBUS_PROC_CALL_PEC:
++ case I2C_SMBUS_BLOCK_PROC_CALL_PEC:
++ printk(KERN_WARNING "i2c-nforce2.c: Unexpected software PEC transaction %d\n.", size);
++ return -1;
++
++ default:
++ printk(KERN_WARNING "i2c-nforce2.c: Unsupported transaction %d\n", size);
++ return -1;
++ }
++
++ outb_p((addr & 0x7f) << 1, NVIDIA_SMB_ADDR);
++ outb_p(protocol, NVIDIA_SMB_PRTCL);
++
++ temp = inb_p(NVIDIA_SMB_STS);
++
++#if 0
++ do {
++ i2c_delay(1);
++ temp = inb_p(NVIDIA_SMB_STS);
++ } while (((temp & NVIDIA_SMB_STS_DONE) == 0) && (timeout++ < MAX_TIMEOUT));
++#endif
++ if (~temp & NVIDIA_SMB_STS_DONE) {
++ udelay(500);
++ temp = inb_p(NVIDIA_SMB_STS);
++ }
++ if (~temp & NVIDIA_SMB_STS_DONE) {
++ i2c_delay(HZ/100);
++ temp = inb_p(NVIDIA_SMB_STS);
++ }
++
++ if ((timeout >= MAX_TIMEOUT) || (~temp & NVIDIA_SMB_STS_DONE) || (temp & NVIDIA_SMB_STS_STATUS))
++ return -1;
++
++ if (read_write == I2C_SMBUS_WRITE)
++ return 0;
++
++ switch (size) {
++
++ case I2C_SMBUS_BYTE:
++ case I2C_SMBUS_BYTE_DATA:
++ data->byte = inb_p(NVIDIA_SMB_DATA);
++ break;
++
++ case I2C_SMBUS_WORD_DATA:
++ /* case I2C_SMBUS_PROC_CALL: not supported */
++ data->word = inb_p(NVIDIA_SMB_DATA) | (inb_p(NVIDIA_SMB_DATA+1) << 8);
++ break;
++
++ case I2C_SMBUS_BLOCK_DATA:
++ /* case I2C_SMBUS_BLOCK_PROC_CALL: not supported */
++ len = inb_p(NVIDIA_SMB_BCNT);
++ len = min_t(u8, len, 32);
++ case I2C_SMBUS_I2C_BLOCK_DATA:
++ for (i = 0; i < len; i++)
++ data->block[i+1] = inb_p(NVIDIA_SMB_DATA + i);
++ data->block[0] = len;
++ break;
++ }
++
++ return 0;
++}
++
++
++u32 nforce2_func(struct i2c_adapter *adapter)
++{
++ /* other functionality might be possible, but is not tested */
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
++ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA /* |
++ I2C_FUNC_SMBUS_BLOCK_DATA */;
++}
++
++
++static struct pci_device_id nforce2_ids[] = {
++ { PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NFORCE2_SMBUS,
++ PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
++ { 0 }
++};
++
++
++static int __devinit nforce2_probe_smb (struct pci_dev *dev, int reg, struct nforce2_smbus *smbus, char *name)
++{
++ u16 iobase;
++ int error;
++
++ if (pci_read_config_word(dev, reg, &iobase) != PCIBIOS_SUCCESSFUL) {
++ printk (KERN_ERR "i2c-nforce2.o: Error reading PCI config for %s\n", name);
++ return -1;
++ }
++ smbus->dev = dev;
++ smbus->base = iobase & 0xfffc;
++ smbus->size = 8;
++
++ if (!request_region(smbus->base, smbus->size, "nForce2 SMBus")) {
++ printk (KERN_ERR "i2c-nforce2.o: Error requesting region %02x .. %02X for %s\n", smbus->base, smbus->base+smbus->size-1, name);
++ return -1;
++ }
++
++ /* TODO: find a better way to find out whether this file is compiled
++ * with i2c 2.7.0 of earlier
++ */
++#ifdef I2C_HW_SMBUS_AMD8111
++ smbus->adapter.owner = THIS_MODULE;
++#endif
++ sprintf(smbus->adapter.name, "SMBus nForce2 adapter at %04x", smbus->base);
++ smbus->adapter.id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_NFORCE2;
++ smbus->adapter.algo = &smbus_algorithm;
++ smbus->adapter.algo_data = smbus;
++
++ error = i2c_add_adapter(&smbus->adapter);
++ if (error) {
++ printk(KERN_WARNING "i2c-nforce2.o: Failed to register adapter.\n");
++ release_region(smbus->base, smbus->size);
++ return -1;
++ }
++ printk(KERN_INFO "i2c-nforce2.o: nForce2 SMBus adapter at %#x\n", smbus->base);
++ return 0;
++}
++
++
++static int __devinit nforce2_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ struct nforce2_smbus *smbuses;
++ int res1, res2;
++
++ /* we support 2 SMBus adapters */
++ if (!(smbuses = (void *)kmalloc(2*sizeof(struct nforce2_smbus),
++ GFP_KERNEL)))
++ return -ENOMEM;
++ memset (smbuses, 0, 2*sizeof(struct nforce2_smbus));
++ pci_set_drvdata(dev, smbuses);
++
++ /* SMBus adapter 1 */
++ res1 = nforce2_probe_smb (dev, NFORCE_PCI_SMB1, &smbuses[0], "SMB1");
++ if (res1 < 0) {
++ printk (KERN_ERR "i2c-nforce2.o: Error probing SMB1.\n");
++ smbuses[0].base = 0; /* to have a check value */
++ }
++ res2 = nforce2_probe_smb (dev, NFORCE_PCI_SMB2, &smbuses[1], "SMB2");
++ if (res2 < 0) {
++ printk (KERN_ERR "i2c-nforce2.o: Error probing SMB2.\n");
++ smbuses[1].base = 0; /* to have a check value */
++ }
++ if ((res1 < 0) && (res2 < 0)) {
++ /* we did not find even one of the SMBuses, so we give up */
++ kfree(smbuses);
++ return -ENODEV;
++ }
++
++ return 0;
++}
++
++
++static void __devexit nforce2_remove(struct pci_dev *dev)
++{
++ struct nforce2_smbus *smbuses = (void*) pci_get_drvdata(dev);
++
++ if (smbuses[0].base) {
++ i2c_del_adapter(&smbuses[0].adapter);
++ release_region(smbuses[0].base, smbuses[0].size);
++ }
++ if (smbuses[1].base) {
++ i2c_del_adapter(&smbuses[1].adapter);
++ release_region(smbuses[1].base, smbuses[1].size);
++ }
++ kfree(smbuses);
++}
++
++static struct pci_driver nforce2_driver = {
++ .name = "nForce2 SMBus",
++ .id_table = nforce2_ids,
++ .probe = nforce2_probe,
++ .remove = __devexit_p(nforce2_remove),
++};
++
++int __init nforce2_init(void)
++{
++ printk(KERN_INFO "i2c-nforce2.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return pci_module_init(&nforce2_driver);
++}
++
++void __exit nforce2_exit(void)
++{
++ pci_unregister_driver(&nforce2_driver);
++}
++
++module_init(nforce2_init);
++module_exit(nforce2_exit);
++
+--- linux-old/drivers/i2c/i2c-piix4.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-piix4.c Mon Dec 13 20:18:42 2004
+@@ -0,0 +1,549 @@
++/*
++ piix4.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl> and
++ Philip Edelbrock <phil@netroedge.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ Supports:
++ Intel PIIX4, 440MX
++ Serverworks OSB4, CSB5, CSB6
++ SMSC Victory66
++
++ Note: we assume there can only be one device, with one SMBus interface.
++*/
++
++#include <linux/version.h>
++#include <linux/module.h>
++#include <linux/config.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/init.h>
++#include <linux/apm_bios.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++
++struct sd {
++ const unsigned short mfr;
++ const unsigned short dev;
++ const unsigned char fn;
++ const char *name;
++};
++
++/* PIIX4 SMBus address offsets */
++#define SMBHSTSTS (0 + piix4_smba)
++#define SMBHSLVSTS (1 + piix4_smba)
++#define SMBHSTCNT (2 + piix4_smba)
++#define SMBHSTCMD (3 + piix4_smba)
++#define SMBHSTADD (4 + piix4_smba)
++#define SMBHSTDAT0 (5 + piix4_smba)
++#define SMBHSTDAT1 (6 + piix4_smba)
++#define SMBBLKDAT (7 + piix4_smba)
++#define SMBSLVCNT (8 + piix4_smba)
++#define SMBSHDWCMD (9 + piix4_smba)
++#define SMBSLVEVT (0xA + piix4_smba)
++#define SMBSLVDAT (0xC + piix4_smba)
++
++/* count for request_region */
++#define SMBIOSIZE 8
++
++/* PCI Address Constants */
++#define SMBBA 0x090
++#define SMBHSTCFG 0x0D2
++#define SMBSLVC 0x0D3
++#define SMBSHDW1 0x0D4
++#define SMBSHDW2 0x0D5
++#define SMBREV 0x0D6
++
++/* Other settings */
++#define MAX_TIMEOUT 500
++#define ENABLE_INT9 0
++
++/* PIIX4 constants */
++#define PIIX4_QUICK 0x00
++#define PIIX4_BYTE 0x04
++#define PIIX4_BYTE_DATA 0x08
++#define PIIX4_WORD_DATA 0x0C
++#define PIIX4_BLOCK_DATA 0x14
++
++/* insmod parameters */
++
++/* If force is set to anything different from 0, we forcibly enable the
++ PIIX4. DANGEROUS! */
++static int force = 0;
++MODULE_PARM(force, "i");
++MODULE_PARM_DESC(force, "Forcibly enable the PIIX4. DANGEROUS!");
++
++/* If force_addr is set to anything different from 0, we forcibly enable
++ the PIIX4 at the given address. VERY DANGEROUS! */
++static int force_addr = 0;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Forcibly enable the PIIX4 at the given address. "
++ "EXTREMELY DANGEROUS!");
++
++static int fix_hstcfg = 0;
++MODULE_PARM(fix_hstcfg, "i");
++MODULE_PARM_DESC(fix_hstcfg,
++ "Fix config register. Needed on some boards (Force CPCI735).");
++
++static int piix4_transaction(void);
++
++static unsigned short piix4_smba = 0;
++
++#ifdef CONFIG_X86
++/*
++ * Get DMI information.
++ */
++
++static int __devinit ibm_dmi_probe(void)
++{
++ extern int is_unsafe_smbus;
++ return is_unsafe_smbus;
++}
++#endif
++
++/* Detect whether a PIIX4 can be found, and initialize it, where necessary.
++ Note the differences between kernels with the old PCI BIOS interface and
++ newer kernels with the real PCI interface. In compat.h some things are
++ defined to make the transition easier. */
++static int __devinit piix4_setup(struct pci_dev *PIIX4_dev,
++ const struct pci_device_id *id)
++{
++ unsigned char temp;
++
++ /* match up the function */
++ if (PCI_FUNC(PIIX4_dev->devfn) != id->driver_data)
++ return -ENODEV;
++
++ printk(KERN_INFO "Found %s device\n", PIIX4_dev->name);
++
++#ifdef CONFIG_X86
++ if(ibm_dmi_probe() && PIIX4_dev->vendor == PCI_VENDOR_ID_INTEL) {
++ printk(KERN_ERR "i2c-piix4.o: IBM Laptop detected; this module "
++ "may corrupt your serial eeprom! Refusing to load "
++ "module!\n");
++ return -EPERM;
++ }
++#endif
++
++ /* Determine the address of the SMBus areas */
++ if (force_addr) {
++ piix4_smba = force_addr & 0xfff0;
++ force = 0;
++ } else {
++ pci_read_config_word(PIIX4_dev, SMBBA, &piix4_smba);
++ piix4_smba &= 0xfff0;
++ if(piix4_smba == 0) {
++ printk(KERN_ERR "i2c-piix4.o: SMB base address "
++ "uninitialized - upgrade BIOS or use "
++ "force_addr=0xaddr\n");
++ return -ENODEV;
++ }
++ }
++
++ if (!request_region(piix4_smba, SMBIOSIZE, "piix4-smbus")) {
++ printk(KERN_ERR "i2c-piix4.o: SMB region 0x%x already in "
++ "use!\n", piix4_smba);
++ return -ENODEV;
++ }
++
++ pci_read_config_byte(PIIX4_dev, SMBHSTCFG, &temp);
++
++ /* Some BIOS will set up the chipset incorrectly and leave a register
++ in an undefined state (causing I2C to act very strangely). */
++ if (temp & 0x02) {
++ if (fix_hstcfg) {
++ printk(KERN_INFO "i2c-piix4.o: Working around buggy "
++ "BIOS (I2C)\n");
++ temp &= 0xfd;
++ pci_write_config_byte(PIIX4_dev, SMBHSTCFG, temp);
++ } else {
++ printk(KERN_INFO "i2c-piix4.o: Unusual config register "
++ "value\n");
++ printk(KERN_INFO "i2c-piix4.o: Try using fix_hstcfg=1 "
++ "if you experience problems\n");
++ }
++ }
++
++ /* If force_addr is set, we program the new address here. Just to make
++ sure, we disable the PIIX4 first. */
++ if (force_addr) {
++ pci_write_config_byte(PIIX4_dev, SMBHSTCFG, temp & 0xfe);
++ pci_write_config_word(PIIX4_dev, SMBBA, piix4_smba);
++ pci_write_config_byte(PIIX4_dev, SMBHSTCFG, temp | 0x01);
++ printk(KERN_INFO "i2c-piix4.o: WARNING: SMBus interface set to "
++ "new address %04x!\n", piix4_smba);
++ } else if ((temp & 1) == 0) {
++ if (force) {
++ /* This should never need to be done, but has been
++ * noted that many Dell machines have the SMBus
++ * interface on the PIIX4 disabled!? NOTE: This assumes
++ * I/O space and other allocations WERE done by the
++ * Bios! Don't complain if your hardware does weird
++ * things after enabling this. :') Check for Bios
++ * updates before resorting to this.
++ */
++ pci_write_config_byte(PIIX4_dev, SMBHSTCFG,
++ temp | 1);
++ printk(KERN_NOTICE "i2c-piix4.o: WARNING: SMBus "
++ "interface has been FORCEFULLY ENABLED!\n");
++ } else {
++ printk(KERN_ERR "i2c-piix4.o: Host SMBus controller "
++ "not enabled!\n");
++ release_region(piix4_smba, SMBIOSIZE);
++ piix4_smba = 0;
++ return -ENODEV;
++ }
++ }
++
++#ifdef DEBUG
++ if ((temp & 0x0E) == 8)
++ printk(KERN_DEBUG "i2c-piix4.o: Using Interrupt 9 for "
++ "SMBus.\n");
++ else if ((temp & 0x0E) == 0)
++ printk(KERN_DEBUG "i2c-piix4.o: Using Interrupt SMI# "
++ "for SMBus.\n");
++ else
++ printk(KERN_ERR "i2c-piix4.o: Illegal Interrupt configuration "
++ "(or code out of date)!\n");
++
++ pci_read_config_byte(PIIX4_dev, SMBREV, &temp);
++ printk(KERN_DEBUG "i2c-piix4.o: SMBREV = 0x%X\n", temp);
++ printk(KERN_DEBUG "i2c-piix4.o: SMBA = 0x%X\n", piix4_smba);
++#endif /* DEBUG */
++
++ return 0;
++}
++
++
++/* Another internally used function */
++int piix4_transaction(void)
++{
++ int temp;
++ int result = 0;
++ int timeout = 0;
++
++#ifdef DEBUG
++ printk
++ (KERN_DEBUG "i2c-piix4.o: Transaction (pre): CNT=%02x, CMD=%02x, ADD=%02x, DAT0=%02x, "
++ "DAT1=%02x\n", inb_p(SMBHSTCNT), inb_p(SMBHSTCMD),
++ inb_p(SMBHSTADD), inb_p(SMBHSTDAT0), inb_p(SMBHSTDAT1));
++#endif
++
++ /* Make sure the SMBus host is ready to start transmitting */
++ if ((temp = inb_p(SMBHSTSTS)) != 0x00) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "i2c-piix4.o: SMBus busy (%02x). Resetting... \n",
++ temp);
++#endif
++ outb_p(temp, SMBHSTSTS);
++ if ((temp = inb_p(SMBHSTSTS)) != 0x00) {
++#ifdef DEBUG
++ printk(KERN_ERR "i2c-piix4.o: Failed! (%02x)\n", temp);
++#endif
++ return -1;
++ } else {
++#ifdef DEBUG
++ printk(KERN_DEBUG "i2c-piix4.o: Successfull!\n");
++#endif
++ }
++ }
++
++ /* start the transaction by setting bit 6 */
++ outb_p(inb(SMBHSTCNT) | 0x040, SMBHSTCNT);
++
++ /* We will always wait for a fraction of a second! (See PIIX4 docs errata) */
++ do {
++ i2c_delay(1);
++ temp = inb_p(SMBHSTSTS);
++ } while ((temp & 0x01) && (timeout++ < MAX_TIMEOUT));
++
++#ifdef DEBUG
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ printk(KERN_ERR "i2c-piix4.o: SMBus Timeout!\n");
++ result = -1;
++ }
++#endif
++
++ if (temp & 0x10) {
++ result = -1;
++#ifdef DEBUG
++ printk(KERN_ERR "i2c-piix4.o: Error: Failed bus transaction\n");
++#endif
++ }
++
++ if (temp & 0x08) {
++ result = -1;
++ printk
++ (KERN_ERR "i2c-piix4.o: Bus collision! SMBus may be locked until next hard\n"
++ "reset. (sorry!)\n");
++ /* Clock stops and slave is stuck in mid-transmission */
++ }
++
++ if (temp & 0x04) {
++ result = -1;
++#ifdef DEBUG
++ printk(KERN_ERR "i2c-piix4.o: Error: no response!\n");
++#endif
++ }
++
++ if (inb_p(SMBHSTSTS) != 0x00)
++ outb_p(inb(SMBHSTSTS), SMBHSTSTS);
++
++#ifdef DEBUG
++ if ((temp = inb_p(SMBHSTSTS)) != 0x00) {
++ printk
++ (KERN_ERR "i2c-piix4.o: Failed reset at end of transaction (%02x)\n",
++ temp);
++ }
++ printk
++ (KERN_DEBUG "i2c-piix4.o: Transaction (post): CNT=%02x, CMD=%02x, ADD=%02x, "
++ "DAT0=%02x, DAT1=%02x\n", inb_p(SMBHSTCNT), inb_p(SMBHSTCMD),
++ inb_p(SMBHSTADD), inb_p(SMBHSTDAT0), inb_p(SMBHSTDAT1));
++#endif
++ return result;
++}
++
++/* Return -1 on error. */
++s32 piix4_access(struct i2c_adapter * adap, u16 addr,
++ unsigned short flags, char read_write,
++ u8 command, int size, union i2c_smbus_data * data)
++{
++ int i, len;
++
++ switch (size) {
++ case I2C_SMBUS_QUICK:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ size = PIIX4_QUICK;
++ break;
++ case I2C_SMBUS_BYTE:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(command, SMBHSTCMD);
++ size = PIIX4_BYTE;
++ break;
++ case I2C_SMBUS_BYTE_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(data->byte, SMBHSTDAT0);
++ size = PIIX4_BYTE_DATA;
++ break;
++ case I2C_SMBUS_WORD_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ outb_p(data->word & 0xff, SMBHSTDAT0);
++ outb_p((data->word & 0xff00) >> 8, SMBHSTDAT1);
++ }
++ size = PIIX4_WORD_DATA;
++ break;
++ case I2C_SMBUS_BLOCK_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ len = data->block[0];
++ if (len < 0)
++ len = 0;
++ if (len > 32)
++ len = 32;
++ outb_p(len, SMBHSTDAT0);
++ i = inb_p(SMBHSTCNT); /* Reset SMBBLKDAT */
++ for (i = 1; i <= len; i++)
++ outb_p(data->block[i], SMBBLKDAT);
++ }
++ size = PIIX4_BLOCK_DATA;
++ break;
++ default:
++ printk
++ (KERN_WARNING "i2c-piix4.o: Unsupported transaction %d\n", size);
++ return -1;
++ }
++
++ outb_p((size & 0x1C) + (ENABLE_INT9 & 1), SMBHSTCNT);
++
++ if (piix4_transaction()) /* Error in transaction */
++ return -1;
++
++ if ((read_write == I2C_SMBUS_WRITE) || (size == PIIX4_QUICK))
++ return 0;
++
++
++ switch (size) {
++ case PIIX4_BYTE: /* Where is the result put? I assume here it is in
++ SMBHSTDAT0 but it might just as well be in the
++ SMBHSTCMD. No clue in the docs */
++
++ data->byte = inb_p(SMBHSTDAT0);
++ break;
++ case PIIX4_BYTE_DATA:
++ data->byte = inb_p(SMBHSTDAT0);
++ break;
++ case PIIX4_WORD_DATA:
++ data->word = inb_p(SMBHSTDAT0) + (inb_p(SMBHSTDAT1) << 8);
++ break;
++ case PIIX4_BLOCK_DATA:
++ data->block[0] = inb_p(SMBHSTDAT0);
++ i = inb_p(SMBHSTCNT); /* Reset SMBBLKDAT */
++ for (i = 1; i <= data->block[0]; i++)
++ data->block[i] = inb_p(SMBBLKDAT);
++ break;
++ }
++ return 0;
++}
++
++
++u32 piix4_func(struct i2c_adapter *adapter)
++{
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
++ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
++ I2C_FUNC_SMBUS_BLOCK_DATA;
++}
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = piix4_access,
++ .functionality = piix4_func,
++};
++
++static struct i2c_adapter piix4_adapter = {
++ .owner = THIS_MODULE,
++ .name = "unset",
++ .id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_PIIX4,
++ .algo = &smbus_algorithm,
++};
++
++#ifndef PCI_DEVICE_ID_SERVERWORKS_CSB6
++#define PCI_DEVICE_ID_SERVERWORKS_CSB6 0x0203
++#endif
++
++static struct pci_device_id piix4_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82371AB_3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = 3
++ },
++ {
++ .vendor = PCI_VENDOR_ID_SERVERWORKS,
++ .device = PCI_DEVICE_ID_SERVERWORKS_OSB4,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = 0,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_SERVERWORKS,
++ .device = PCI_DEVICE_ID_SERVERWORKS_CSB5,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = 0,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_SERVERWORKS,
++ .device = PCI_DEVICE_ID_SERVERWORKS_CSB6,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = 0,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_INTEL,
++ .device = PCI_DEVICE_ID_INTEL_82443MX_3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = 3,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_EFAR,
++ .device = PCI_DEVICE_ID_EFAR_SLC90E66_3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = 0,
++ },
++ { 0, }
++};
++
++static int __devinit piix4_probe(struct pci_dev *dev,
++ const struct pci_device_id *id)
++{
++ int retval;
++
++ retval = piix4_setup(dev, id);
++ if (retval)
++ return retval;
++
++ sprintf(piix4_adapter.name, "SMBus PIIX4 adapter at %04x",
++ piix4_smba);
++
++ if ((retval = i2c_add_adapter(&piix4_adapter))) {
++ printk(KERN_ERR "i2c-piix4.o: Couldn't register adapter!\n");
++ release_region(piix4_smba, SMBIOSIZE);
++ piix4_smba = 0;
++ }
++
++ return retval;
++}
++
++static void __devexit piix4_remove(struct pci_dev *dev)
++{
++ if (piix4_smba) {
++ i2c_del_adapter(&piix4_adapter);
++ release_region(piix4_smba, SMBIOSIZE);
++ piix4_smba = 0;
++ }
++}
++
++static struct pci_driver piix4_driver = {
++ .name = "piix4 smbus",
++ .id_table = piix4_ids,
++ .probe = piix4_probe,
++ .remove = __devexit_p(piix4_remove),
++};
++
++static int __init i2c_piix4_init(void)
++{
++ printk("i2c-piix4.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return pci_module_init(&piix4_driver);
++}
++
++static void __exit i2c_piix4_exit(void)
++{
++ pci_unregister_driver(&piix4_driver);
++}
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
++ "Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("PIIX4 SMBus driver");
++MODULE_LICENSE("GPL");
++
++module_init(i2c_piix4_init);
++module_exit(i2c_piix4_exit);
+--- linux-old/drivers/i2c/i2c-savage4.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-savage4.c Mon Dec 13 20:18:42 2004
+@@ -0,0 +1,229 @@
++/*
++ i2c-savage4.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (C) 1998-2003 The LM Sensors Team
++ Alexander Wold <awold@bigfoot.com>
++ Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ Based on i2c-voodoo3.c.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* This interfaces to the I2C bus of the Savage4 to gain access to
++ the BT869 and possibly other I2C devices. The DDC bus is not
++ yet supported because its register is not memory-mapped.
++ However we leave the DDC code here, commented out, to make
++ it easier to add later.
++*/
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/i2c.h>
++#include <linux/i2c-algo-bit.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#include <asm/param.h> /* for HZ */
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/* 3DFX defines */
++/* #define PCI_VENDOR_ID_S3 0x5333 */
++#define PCI_CHIP_SAVAGE3D 0x8A20
++#define PCI_CHIP_SAVAGE3D_MV 0x8A21
++#define PCI_CHIP_SAVAGE4 0x8A22
++#define PCI_CHIP_SAVAGE2000 0x9102
++#define PCI_CHIP_PROSAVAGE_PM 0x8A25
++#define PCI_CHIP_PROSAVAGE_KM 0x8A26
++#define PCI_CHIP_SAVAGE_MX_MV 0x8c10
++#define PCI_CHIP_SAVAGE_MX 0x8c11
++#define PCI_CHIP_SAVAGE_IX_MV 0x8c12
++#define PCI_CHIP_SAVAGE_IX 0x8c13
++
++#define REG 0xff20 /* Serial Port 1 Register */
++
++/* bit locations in the register */
++//#define DDC_ENAB 0x00040000
++//#define DDC_SCL_OUT 0x00080000
++//#define DDC_SDA_OUT 0x00100000
++//#define DDC_SCL_IN 0x00200000
++//#define DDC_SDA_IN 0x00400000
++#define I2C_ENAB 0x00000020
++#define I2C_SCL_OUT 0x00000001
++#define I2C_SDA_OUT 0x00000002
++#define I2C_SCL_IN 0x00000008
++#define I2C_SDA_IN 0x00000010
++
++/* initialization states */
++#define INIT2 0x20
++/* #define INIT3 0x4 */
++
++/* delays */
++#define CYCLE_DELAY 10
++#define TIMEOUT (HZ / 2)
++
++
++static void config_s4(struct pci_dev *dev);
++
++static unsigned long ioaddr;
++
++/* The sav GPIO registers don't have individual masks for each bit
++ so we always have to read before writing. */
++
++static void bit_savi2c_setscl(void *data, int val)
++{
++ unsigned int r;
++ r = readl(ioaddr + REG);
++ if(val)
++ r |= I2C_SCL_OUT;
++ else
++ r &= ~I2C_SCL_OUT;
++ writel(r, ioaddr + REG);
++ readl(ioaddr + REG); /* flush posted write */
++}
++
++static void bit_savi2c_setsda(void *data, int val)
++{
++ unsigned int r;
++ r = readl(ioaddr + REG);
++ if(val)
++ r |= I2C_SDA_OUT;
++ else
++ r &= ~I2C_SDA_OUT;
++ writel(r, ioaddr + REG);
++ readl(ioaddr + REG); /* flush posted write */
++}
++
++/* The GPIO pins are open drain, so the pins always remain outputs.
++ We rely on the i2c-algo-bit routines to set the pins high before
++ reading the input from other chips. */
++
++static int bit_savi2c_getscl(void *data)
++{
++ return (0 != (readl(ioaddr + REG) & I2C_SCL_IN));
++}
++
++static int bit_savi2c_getsda(void *data)
++{
++ return (0 != (readl(ioaddr + REG) & I2C_SDA_IN));
++}
++
++/* Configures the chip */
++
++void config_s4(struct pci_dev *dev)
++{
++ unsigned int cadr;
++
++ /* map memory */
++ cadr = dev->resource[0].start;
++ cadr &= PCI_BASE_ADDRESS_MEM_MASK;
++ ioaddr = (unsigned long)ioremap_nocache(cadr, 0x0080000);
++ if(ioaddr) {
++// writel(0x8160, ioaddr + REG2);
++ writel(0x00000020, ioaddr + REG);
++ printk("i2c-savage4: Using Savage4 at 0x%lx\n", ioaddr);
++ }
++}
++
++
++static struct i2c_algo_bit_data sav_i2c_bit_data = {
++ .setsda = bit_savi2c_setsda,
++ .setscl = bit_savi2c_setscl,
++ .getsda = bit_savi2c_getsda,
++ .getscl = bit_savi2c_getscl,
++ .udelay = CYCLE_DELAY,
++ .mdelay = CYCLE_DELAY,
++ .timeout = TIMEOUT
++};
++
++static struct i2c_adapter savage4_i2c_adapter = {
++ .owner = THIS_MODULE,
++ .name = "I2C Savage4 adapter",
++ .id = I2C_HW_B_SAVG,
++ .algo_data = &sav_i2c_bit_data,
++};
++
++static struct pci_device_id savage4_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_S3,
++ .device = PCI_CHIP_SAVAGE4,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_S3,
++ .device = PCI_CHIP_SAVAGE2000,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit savage4_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ config_s4(dev);
++ return i2c_bit_add_bus(&savage4_i2c_adapter);
++}
++
++static void __devexit savage4_remove(struct pci_dev *dev)
++{
++ i2c_bit_del_bus(&savage4_i2c_adapter);
++}
++
++
++/* Don't register driver to avoid driver conflicts */
++/*
++static struct pci_driver savage4_driver = {
++ .name = "savage4 smbus",
++ .id_table = savage4_ids,
++ .probe = savage4_probe,
++ .remove = __devexit_p(savage4_remove),
++};
++*/
++
++static int __init i2c_savage4_init(void)
++{
++ struct pci_dev *dev;
++ const struct pci_device_id *id;
++
++ printk("i2c-savage4.o version %s (%s)\n", LM_VERSION, LM_DATE);
++/*
++ return pci_module_init(&savage4_driver);
++*/
++ pci_for_each_dev(dev) {
++ id = pci_match_device(savage4_ids, dev);
++ if(id)
++ if(savage4_probe(dev, id) >= 0)
++ return 0;
++ }
++ return -ENODEV;
++}
++
++static void __exit i2c_savage4_exit(void)
++{
++/*
++ pci_unregister_driver(&savage4_driver);
++*/
++ savage4_remove(NULL);
++ iounmap((void *)ioaddr);
++}
++
++MODULE_AUTHOR("Alexander Wold <awold@bigfoot.com> "
++ "and Mark D. Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("Savage4 I2C/SMBus driver");
++MODULE_LICENSE("GPL");
++
++module_init(i2c_savage4_init);
++module_exit(i2c_savage4_exit);
+--- linux-old/drivers/i2c/i2c-sis5595.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-sis5595.c Mon Dec 13 20:18:42 2004
+@@ -0,0 +1,481 @@
++/*
++ sis5595.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> and
++ Philip Edelbrock <phil@netroedge.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* Note: we assume there can only be one SIS5595 with one SMBus interface */
++
++/*
++ Note: all have mfr. ID 0x1039.
++ SUPPORTED PCI ID
++ 5595 0008
++
++ Note: these chips contain a 0008 device which is incompatible with the
++ 5595. We recognize these by the presence of the listed
++ "blacklist" PCI ID and refuse to load.
++
++ NOT SUPPORTED PCI ID BLACKLIST PCI ID
++ 540 0008 0540
++ 550 0008 0550
++ 5513 0008 5511
++ 5581 0008 5597
++ 5582 0008 5597
++ 5597 0008 5597
++ 5598 0008 5597/5598
++ 630 0008 0630
++ 645 0008 0645
++ 646 0008 0646
++ 648 0008 0648
++ 650 0008 0650
++ 651 0008 0651
++ 730 0008 0730
++ 735 0008 0735
++ 745 0008 0745
++ 746 0008 0746
++*/
++
++/* TO DO:
++ * Add Block Transfers (ugly, but supported by the adapter)
++ * Add adapter resets
++ */
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++static int blacklist[] = {
++ PCI_DEVICE_ID_SI_540,
++ PCI_DEVICE_ID_SI_550,
++ PCI_DEVICE_ID_SI_630,
++ PCI_DEVICE_ID_SI_730,
++ PCI_DEVICE_ID_SI_5511, /* 5513 chip has the 0008 device but
++ that ID shows up in other chips so we
++ use the 5511 ID for recognition */
++ PCI_DEVICE_ID_SI_5597,
++ PCI_DEVICE_ID_SI_5598,
++ 0x645,
++ 0x646,
++ 0x648,
++ 0x650,
++ 0x651,
++ 0x735,
++ 0x745,
++ 0x746,
++ 0 };
++
++/* Length of ISA address segment */
++#define SIS5595_EXTENT 8
++/* SIS5595 SMBus registers */
++#define SMB_STS_LO 0x00
++#define SMB_STS_HI 0x01
++#define SMB_CTL_LO 0x02
++#define SMB_CTL_HI 0x03
++#define SMB_ADDR 0x04
++#define SMB_CMD 0x05
++#define SMB_PCNT 0x06
++#define SMB_CNT 0x07
++#define SMB_BYTE 0x08
++#define SMB_DEV 0x10
++#define SMB_DB0 0x11
++#define SMB_DB1 0x12
++#define SMB_HAA 0x13
++
++/* PCI Address Constants */
++#define SMB_INDEX 0x38
++#define SMB_DAT 0x39
++#define SIS5595_ENABLE_REG 0x40
++#define ACPI_BASE 0x90
++
++/* Other settings */
++#define MAX_TIMEOUT 500
++
++/* SIS5595 constants */
++#define SIS5595_QUICK 0x00
++#define SIS5595_BYTE 0x02
++#define SIS5595_BYTE_DATA 0x04
++#define SIS5595_WORD_DATA 0x06
++#define SIS5595_PROC_CALL 0x08
++#define SIS5595_BLOCK_DATA 0x0A
++
++/* insmod parameters */
++
++/* If force_addr is set to anything different from 0, we forcibly enable
++ the device at the given address. */
++static int force_addr = 0;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Initialize the base address of the i2c controller");
++
++static int sis5595_transaction(void);
++
++static unsigned short sis5595_base = 0;
++
++static u8 sis5595_read(u8 reg)
++{
++ outb(reg, sis5595_base + SMB_INDEX);
++ return inb(sis5595_base + SMB_DAT);
++}
++
++static void sis5595_write(u8 reg, u8 data)
++{
++ outb(reg, sis5595_base + SMB_INDEX);
++ outb(data, sis5595_base + SMB_DAT);
++}
++
++
++/* Detect whether a SIS5595 can be found, and initialize it, where necessary.
++ Note the differences between kernels with the old PCI BIOS interface and
++ newer kernels with the real PCI interface. In compat.h some things are
++ defined to make the transition easier. */
++int sis5595_setup(struct pci_dev *SIS5595_dev)
++{
++ u16 a;
++ u8 val;
++ int *i;
++
++ /* Look for imposters */
++ for(i = blacklist; *i != 0; i++) {
++ if (pci_find_device(PCI_VENDOR_ID_SI, *i, NULL)) {
++ printk("i2c-sis5595.o: Error: Looked for SIS5595 but found unsupported device %.4X\n", *i);
++ return -ENODEV;
++ }
++ }
++
++/* Determine the address of the SMBus areas */
++ pci_read_config_word(SIS5595_dev, ACPI_BASE, &sis5595_base);
++ if(sis5595_base == 0 && force_addr == 0) {
++ printk("i2c-sis5595.o: ACPI base address uninitialized - upgrade BIOS or use force_addr=0xaddr\n");
++ return -ENODEV;
++ }
++
++ if(force_addr)
++ sis5595_base = force_addr & ~(SIS5595_EXTENT - 1);
++#ifdef DEBUG
++ printk("ACPI Base address: %04x\n", sis5595_base);
++#endif
++ /* NB: We grab just the two SMBus registers here, but this may still
++ * interfere with ACPI :-( */
++ if (check_region(sis5595_base + SMB_INDEX, 2)) {
++ printk
++ ("i2c-sis5595.o: SMBus registers 0x%04x-0x%04x already in use!\n",
++ sis5595_base + SMB_INDEX,
++ sis5595_base + SMB_INDEX + 1);
++ return -ENODEV;
++ }
++
++ if(force_addr) {
++ printk("i2c-sis5595.o: forcing ISA address 0x%04X\n", sis5595_base);
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_write_config_word(SIS5595_dev, ACPI_BASE, sis5595_base))
++ return -ENODEV;
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_word(SIS5595_dev, ACPI_BASE, &a))
++ return -ENODEV;
++ if ((a & ~(SIS5595_EXTENT - 1)) != sis5595_base) {
++ /* doesn't work for some chips! */
++ printk("i2c-sis5595.o: force address failed - not supported?\n");
++ return -ENODEV;
++ }
++ }
++
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_byte(SIS5595_dev, SIS5595_ENABLE_REG, &val))
++ return -ENODEV;
++ if((val & 0x80) == 0) {
++ printk("sis5595.o: enabling ACPI\n");
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_write_config_byte(SIS5595_dev, SIS5595_ENABLE_REG,
++ val | 0x80))
++ return -ENODEV;
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_byte(SIS5595_dev, SIS5595_ENABLE_REG, &val))
++ return -ENODEV;
++ if((val & 0x80) == 0) { /* doesn't work for some chips? */
++ printk("sis5595.o: ACPI enable failed - not supported?\n");
++ return -ENODEV;
++ }
++ }
++
++ /* Everything is happy, let's grab the memory and set things up. */
++ request_region(sis5595_base + SMB_INDEX, 2, "sis5595-smbus");
++ return(0);
++}
++
++
++/* Another internally used function */
++int sis5595_transaction(void)
++{
++ int temp;
++ int result = 0;
++ int timeout = 0;
++
++ /* Make sure the SMBus host is ready to start transmitting */
++ if (
++ (temp =
++ sis5595_read(SMB_STS_LO) + (sis5595_read(SMB_STS_HI) << 8)) !=
++ 0x00) {
++#ifdef DEBUG
++ printk("i2c-sis5595.o: SMBus busy (%04x). Resetting... \n",
++ temp);
++#endif
++ sis5595_write(SMB_STS_LO, temp & 0xff);
++ sis5595_write(SMB_STS_HI, temp >> 8);
++ if (
++ (temp =
++ sis5595_read(SMB_STS_LO) +
++ (sis5595_read(SMB_STS_HI) << 8)) != 0x00) {
++#ifdef DEBUG
++ printk("i2c-sis5595.o: Failed! (%02x)\n", temp);
++#endif
++ return -1;
++ } else {
++#ifdef DEBUG
++ printk("i2c-sis5595.o: Successfull!\n");
++#endif
++ }
++ }
++
++ /* start the transaction by setting bit 4 */
++ sis5595_write(SMB_CTL_LO, sis5595_read(SMB_CTL_LO) | 0x10);
++
++ /* We will always wait for a fraction of a second! */
++ do {
++ i2c_delay(1);
++ temp = sis5595_read(SMB_STS_LO);
++ } while (!(temp & 0x40) && (timeout++ < MAX_TIMEOUT));
++
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++#ifdef DEBUG
++ printk("i2c-sis5595.o: SMBus Timeout!\n");
++#endif
++ result = -1;
++ }
++
++ if (temp & 0x10) {
++ result = -1;
++#ifdef DEBUG
++ printk("i2c-sis5595.o: Error: Failed bus transaction\n");
++#endif
++ }
++
++ if (temp & 0x20) {
++ result = -1;
++ printk
++ ("i2c-sis5595.o: Bus collision! SMBus may be locked until next hard\n"
++ "reset (or not...)\n");
++ /* Clock stops and slave is stuck in mid-transmission */
++ }
++
++ if (
++ (temp =
++ sis5595_read(SMB_STS_LO) + (sis5595_read(SMB_STS_HI) << 8)) !=
++ 0x00) {
++ sis5595_write(SMB_STS_LO, temp & 0xff);
++ sis5595_write(SMB_STS_HI, temp >> 8);
++ }
++
++ if (
++ (temp =
++ sis5595_read(SMB_STS_LO) + (sis5595_read(SMB_STS_HI) << 8)) !=
++ 0x00) {
++
++#ifdef DEBUG
++ printk
++ ("i2c-sis5595.o: Failed reset at end of transaction (%02x)\n",
++ temp);
++#endif
++ }
++ return result;
++}
++
++/* Return -1 on error. */
++s32 sis5595_access(struct i2c_adapter * adap, u16 addr,
++ unsigned short flags, char read_write,
++ u8 command, int size, union i2c_smbus_data * data)
++{
++ switch (size) {
++ case I2C_SMBUS_QUICK:
++ sis5595_write(SMB_ADDR,
++ ((addr & 0x7f) << 1) | (read_write & 0x01));
++ size = SIS5595_QUICK;
++ break;
++ case I2C_SMBUS_BYTE:
++ sis5595_write(SMB_ADDR,
++ ((addr & 0x7f) << 1) | (read_write & 0x01));
++ if (read_write == I2C_SMBUS_WRITE)
++ sis5595_write(SMB_CMD, command);
++ size = SIS5595_BYTE;
++ break;
++ case I2C_SMBUS_BYTE_DATA:
++ sis5595_write(SMB_ADDR,
++ ((addr & 0x7f) << 1) | (read_write & 0x01));
++ sis5595_write(SMB_CMD, command);
++ if (read_write == I2C_SMBUS_WRITE)
++ sis5595_write(SMB_BYTE, data->byte);
++ size = SIS5595_BYTE_DATA;
++ break;
++ case I2C_SMBUS_PROC_CALL:
++ case I2C_SMBUS_WORD_DATA:
++ sis5595_write(SMB_ADDR,
++ ((addr & 0x7f) << 1) | (read_write & 0x01));
++ sis5595_write(SMB_CMD, command);
++ if (read_write == I2C_SMBUS_WRITE) {
++ sis5595_write(SMB_BYTE, data->word & 0xff);
++ sis5595_write(SMB_BYTE + 1,
++ (data->word & 0xff00) >> 8);
++ }
++ size =
++ (size ==
++ I2C_SMBUS_PROC_CALL) ? SIS5595_PROC_CALL :
++ SIS5595_WORD_DATA;
++ break;
++/*
++ case I2C_SMBUS_BLOCK_DATA:
++ printk("sis5595.o: Block data not yet implemented!\n");
++ return -1;
++ break;
++*/
++ default:
++ printk
++ (KERN_WARNING "sis5595.o: Unsupported transaction %d\n", size);
++ return -1;
++ }
++
++ sis5595_write(SMB_CTL_LO, ((size & 0x0E)));
++
++ if (sis5595_transaction()) /* Error in transaction */
++ return -1;
++
++ if ((size != SIS5595_PROC_CALL) &&
++ ((read_write == I2C_SMBUS_WRITE) || (size == SIS5595_QUICK)))
++ return 0;
++
++
++ switch (size) {
++ case SIS5595_BYTE: /* Where is the result put? I assume here it is in
++ SMB_DATA but it might just as well be in the
++ SMB_CMD. No clue in the docs */
++ case SIS5595_BYTE_DATA:
++ data->byte = sis5595_read(SMB_BYTE);
++ break;
++ case SIS5595_WORD_DATA:
++ case SIS5595_PROC_CALL:
++ data->word =
++ sis5595_read(SMB_BYTE) +
++ (sis5595_read(SMB_BYTE + 1) << 8);
++ break;
++ }
++ return 0;
++}
++
++
++u32 sis5595_func(struct i2c_adapter *adapter)
++{
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
++ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
++ I2C_FUNC_SMBUS_PROC_CALL;
++}
++
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = sis5595_access,
++ .functionality = sis5595_func,
++};
++
++static struct i2c_adapter sis5595_adapter = {
++ .owner = THIS_MODULE,
++ .name = "unset",
++ .id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_SIS5595,
++ .algo = &smbus_algorithm,
++};
++
++
++static struct pci_device_id sis5595_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_SI,
++ .device = PCI_DEVICE_ID_SI_503,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit sis5595_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++
++ if (sis5595_setup(dev)) {
++ printk
++ ("i2c-sis5595.o: SIS5595 not detected, module not inserted.\n");
++
++ return -ENODEV;
++ }
++
++ sprintf(sis5595_adapter.name, "SMBus SIS5595 adapter at %04x",
++ sis5595_base + SMB_INDEX);
++ i2c_add_adapter(&sis5595_adapter);
++
++ return 0;
++}
++
++static void __devexit sis5595_remove(struct pci_dev *dev)
++{
++ i2c_del_adapter(&sis5595_adapter);
++ release_region(sis5595_base + SMB_INDEX, 2);
++}
++
++
++static struct pci_driver sis5595_driver = {
++ .name = "sis5595 smbus",
++ .id_table = sis5595_ids,
++ .probe = sis5595_probe,
++ .remove = __devexit_p(sis5595_remove),
++};
++
++static int __init i2c_sis5595_init(void)
++{
++ printk("i2c-sis5595.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return pci_module_init(&sis5595_driver);
++}
++
++
++static void __exit i2c_sis5595_exit(void)
++{
++ pci_unregister_driver(&sis5595_driver);
++}
++
++
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>");
++MODULE_DESCRIPTION("SIS5595 SMBus driver");
++
++module_init(i2c_sis5595_init);
++module_exit(i2c_sis5595_exit);
+--- linux-old/drivers/i2c/i2c-sis630.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-sis630.c Mon Dec 13 20:18:42 2004
+@@ -0,0 +1,527 @@
++/*
++ i2c-sis630.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++
++ Copyright (c) 2002,2003 Alexander Malysh <amalysh@web.de>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ Changes:
++ 24.08.2002
++ Fixed the typo in sis630_access (Thanks to Mark M. Hoffman)
++ Changed sis630_transaction.(Thanks to Mark M. Hoffman)
++ 18.09.2002
++ Added SIS730 as supported.
++ 21.09.2002
++ Added high_clock module option.If this option is set
++ used Host Master Clock 56KHz (default 14KHz).For now we save old Host
++ Master Clock and after transaction completed restore (otherwise
++ it's confuse BIOS and hung Machine).
++ 24.09.2002
++ Fixed typo in sis630_access
++ Fixed logical error by restoring of Host Master Clock
++ 31.07.2003
++ Added block data read/write support.
++*/
++
++/*
++ Status: beta
++
++ Supports:
++ SIS 630
++ SIS 730
++
++ Note: we assume there can only be one device, with one SMBus interface.
++*/
++
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/pci.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++
++#ifdef DEBUG
++#define DBG(x...) printk(KERN_DEBUG "i2c-sis630.o: " x)
++#else
++#define DBG(x...)
++#endif
++
++/* SIS630 SMBus registers */
++#define SMB_STS 0x80 /* status */
++#define SMB_EN 0x81 /* status enable */
++#define SMB_CNT 0x82
++#define SMBHOST_CNT 0x83
++#define SMB_ADDR 0x84
++#define SMB_CMD 0x85
++#define SMB_PCOUNT 0x86 /* processed count */
++#define SMB_COUNT 0x87
++#define SMB_BYTE 0x88 /* ~0x8F data byte field */
++#define SMBDEV_ADDR 0x90
++#define SMB_DB0 0x91
++#define SMB_DB1 0x92
++#define SMB_SAA 0x93
++
++/* register count for request_region */
++#define SIS630_SMB_IOREGION 20
++
++/* PCI address constants */
++/* acpi base address register */
++#define SIS630_ACPI_BASE_REG 0x74
++/* bios control register */
++#define SIS630_BIOS_CTL_REG 0x40
++
++/* Other settings */
++#define MAX_TIMEOUT 500
++
++/* SIS630 constants */
++#define SIS630_QUICK 0x00
++#define SIS630_BYTE 0x01
++#define SIS630_BYTE_DATA 0x02
++#define SIS630_WORD_DATA 0x03
++#define SIS630_PCALL 0x04
++#define SIS630_BLOCK_DATA 0x05
++
++/* insmod parameters */
++static int high_clock = 0;
++static int force = 0;
++MODULE_PARM(high_clock, "i");
++MODULE_PARM_DESC(high_clock, "Set Host Master Clock to 56KHz (default 14KHz).");
++MODULE_PARM(force, "i");
++MODULE_PARM_DESC(force, "Forcibly enable the SIS630. DANGEROUS!");
++
++/* acpi base address */
++static unsigned short acpi_base = 0;
++
++/* supported chips */
++static int supported[] = {
++ PCI_DEVICE_ID_SI_630,
++ PCI_DEVICE_ID_SI_730,
++ 0 /* terminates the list */
++};
++
++static inline u8 sis630_read(u8 reg) {
++ return inb(acpi_base + reg);
++}
++
++static inline void sis630_write(u8 reg, u8 data) {
++ outb(data, acpi_base + reg);
++}
++
++static int sis630_transaction_start(int size, u8 *oldclock) {
++ int temp;
++
++ /*
++ Make sure the SMBus host is ready to start transmitting.
++ */
++ if ((temp = sis630_read(SMB_CNT) & 0x03) != 0x00) {
++ DBG("SMBus busy (%02x).Resetting...\n",temp);
++ /* kill smbus transaction */
++ sis630_write(SMBHOST_CNT, 0x20);
++
++ if ((temp = sis630_read(SMB_CNT) & 0x03) != 0x00) {
++ DBG("Failed! (%02x)\n", temp);
++ return -1;
++ } else {
++ DBG("Successfull!\n");
++ }
++ }
++
++ /* save old clock, so we can prevent machine for hung */
++ *oldclock = sis630_read(SMB_CNT);
++
++ DBG("saved clock 0x%02x\n", *oldclock);
++
++ /* disable timeout interrupt , set Host Master Clock to 56KHz if requested */
++ if (high_clock > 0)
++ sis630_write(SMB_CNT, 0x20);
++ else
++ sis630_write(SMB_CNT, (*oldclock & ~0x40));
++
++ /* clear all sticky bits */
++ temp = sis630_read(SMB_STS);
++ sis630_write(SMB_STS, temp & 0x1e);
++
++ /* start the transaction by setting bit 4 and size */
++ sis630_write(SMBHOST_CNT,0x10 | (size & 0x07));
++
++ return 0;
++}
++
++static int sis630_transaction_wait(int size) {
++ int temp, result = 0, timeout = 0;
++
++ /* We will always wait for a fraction of a second! */
++ do {
++ i2c_delay(1);
++ temp = sis630_read(SMB_STS);
++ /* check if block transmitted */
++ if (size == SIS630_BLOCK_DATA && (temp & 0x10))
++ break;
++ } while (!(temp & 0x0e) && (timeout++ < MAX_TIMEOUT));
++
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ DBG("SMBus Timeout!\n");
++ result = -1;
++ }
++
++ if (temp & 0x02) {
++ result = -1;
++ DBG("Error: Failed bus transaction\n");
++ }
++
++ if (temp & 0x04) {
++ result = -1;
++ printk(KERN_ERR "i2c-sis630.o: Bus collision!\n");
++ /*
++ TBD: Datasheet say:
++ the software should clear this bit and restart SMBUS operation.
++ Should we do it or user start request again?
++ */
++ }
++
++ return result;
++}
++
++static void sis630_transaction_end(u8 oldclock) {
++ int temp = 0;
++
++ /* clear all status "sticky" bits */
++ sis630_write(SMB_STS, temp);
++
++ DBG("SMB_CNT before clock restore 0x%02x\n", sis630_read(SMB_CNT));
++
++ /*
++ * restore old Host Master Clock if high_clock is set
++ * and oldclock was not 56KHz
++ */
++ if (high_clock > 0 && !(oldclock & 0x20))
++ sis630_write(SMB_CNT,(sis630_read(SMB_CNT) & ~0x20));
++
++ DBG("SMB_CNT after clock restore 0x%02x\n", sis630_read(SMB_CNT));
++}
++
++static int sis630_transaction(int size) {
++ int result = 0;
++ u8 oldclock = 0;
++
++ if (!(result = sis630_transaction_start(size, &oldclock))) {
++ result = sis630_transaction_wait(size);
++ sis630_transaction_end(oldclock);
++ }
++
++ return result;
++}
++
++static int sis630_block_data(union i2c_smbus_data * data, int read_write) {
++ int i, len = 0, rc = 0;
++ u8 oldclock = 0;
++
++ if (read_write == I2C_SMBUS_WRITE) {
++ len = data->block[0];
++ if (len < 0)
++ len = 0;
++ else if (len > 32)
++ len = 32;
++ sis630_write(SMB_COUNT, len);
++ for (i=1; i <= len; i++) {
++ DBG("set data 0x%02x\n", data->block[i]);
++ /* set data */
++ sis630_write(SMB_BYTE+(i-1)%8, data->block[i]);
++ if (i==8 || (len<8 && i==len)) {
++ DBG("start trans len=%d i=%d\n",len ,i);
++ /* first transaction */
++ if (sis630_transaction_start(SIS630_BLOCK_DATA, &oldclock))
++ return -1;
++ }
++ else if ((i-1)%8 == 7 || i==len) {
++ DBG("trans_wait len=%d i=%d\n",len,i);
++ if (i>8) {
++ DBG("clear smbary_sts len=%d i=%d\n",len,i);
++ /*
++ If this is not first transaction,
++ we must clear sticky bit.
++ clear SMBARY_STS
++ */
++ sis630_write(SMB_STS,0x10);
++ }
++ if (sis630_transaction_wait(SIS630_BLOCK_DATA)) {
++ DBG("trans_wait failed\n");
++ rc = -1;
++ break;
++ }
++
++ }
++ }
++ }
++ else { /* read request */
++ data->block[0] = len = 0;
++ if (sis630_transaction_start(SIS630_BLOCK_DATA, &oldclock)) {
++ return -1;
++ }
++ do {
++ if (sis630_transaction_wait(SIS630_BLOCK_DATA)) {
++ DBG("trans_wait failed\n");
++ rc = -1;
++ break;
++ }
++ /* if this first transaction then read byte count */
++ if (len == 0)
++ data->block[0] = sis630_read(SMB_COUNT);
++
++ /* just to be sure */
++ if (data->block[0] > 32)
++ data->block[0] = 32;
++
++ DBG("block data read len=0x%x\n", data->block[0]);
++
++ for (i=0; i < 8 && len < data->block[0]; i++,len++) {
++ DBG("read i=%d len=%d\n", i, len);
++ data->block[len+1] = sis630_read(SMB_BYTE+i);
++ }
++
++ DBG("clear smbary_sts len=%d i=%d\n",len,i);
++
++ /* clear SMBARY_STS */
++ sis630_write(SMB_STS,0x10);
++ } while(len < data->block[0]);
++ }
++
++ sis630_transaction_end(oldclock);
++
++ return rc;
++}
++
++/* Return -1 on error. */
++static s32 sis630_access(struct i2c_adapter * adap, u16 addr,
++ unsigned short flags, char read_write,
++ u8 command, int size, union i2c_smbus_data * data)
++{
++
++ switch (size) {
++ case I2C_SMBUS_QUICK:
++ sis630_write(SMB_ADDR, ((addr & 0x7f) << 1) | (read_write & 0x01));
++ size = SIS630_QUICK;
++ break;
++ case I2C_SMBUS_BYTE:
++ sis630_write(SMB_ADDR, ((addr & 0x7f) << 1) | (read_write & 0x01));
++ if (read_write == I2C_SMBUS_WRITE)
++ sis630_write(SMB_CMD, command);
++ size = SIS630_BYTE;
++ break;
++ case I2C_SMBUS_BYTE_DATA:
++ sis630_write(SMB_ADDR, ((addr & 0x7f) << 1) | (read_write & 0x01));
++ sis630_write(SMB_CMD, command);
++ if (read_write == I2C_SMBUS_WRITE)
++ sis630_write(SMB_BYTE, data->byte);
++ size = SIS630_BYTE_DATA;
++ break;
++ case I2C_SMBUS_PROC_CALL:
++ case I2C_SMBUS_WORD_DATA:
++ sis630_write(SMB_ADDR,((addr & 0x7f) << 1) | (read_write & 0x01));
++ sis630_write(SMB_CMD, command);
++ if (read_write == I2C_SMBUS_WRITE) {
++ sis630_write(SMB_BYTE, data->word & 0xff);
++ sis630_write(SMB_BYTE + 1,(data->word & 0xff00) >> 8);
++ }
++ size = (size == I2C_SMBUS_PROC_CALL ? SIS630_PCALL : SIS630_WORD_DATA);
++ break;
++ case I2C_SMBUS_BLOCK_DATA:
++ sis630_write(SMB_ADDR,((addr & 0x7f) << 1) | (read_write & 0x01));
++ sis630_write(SMB_CMD, command);
++ size = SIS630_BLOCK_DATA;
++ return sis630_block_data(data, read_write);
++ default:
++ printk("Unsupported I2C size\n");
++ return -1;
++ break;
++ }
++
++
++ if (sis630_transaction(size))
++ return -1;
++
++ if ((size != SIS630_PCALL) &&
++ ((read_write == I2C_SMBUS_WRITE) || (size == SIS630_QUICK))) {
++ return 0;
++ }
++
++ switch(size) {
++ case SIS630_BYTE:
++ case SIS630_BYTE_DATA:
++ data->byte = sis630_read(SMB_BYTE);
++ break;
++ case SIS630_PCALL:
++ case SIS630_WORD_DATA:
++ data->word = sis630_read(SMB_BYTE) + (sis630_read(SMB_BYTE + 1) << 8);
++ break;
++ default:
++ return -1;
++ break;
++ }
++
++ return 0;
++}
++
++
++static u32 sis630_func(struct i2c_adapter *adapter) {
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
++ I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL |
++ I2C_FUNC_SMBUS_BLOCK_DATA;
++}
++
++static int __devinit sis630_setup(struct pci_dev *sis630_dev) {
++ unsigned char b;
++ struct pci_dev *dummy = NULL;
++ int i;
++
++ /* check for supported SiS devices */
++ for (i=0; supported[i] > 0; i++) {
++ if ((dummy = pci_find_device(PCI_VENDOR_ID_SI, supported[i], dummy)))
++ break; /* found */
++ }
++
++ if (!dummy && force > 0) {
++ printk(KERN_ERR "i2c-sis630.o: WARNING: Can't detect SIS630 compatible device, but "
++ "loading because of force option enabled\n");
++ }
++ else if (!dummy) {
++ return -ENODEV;
++ }
++
++ /*
++ Enable ACPI first , so we can accsess reg 74-75
++ in acpi io space and read acpi base addr
++ */
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_byte(sis630_dev, SIS630_BIOS_CTL_REG,&b)) {
++ printk(KERN_ERR "i2c-sis630.o: Error: Can't read bios ctl reg\n");
++ return -ENODEV;
++ }
++
++ /* if ACPI already enabled , do nothing */
++ if (!(b & 0x80) &&
++ PCIBIOS_SUCCESSFUL !=
++ pci_write_config_byte(sis630_dev,SIS630_BIOS_CTL_REG,b|0x80)) {
++ printk(KERN_ERR "i2c-sis630.o: Error: Can't enable ACPI\n");
++ return -ENODEV;
++ }
++ /* Determine the ACPI base address */
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_word(sis630_dev,SIS630_ACPI_BASE_REG,&acpi_base)) {
++ printk(KERN_ERR "i2c-sis630.o: Error: Can't determine ACPI base address\n");
++ return -ENODEV;
++ }
++
++ DBG("ACPI base at 0x%04x\n", acpi_base);
++
++ /* Everything is happy, let's grab the memory and set things up. */
++ if (!request_region(acpi_base + SMB_STS, SIS630_SMB_IOREGION, "sis630-smbus")){
++ printk(KERN_ERR "i2c-sis630.o: SMBus registers 0x%04x-0x%04x "
++ "already in use!\n",acpi_base + SMB_STS, acpi_base + SMB_SAA);
++ acpi_base = 0; /* reset acpi_base */
++ return -ENODEV;
++ }
++
++ return 0;
++}
++
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = sis630_access,
++ .functionality = sis630_func,
++};
++
++static struct i2c_adapter sis630_adapter = {
++ .owner = THIS_MODULE,
++ .name = "unset",
++ .id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_SIS630,
++ .algo = &smbus_algorithm,
++};
++
++
++static struct pci_device_id sis630_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_SI,
++ .device = PCI_DEVICE_ID_SI_503,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit sis630_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ if (sis630_setup(dev)) {
++ printk(KERN_ERR "i2c-sis630.o: SIS630 comp. bus not detected, module not inserted.\n");
++ return -ENODEV;
++ }
++
++ sprintf(sis630_adapter.name, "SMBus SIS630 adapter at %04x",
++ acpi_base + SMB_STS);
++
++ return i2c_add_adapter(&sis630_adapter);
++}
++
++static void __devexit sis630_remove(struct pci_dev *dev)
++{
++ if (acpi_base) {
++ i2c_del_adapter(&sis630_adapter);
++ release_region(acpi_base + SMB_STS, SIS630_SMB_IOREGION);
++ acpi_base = 0;
++ }
++}
++
++
++static struct pci_driver sis630_driver = {
++ .name = "sis630 smbus",
++ .id_table = sis630_ids,
++ .probe = sis630_probe,
++ .remove = __devexit_p(sis630_remove),
++};
++
++static int __init i2c_sis630_init(void)
++{
++ printk("i2c-sis630.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return pci_module_init(&sis630_driver);
++}
++
++
++static void __exit i2c_sis630_exit(void)
++{
++ pci_unregister_driver(&sis630_driver);
++}
++
++
++
++
++MODULE_LICENSE("GPL");
++
++MODULE_AUTHOR("Alexander Malysh <amalysh@web.de>");
++MODULE_DESCRIPTION("SIS630 SMBus driver");
++
++module_init(i2c_sis630_init);
++module_exit(i2c_sis630_exit);
+--- linux-old/drivers/i2c/i2c-sis645.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-sis645.c Mon Dec 13 20:18:42 2004
+@@ -0,0 +1,590 @@
++/*
++ sis645.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++
++ Copyright (c) 2003 Mark M. Hoffman <mhoffman@lightlink.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ This module must be considered BETA unless and until
++ the chipset manufacturer releases a datasheet.
++
++ The register definitions are based on the SiS630.
++ The method for *finding* the registers is based on trial and error.
++
++ A history of changes to this file is available by anonymous CVS:
++ http://www2.lm-sensors.nu/~lm78/download.html
++*/
++
++/* 25th March 2004
++ Support for Sis655 chipsets added by Ken Healy
++*/
++
++/*
++ Note: we assume there can only be one SiS645 with one SMBus interface
++*/
++
++/* #define DEBUG 1 */
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/init.h>
++#include <linux/mm.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_compat.h>
++
++#define DRV_NAME "i2c-sis645"
++
++/* SiS645DX north bridge (defined in 2.4.21) */
++#ifndef PCI_DEVICE_ID_SI_646
++#define PCI_DEVICE_ID_SI_646 0x0646
++#endif
++
++/* SiS648 north bridge (defined in 2.4.21) */
++#ifndef PCI_DEVICE_ID_SI_648
++#define PCI_DEVICE_ID_SI_648 0x0648
++#endif
++
++/* SiS650 north bridge (defined in 2.4.19) */
++#ifndef PCI_DEVICE_ID_SI_650
++#define PCI_DEVICE_ID_SI_650 0x0650
++#endif
++
++/* SiS651 north bridge (defined in 2.4.21)*/
++#ifndef PCI_DEVICE_ID_SI_651
++#define PCI_DEVICE_ID_SI_651 0x0651
++#endif
++
++/* SiS655 north bridge (defined in 2.4.22)*/
++#ifndef PCI_DEVICE_ID_SI_655
++#define PCI_DEVICE_ID_SI_655 0x0655
++#endif
++
++/* SiS746 north bridge (defined in 2.4.21) */
++#ifndef PCI_DEVICE_ID_SI_746
++#define PCI_DEVICE_ID_SI_746 0x0746
++#endif
++
++/* SiS85C503/5513 (LPC Bridge) */
++#ifndef PCI_DEVICE_ID_SI_LPC
++#define PCI_DEVICE_ID_SI_LPC 0x0018
++#endif
++
++/* SiS961 south bridge */
++#ifndef PCI_DEVICE_ID_SI_961
++#define PCI_DEVICE_ID_SI_961 0x0961
++#endif
++
++/* SiS962 south bridge */
++#ifndef PCI_DEVICE_ID_SI_962
++#define PCI_DEVICE_ID_SI_962 0x0962
++#endif
++
++/* SiS963 south bridge */
++#ifndef PCI_DEVICE_ID_SI_963
++#define PCI_DEVICE_ID_SI_963 0x0963
++#endif
++
++/* SMBus ID */
++#ifndef PCI_DEVICE_ID_SI_SMBUS
++#define PCI_DEVICE_ID_SI_SMBUS 0x16
++#endif
++
++/* base address register in PCI config space */
++#define SIS645_BAR 0x04
++
++/* SiS645 SMBus registers */
++#define SMB_STS 0x00
++#define SMB_EN 0x01
++#define SMB_CNT 0x02
++#define SMB_HOST_CNT 0x03
++#define SMB_ADDR 0x04
++#define SMB_CMD 0x05
++#define SMB_PCOUNT 0x06
++#define SMB_COUNT 0x07
++#define SMB_BYTE 0x08
++#define SMB_DEV_ADDR 0x10
++#define SMB_DB0 0x11
++#define SMB_DB1 0x12
++#define SMB_SAA 0x13
++
++/* register count for request_region */
++#define SMB_IOSIZE 0x20
++
++/* Other settings */
++#define MAX_TIMEOUT 500
++
++/* SiS645 SMBus constants */
++#define SIS645_QUICK 0x00
++#define SIS645_BYTE 0x01
++#define SIS645_BYTE_DATA 0x02
++#define SIS645_WORD_DATA 0x03
++#define SIS645_PROC_CALL 0x04
++#define SIS645_BLOCK_DATA 0x05
++
++static struct i2c_adapter sis645_adapter;
++static u16 sis645_smbus_base = 0;
++
++static inline u8 sis645_read(u8 reg)
++{
++ return inb(sis645_smbus_base + reg) ;
++}
++
++static inline void sis645_write(u8 reg, u8 data)
++{
++ outb(data, sis645_smbus_base + reg) ;
++}
++
++#ifdef CONFIG_HOTPLUG
++
++/* Turns on SMBus device if it is not; return 0 iff successful
++ */
++static int __devinit sis645_enable_smbus(struct pci_dev *dev)
++{
++ u8 val = 0;
++
++ pci_read_config_byte(dev, 0x77, &val);
++
++#ifdef DEBUG
++ printk(KERN_DEBUG DRV_NAME ": Config byte was 0x%02x.\n", val);
++#endif
++
++ pci_write_config_byte(dev, 0x77, val & ~0x10);
++
++ pci_read_config_byte(dev, 0x77, &val);
++
++ if (val & 0x10) {
++#ifdef DEBUG
++ printk(KERN_DEBUG DRV_NAME ": Config byte stuck!\n");
++#endif
++ return -1;
++ }
++
++ return 0;
++}
++
++/* Builds the basic pci_dev for SiS645 SMBus
++ */
++static int __devinit sis645_build_dev(struct pci_dev **smbus_dev,
++ struct pci_dev *bridge_dev)
++{
++ struct pci_dev temp_dev;
++ u16 vid = 0, did = 0;
++ int ret;
++
++ /* fill in the device structure for search */
++ memset(&temp_dev, 0, sizeof(temp_dev));
++ temp_dev.bus = bridge_dev->bus;
++ temp_dev.sysdata = bridge_dev->bus->sysdata;
++ temp_dev.hdr_type = PCI_HEADER_TYPE_NORMAL;
++
++ /* the SMBus device is function 1 on the same unit as the ISA bridge */
++ temp_dev.devfn = bridge_dev->devfn + 1;
++
++ /* query to make sure */
++ ret = pci_read_config_word(&temp_dev, PCI_VENDOR_ID, &vid);
++ if (ret || PCI_VENDOR_ID_SI != vid) {
++ printk(KERN_ERR DRV_NAME ": Couldn't find SMBus device!\n");
++ return ret;
++ }
++ temp_dev.vendor = vid;
++
++ ret = pci_read_config_word(&temp_dev, PCI_DEVICE_ID, &did);
++ if (ret || PCI_DEVICE_ID_SI_SMBUS != did) {
++ printk(KERN_ERR DRV_NAME ": Couldn't find SMBus device!\n");
++ return ret;
++ }
++ temp_dev.device = did;
++
++ /* ok, we've got it... request some memory and finish it off */
++ *smbus_dev = kmalloc(sizeof(**smbus_dev), GFP_ATOMIC);
++ if (NULL == *smbus_dev) {
++ printk(KERN_ERR DRV_NAME ": Out of memory!\n");
++ return -ENOMEM;
++ }
++
++ **smbus_dev = temp_dev;
++
++ ret = pci_setup_device(*smbus_dev);
++ if (ret) {
++ printk(KERN_ERR DRV_NAME ": pci_setup_device failed (0x%08x)\n",ret);
++ }
++ return ret;
++}
++
++/* See if a SMBus can be found, and enable it if possible.
++ */
++static int __devinit sis645_hotplug_smbus(void)
++{
++ int ret;
++ struct pci_dev *smbus_dev, *bridge_dev ;
++
++ if ((bridge_dev = pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_961, NULL)))
++ printk(KERN_INFO DRV_NAME ": Found SiS961 south bridge.\n");
++
++ else if ((bridge_dev = pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_962, NULL)))
++ printk(KERN_INFO DRV_NAME ": Found SiS962 [MuTIOL Media IO].\n");
++
++ else if ((bridge_dev = pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_963, NULL)))
++ printk(KERN_INFO DRV_NAME ": Found SiS963 [MuTIOL Media IO].\n");
++
++ else if ((bridge_dev = pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_503, NULL)) ||
++ (bridge_dev = pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_LPC, NULL))) {
++
++ printk(KERN_INFO DRV_NAME ": Found SiS south bridge in compatability mode(?)\n");
++
++ /* look for known compatible north bridges */
++ if ((NULL == pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_645, NULL))
++ && (NULL == pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_646, NULL))
++ && (NULL == pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_648, NULL))
++ && (NULL == pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_650, NULL))
++ && (NULL == pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_651, NULL))
++ && (NULL == pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_655, NULL))
++ && (NULL == pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_735, NULL))
++ && (NULL == pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_745, NULL))
++ && (NULL == pci_find_device(PCI_VENDOR_ID_SI,
++ PCI_DEVICE_ID_SI_746, NULL))) {
++ printk(KERN_ERR DRV_NAME ": Can't find suitable host bridge!\n");
++ return -ENODEV;
++ }
++ } else {
++ printk(KERN_ERR DRV_NAME ": Can't find suitable south bridge!\n");
++ return -ENODEV;
++ }
++
++ /* if we get this far, we think the smbus device is present */
++
++ if ((ret = sis645_enable_smbus(bridge_dev)))
++ return ret;
++
++ if ((ret = sis645_build_dev(&smbus_dev, bridge_dev)))
++ return ret;
++
++ if ((ret = pci_enable_device(smbus_dev))) {
++ printk(KERN_ERR DRV_NAME ": Can't pci_enable SMBus device!"
++ " (0x%08x)\n", ret);
++ return ret;
++ }
++
++ pci_insert_device(smbus_dev, smbus_dev->bus);
++
++ return 0;
++}
++#endif /* CONFIG_HOTPLUG */
++
++/* Execute a SMBus transaction.
++ int size is from SIS645_QUICK to SIS645_BLOCK_DATA
++ */
++static int sis645_transaction(int size)
++{
++ int temp;
++ int result = 0;
++ int timeout = 0;
++
++ /* Make sure the SMBus host is ready to start transmitting */
++ if (((temp = sis645_read(SMB_CNT)) & 0x03) != 0x00) {
++#ifdef DEBUG
++ printk(KERN_DEBUG DRV_NAME ": SMBus busy (0x%02x). Resetting...\n",
++ temp);
++#endif
++
++ /* kill the transaction */
++ sis645_write(SMB_HOST_CNT, 0x20);
++
++ /* check it again */
++ if (((temp = sis645_read(SMB_CNT)) & 0x03) != 0x00) {
++#ifdef DEBUG
++ printk(KERN_DEBUG DRV_NAME ": Failed! (0x%02x)\n", temp);
++#endif
++ return -1;
++ } else {
++#ifdef DEBUG
++ printk(KERN_DEBUG DRV_NAME ": Successful!\n");
++#endif
++ }
++ }
++
++ /* Turn off timeout interrupts, set fast host clock */
++ sis645_write(SMB_CNT, 0x20);
++
++ /* clear all (sticky) status flags */
++ temp = sis645_read(SMB_STS);
++ sis645_write(SMB_STS, temp & 0x1e);
++
++ /* start the transaction by setting bit 4 and size bits */
++ sis645_write(SMB_HOST_CNT, 0x10 | (size & 0x07));
++
++ /* We will always wait for a fraction of a second! */
++ do {
++ i2c_delay(1);
++ temp = sis645_read(SMB_STS);
++ } while (!(temp & 0x0e) && (timeout++ < MAX_TIMEOUT));
++
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ printk(KERN_DEBUG DRV_NAME ": SMBus Timeout! (0x%02x)\n",temp);
++ result = -1;
++ }
++
++ /* device error - probably missing ACK */
++ if (temp & 0x02) {
++#ifdef DEBUG
++ printk(KERN_DEBUG DRV_NAME ": Failed bus transaction!\n");
++#endif
++ result = -1;
++ }
++
++ /* bus collision */
++ if (temp & 0x04) {
++#ifdef DEBUG
++ printk(KERN_DEBUG DRV_NAME ": Bus collision!\n");
++#endif
++ result = -1;
++ }
++
++ /* Finish up by resetting the bus */
++ sis645_write(SMB_STS, temp);
++ if ((temp = sis645_read(SMB_STS))) {
++#ifdef DEBUG
++ printk(KERN_DEBUG DRV_NAME ": Failed reset at end of transaction!"
++ " (0x%02x)\n", temp);
++#endif
++ }
++
++ return result;
++}
++
++/* Return -1 on error. */
++static s32 sis645_access(struct i2c_adapter * adap, u16 addr,
++ unsigned short flags, char read_write,
++ u8 command, int size, union i2c_smbus_data * data)
++{
++
++ switch (size) {
++ case I2C_SMBUS_QUICK:
++ sis645_write(SMB_ADDR, ((addr & 0x7f) << 1) | (read_write & 0x01));
++ size = SIS645_QUICK;
++ break;
++
++ case I2C_SMBUS_BYTE:
++ sis645_write(SMB_ADDR, ((addr & 0x7f) << 1) | (read_write & 0x01));
++ if (read_write == I2C_SMBUS_WRITE)
++ sis645_write(SMB_CMD, command);
++ size = SIS645_BYTE;
++ break;
++
++ case I2C_SMBUS_BYTE_DATA:
++ sis645_write(SMB_ADDR, ((addr & 0x7f) << 1) | (read_write & 0x01));
++ sis645_write(SMB_CMD, command);
++ if (read_write == I2C_SMBUS_WRITE)
++ sis645_write(SMB_BYTE, data->byte);
++ size = SIS645_BYTE_DATA;
++ break;
++
++ case I2C_SMBUS_PROC_CALL:
++ case I2C_SMBUS_WORD_DATA:
++ sis645_write(SMB_ADDR, ((addr & 0x7f) << 1) | (read_write & 0x01));
++ sis645_write(SMB_CMD, command);
++ if (read_write == I2C_SMBUS_WRITE) {
++ sis645_write(SMB_BYTE, data->word & 0xff);
++ sis645_write(SMB_BYTE + 1, (data->word & 0xff00) >> 8);
++ }
++ size = (size == I2C_SMBUS_PROC_CALL ? SIS645_PROC_CALL : SIS645_WORD_DATA);
++ break;
++
++ case I2C_SMBUS_BLOCK_DATA:
++ /* TO DO: */
++ printk(KERN_INFO DRV_NAME ": SMBus block not implemented!\n");
++ return -1;
++ break;
++
++ default:
++ printk(KERN_INFO DRV_NAME ": Unsupported I2C size\n");
++ return -1;
++ break;
++ }
++
++ if (sis645_transaction(size))
++ return -1;
++
++ if ((size != SIS645_PROC_CALL) &&
++ ((read_write == I2C_SMBUS_WRITE) || (size == SIS645_QUICK)))
++ return 0;
++
++ switch (size) {
++ case SIS645_BYTE:
++ case SIS645_BYTE_DATA:
++ data->byte = sis645_read(SMB_BYTE);
++ break;
++
++ case SIS645_WORD_DATA:
++ case SIS645_PROC_CALL:
++ data->word = sis645_read(SMB_BYTE) +
++ (sis645_read(SMB_BYTE + 1) << 8);
++ break;
++ }
++ return 0;
++}
++
++static u32 sis645_func(struct i2c_adapter *adapter)
++{
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
++ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
++ I2C_FUNC_SMBUS_PROC_CALL;
++}
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = sis645_access,
++ .functionality = sis645_func,
++};
++
++static struct i2c_adapter sis645_adapter = {
++ .owner = THIS_MODULE,
++ .name = "unset",
++ .id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_SIS645,
++ .algo = &smbus_algorithm,
++};
++
++static struct pci_device_id sis645_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_SI,
++ .device = PCI_DEVICE_ID_SI_SMBUS,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit sis645_probe(struct pci_dev *dev,
++ const struct pci_device_id *id)
++{
++ u16 ww = 0;
++ int retval;
++
++ if (sis645_smbus_base) {
++ dev_err(dev, "Only one device supported.\n");
++ return -EBUSY;
++ }
++
++ pci_read_config_word(dev, PCI_CLASS_DEVICE, &ww);
++ if (PCI_CLASS_SERIAL_SMBUS != ww) {
++ dev_err(dev, "Unsupported device class 0x%04x!\n", ww);
++ return -ENODEV;
++ }
++
++ sis645_smbus_base = pci_resource_start(dev, SIS645_BAR);
++ if (!sis645_smbus_base) {
++ dev_err(dev, "SiS645 SMBus base address "
++ "not initialized!\n");
++ return -EINVAL;
++ }
++ dev_info(dev, "SiS645 SMBus base address: 0x%04x\n",
++ sis645_smbus_base);
++
++ /* Everything is happy, let's grab the memory and set things up. */
++ if (!request_region(sis645_smbus_base, SMB_IOSIZE, "sis645-smbus")) {
++ dev_err(dev, "SMBus registers 0x%04x-0x%04x "
++ "already in use!\n", sis645_smbus_base,
++ sis645_smbus_base + SMB_IOSIZE - 1);
++
++ sis645_smbus_base = 0;
++ return -EINVAL;
++ }
++
++ sprintf(sis645_adapter.name, "SiS645 SMBus adapter at 0x%04x",
++ sis645_smbus_base);
++
++ if ((retval = i2c_add_adapter(&sis645_adapter))) {
++ dev_err(dev, "Couldn't register adapter!\n");
++ release_region(sis645_smbus_base, SMB_IOSIZE);
++ sis645_smbus_base = 0;
++ }
++
++ return retval;
++}
++
++static void __devexit sis645_remove(struct pci_dev *dev)
++{
++ if (sis645_smbus_base) {
++ i2c_del_adapter(&sis645_adapter);
++ release_region(sis645_smbus_base, SMB_IOSIZE);
++ sis645_smbus_base = 0;
++ }
++}
++
++static struct pci_driver sis645_driver = {
++ .name = "sis645 smbus",
++ .id_table = sis645_ids,
++ .probe = sis645_probe,
++ .remove = __devexit_p(sis645_remove),
++};
++
++static int __init i2c_sis645_init(void)
++{
++ printk(KERN_INFO DRV_NAME ".o version %s (%s)\n", LM_VERSION, LM_DATE);
++
++ /* if the required device id is not present, try to HOTPLUG it first */
++ if (!pci_find_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_SMBUS, NULL)) {
++
++ printk(KERN_INFO DRV_NAME ": "
++ "Attempting to enable SiS645 SMBus device\n");
++
++#ifdef CONFIG_HOTPLUG
++ sis645_hotplug_smbus();
++#else
++ printk(KERN_INFO DRV_NAME ": "
++ "Requires kernel with CONFIG_HOTPLUG, sorry!\n");
++#endif
++ }
++
++ return pci_module_init(&sis645_driver);
++}
++
++static void __exit i2c_sis645_exit(void)
++{
++ pci_unregister_driver(&sis645_driver);
++}
++
++MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
++MODULE_DESCRIPTION("SiS645 SMBus driver");
++MODULE_LICENSE("GPL");
++
++/* Register initialization functions using helper macros */
++module_init(i2c_sis645_init);
++module_exit(i2c_sis645_exit);
+--- linux-old/drivers/i2c/i2c-tsunami.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-tsunami.c Mon Dec 13 20:18:42 2004
+@@ -0,0 +1,155 @@
++/*
++ i2c-tsunami.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2001 Oleg Vdovikin <vdovikin@jscc.ru>
++
++ Based on code written by Ralph Metzler <rjkm@thp.uni-koeln.de> and
++ Simon Vogl
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* This interfaces to the I2C bus of the Tsunami/Typhoon 21272 chipsets
++ to gain access to the on-board I2C devices.
++
++ For more information refer to Compaq's
++ "Tsunami/Typhoon 21272 Chipset Hardware Reference Manual"
++ Order Number: DS-0025-TE
++*/
++
++#include <linux/module.h>
++#include <linux/i2c.h>
++#include <linux/i2c-algo-bit.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#include <asm/hwrpb.h>
++#include <asm/core_tsunami.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Memory Presence Detect Register (MPD-RW) bits
++ with except of reserved RAZ bits */
++
++#define MPD_DR 0x8 /* Data receive - RO */
++#define MPD_CKR 0x4 /* Clock receive - RO */
++#define MPD_DS 0x2 /* Data send - Must be a 1 to receive - WO */
++#define MPD_CKS 0x1 /* Clock send - WO */
++
++static inline void writempd(unsigned long value)
++{
++ TSUNAMI_cchip->mpd.csr = value;
++ mb();
++}
++
++static inline unsigned long readmpd(void)
++{
++ return TSUNAMI_cchip->mpd.csr;
++}
++
++static void bit_tsunami_setscl(void *data, int val)
++{
++ /* read currently setted bits to modify them */
++ unsigned long bits = readmpd() >> 2; /* assume output == input */
++
++ if (val)
++ bits |= MPD_CKS;
++ else
++ bits &= ~MPD_CKS;
++
++ writempd(bits);
++}
++
++static void bit_tsunami_setsda(void *data, int val)
++{
++ /* read currently setted bits to modify them */
++ unsigned long bits = readmpd() >> 2; /* assume output == input */
++
++ if (val)
++ bits |= MPD_DS;
++ else
++ bits &= ~MPD_DS;
++
++ writempd(bits);
++}
++
++/* The MPD pins are open drain, so the pins always remain outputs.
++ We rely on the i2c-algo-bit routines to set the pins high before
++ reading the input from other chips. */
++
++static int bit_tsunami_getscl(void *data)
++{
++ return (0 != (readmpd() & MPD_CKR));
++}
++
++static int bit_tsunami_getsda(void *data)
++{
++ return (0 != (readmpd() & MPD_DR));
++}
++
++static struct i2c_algo_bit_data tsunami_i2c_bit_data = {
++ .setsda = bit_tsunami_setsda,
++ .setscl = bit_tsunami_setscl,
++ .getsda = bit_tsunami_getsda,
++ .getscl = bit_tsunami_getscl,
++ .udelay = 10,
++ .mdelay = 10,
++ .timeout = HZ/2
++};
++
++static struct i2c_adapter tsunami_i2c_adapter = {
++ .owner = THIS_MODULE,
++ .name = "I2C Tsunami/Typhoon adapter",
++ .id = I2C_HW_B_TSUNA,
++ .algo_data = &tsunami_i2c_bit_data,
++};
++
++
++#if 0
++static struct pci_driver tsunami_driver = {
++ .name = "tsunami smbus",
++ .id_table = tsunami_ids,
++ .probe = tsunami_probe,
++ .remove = __devexit_p(tsunami_remove),
++};
++#endif
++
++static int __init i2c_tsunami_init(void)
++{
++ printk("i2c-tsunami.o version %s (%s)\n", LM_VERSION, LM_DATE);
++
++ if (hwrpb->sys_type != ST_DEC_TSUNAMI) {
++ printk("i2c-tsunami.o: not Tsunami based system (%ld), module not inserted.\n", hwrpb->sys_type);
++ return -ENXIO;
++ } else {
++ printk("i2c-tsunami.o: using Cchip MPD at 0x%lx.\n", (long) &TSUNAMI_cchip->mpd);
++ }
++ return i2c_bit_add_bus(&tsunami_i2c_adapter);
++}
++
++
++static void __exit i2c_tsunami_exit(void)
++{
++ i2c_bit_del_bus(&tsunami_i2c_adapter);
++}
++
++
++
++MODULE_AUTHOR("Oleg I. Vdovikin <vdovikin@jscc.ru>");
++MODULE_DESCRIPTION("Tsunami I2C/SMBus driver");
++
++module_init(i2c_tsunami_init);
++module_exit(i2c_tsunami_exit);
+--- linux-old/drivers/i2c/i2c-via.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-via.c Mon Dec 13 20:18:42 2004
+@@ -0,0 +1,207 @@
++/*
++ i2c-via.c - Part of lm_sensors, Linux kernel modules
++ for hardware monitoring
++
++ i2c Support for Via Technologies 82C586B South Bridge
++
++ Copyright (c) 1998, 1999 Kyösti Mälkki <kmalkki@cc.hut.fi>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/kernel.h>
++#include <linux/ioport.h>
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/types.h>
++#include <linux/i2c.h>
++#include <linux/i2c-algo-bit.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#include <asm/param.h> /* for HZ */
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/* Power management registers */
++
++#define PM_CFG_REVID 0x08 /* silicon revision code */
++#define PM_CFG_IOBASE0 0x20
++#define PM_CFG_IOBASE1 0x48
++
++#define I2C_DIR (pm_io_base+0x40)
++#define I2C_OUT (pm_io_base+0x42)
++#define I2C_IN (pm_io_base+0x44)
++#define I2C_SCL 0x02 /* clock bit in DIR/OUT/IN register */
++#define I2C_SDA 0x04
++
++/* io-region reservation */
++#define IOSPACE 0x06
++#define IOTEXT "via-i2c"
++
++static u16 pm_io_base = 0;
++
++/*
++ It does not appear from the datasheet that the GPIO pins are
++ open drain. So a we set a low value by setting the direction to
++ output and a high value by setting the direction to input and
++ relying on the required I2C pullup. The data value is initialized
++ to 0 in via_init() and never changed.
++*/
++
++static void bit_via_setscl(void *data, int state)
++{
++ outb(state ? inb(I2C_DIR) & ~I2C_SCL : inb(I2C_DIR) | I2C_SCL,
++ I2C_DIR);
++}
++
++static void bit_via_setsda(void *data, int state)
++{
++ outb(state ? inb(I2C_DIR) & ~I2C_SDA : inb(I2C_DIR) | I2C_SDA,
++ I2C_DIR);
++}
++
++static int bit_via_getscl(void *data)
++{
++ return (0 != (inb(I2C_IN) & I2C_SCL));
++}
++
++static int bit_via_getsda(void *data)
++{
++ return (0 != (inb(I2C_IN) & I2C_SDA));
++}
++
++
++static struct i2c_algo_bit_data bit_data = {
++ .setsda = bit_via_setsda,
++ .setscl = bit_via_setscl,
++ .getsda = bit_via_getsda,
++ .getscl = bit_via_getscl,
++ .udelay = 5,
++ .mdelay = 5,
++ .timeout = HZ
++};
++
++static struct i2c_adapter vt586b_adapter = {
++ .owner = THIS_MODULE,
++ .name = "VIA i2c",
++ .id = I2C_HW_B_VIA,
++ .algo_data = &bit_data,
++};
++
++
++static struct pci_device_id vt586b_ids[] __devinitdata = {
++ { PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C586_3, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
++ { 0, }
++};
++
++static int __devinit vt586b_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ u16 base;
++ u8 rev;
++ int res;
++
++ if (pm_io_base) {
++ printk(KERN_ERR "i2c-via.o: Will only support one host\n");
++ return -EBUSY;
++ }
++
++ pci_read_config_byte(dev, PM_CFG_REVID, &rev);
++
++ switch (rev) {
++ case 0x00:
++ base = PM_CFG_IOBASE0;
++ break;
++ case 0x01:
++ case 0x10:
++ base = PM_CFG_IOBASE1;
++ break;
++
++ default:
++ base = PM_CFG_IOBASE1;
++ /* later revision */
++ }
++
++ pci_read_config_word(dev, base, &pm_io_base);
++ pm_io_base &= (0xff << 8);
++
++ if (! request_region(I2C_DIR, IOSPACE, IOTEXT)) {
++ printk("i2c-via.o: IO 0x%x-0x%x already in use\n",
++ I2C_DIR, I2C_DIR + IOSPACE);
++ return -EBUSY;
++ }
++ outb(inb(I2C_DIR) & ~(I2C_SDA | I2C_SCL), I2C_DIR);
++ outb(inb(I2C_OUT) & ~(I2C_SDA | I2C_SCL), I2C_OUT);
++
++ res = i2c_bit_add_bus(&vt586b_adapter);
++ if ( res < 0 ) {
++ release_region(I2C_DIR, IOSPACE);
++ pm_io_base = 0;
++ return res;
++ }
++ return 0;
++}
++
++static void __devexit vt586b_remove(struct pci_dev *dev)
++{
++ i2c_bit_del_bus(&vt586b_adapter);
++ release_region(I2C_DIR, IOSPACE);
++ pm_io_base = 0;
++}
++
++
++/* Don't register driver to avoid driver conflicts */
++/*
++static struct pci_driver vt586b_driver = {
++ .name = "vt586b smbus",
++ .id_table = vt586b_ids,
++ .probe = vt586b_probe,
++ .remove = __devexit_p(vt586b_remove),
++};
++*/
++
++static int __init i2c_vt586b_init(void)
++{
++ struct pci_dev *dev;
++ const struct pci_device_id *id;
++
++ printk("i2c-via.o version %s (%s)\n", LM_VERSION, LM_DATE);
++/*
++ return pci_module_init(&vt586b_driver);
++*/
++ pci_for_each_dev(dev) {
++ id = pci_match_device(vt586b_ids, dev);
++ if(id)
++ if(vt586b_probe(dev, id) >= 0)
++ return 0;
++ }
++ return -ENODEV;
++}
++
++
++static void __exit i2c_vt586b_exit(void)
++{
++/*
++ pci_unregister_driver(&vt586b_driver);
++*/
++ vt586b_remove(NULL);
++}
++
++
++MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>");
++MODULE_DESCRIPTION("i2c for Via vt82c586b southbridge");
++MODULE_LICENSE("GPL");
++
++module_init(i2c_vt586b_init);
++module_exit(i2c_vt586b_exit);
+--- linux-old/drivers/i2c/i2c-viapro.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-viapro.c Mon Dec 13 20:18:43 2004
+@@ -0,0 +1,514 @@
++/*
++ i2c-viapro.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>, Kyösti Mälkki <kmalkki@cc.hut.fi>,
++ Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ Supports Via devices:
++ 82C596A/B (0x3050)
++ 82C596B (0x3051)
++ 82C686A/B
++ 8231
++ 8233
++ 8233A (0x3147 and 0x3177)
++ 8235
++ 8237
++ Note: we assume there can only be one device, with one SMBus interface.
++*/
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/kernel.h>
++#include <linux/stddef.h>
++#include <linux/sched.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_compat.h>
++
++#define SMBBA1 0x90
++#define SMBBA2 0x80
++#define SMBBA3 0xD0
++
++/* SMBus address offsets */
++static unsigned short vt596_smba;
++#define SMBHSTSTS (vt596_smba + 0)
++#define SMBHSLVSTS (vt596_smba + 1)
++#define SMBHSTCNT (vt596_smba + 2)
++#define SMBHSTCMD (vt596_smba + 3)
++#define SMBHSTADD (vt596_smba + 4)
++#define SMBHSTDAT0 (vt596_smba + 5)
++#define SMBHSTDAT1 (vt596_smba + 6)
++#define SMBBLKDAT (vt596_smba + 7)
++#define SMBSLVCNT (vt596_smba + 8)
++#define SMBSHDWCMD (vt596_smba + 9)
++#define SMBSLVEVT (vt596_smba + 0xA)
++#define SMBSLVDAT (vt596_smba + 0xC)
++
++/* PCI Address Constants */
++
++/* SMBus data in configuration space can be found in two places,
++ We try to select the better one*/
++
++static unsigned short smb_cf_hstcfg = 0xD2;
++
++#define SMBHSTCFG (smb_cf_hstcfg)
++#define SMBSLVC (smb_cf_hstcfg + 1)
++#define SMBSHDW1 (smb_cf_hstcfg + 2)
++#define SMBSHDW2 (smb_cf_hstcfg + 3)
++#define SMBREV (smb_cf_hstcfg + 4)
++
++/* Other settings */
++#define MAX_TIMEOUT 500
++#define ENABLE_INT9 0
++
++/* VT82C596 constants */
++#define VT596_QUICK 0x00
++#define VT596_BYTE 0x04
++#define VT596_BYTE_DATA 0x08
++#define VT596_WORD_DATA 0x0C
++#define VT596_BLOCK_DATA 0x14
++
++
++/* If force is set to anything different from 0, we forcibly enable the
++ VT596. DANGEROUS! */
++static int force;
++MODULE_PARM(force, "i");
++MODULE_PARM_DESC(force, "Forcibly enable the SMBus. DANGEROUS!");
++
++/* If force_addr is set to anything different from 0, we forcibly enable
++ the VT596 at the given address. VERY DANGEROUS! */
++static int force_addr;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Forcibly enable the SMBus at the given address. "
++ "EXTREMELY DANGEROUS!");
++
++
++static struct i2c_adapter vt596_adapter;
++
++/* Another internally used function */
++static int vt596_transaction(void)
++{
++ int temp;
++ int result = 0;
++ int timeout = 0;
++
++ dev_dbg(&vt596_adapter, "Transaction (pre): CNT=%02x, CMD=%02x, "
++ "ADD=%02x, DAT0=%02x, DAT1=%02x\n", inb_p(SMBHSTCNT),
++ inb_p(SMBHSTCMD), inb_p(SMBHSTADD), inb_p(SMBHSTDAT0),
++ inb_p(SMBHSTDAT1));
++
++ /* Make sure the SMBus host is ready to start transmitting */
++ if ((temp = inb_p(SMBHSTSTS)) != 0x00) {
++ dev_dbg(&vt596_adapter, "SMBus busy (0x%02x). "
++ "Resetting...\n", temp);
++
++ outb_p(temp, SMBHSTSTS);
++ if ((temp = inb_p(SMBHSTSTS)) != 0x00) {
++ dev_dbg(&vt596_adapter, "Failed! (0x%02x)\n", temp);
++
++ return -1;
++ } else {
++ dev_dbg(&vt596_adapter, "Successfull!\n");
++ }
++ }
++
++ /* start the transaction by setting bit 6 */
++ outb_p(inb(SMBHSTCNT) | 0x040, SMBHSTCNT);
++
++ /* We will always wait for a fraction of a second!
++ I don't know if VIA needs this, Intel did */
++ do {
++ i2c_delay(1);
++ temp = inb_p(SMBHSTSTS);
++ } while ((temp & 0x01) && (timeout++ < MAX_TIMEOUT));
++
++ /* If the SMBus is still busy, we give up */
++ if (timeout >= MAX_TIMEOUT) {
++ result = -1;
++ dev_dbg(&vt596_adapter, "SMBus Timeout!\n");
++ }
++
++ if (temp & 0x10) {
++ result = -1;
++ dev_dbg(&vt596_adapter, "Error: Failed bus transaction\n");
++ }
++
++ if (temp & 0x08) {
++ result = -1;
++ dev_info(&vt596_adapter, "Bus collision! SMBus may be "
++ "locked until next hard\nreset. (sorry!)\n");
++ /* Clock stops and slave is stuck in mid-transmission */
++ }
++
++ if (temp & 0x04) {
++ result = -1;
++ dev_dbg(&vt596_adapter, "Error: no response!\n");
++ }
++
++ if (inb_p(SMBHSTSTS) != 0x00)
++ outb_p(inb(SMBHSTSTS), SMBHSTSTS);
++
++ if ((temp = inb_p(SMBHSTSTS)) != 0x00) {
++ dev_dbg(&vt596_adapter, "Failed reset at end of "
++ "transaction (%02x)\n", temp);
++ }
++ dev_dbg(&vt596_adapter, "Transaction (post): CNT=%02x, CMD=%02x, "
++ "ADD=%02x, DAT0=%02x, DAT1=%02x\n", inb_p(SMBHSTCNT),
++ inb_p(SMBHSTCMD), inb_p(SMBHSTADD), inb_p(SMBHSTDAT0),
++ inb_p(SMBHSTDAT1));
++
++ return result;
++}
++
++/* Return -1 on error. */
++static s32 vt596_access(struct i2c_adapter *adap, u16 addr,
++ unsigned short flags, char read_write, u8 command,
++ int size, union i2c_smbus_data *data)
++{
++ int i, len;
++
++ switch (size) {
++ case I2C_SMBUS_QUICK:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ size = VT596_QUICK;
++ break;
++ case I2C_SMBUS_BYTE:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(command, SMBHSTCMD);
++ size = VT596_BYTE;
++ break;
++ case I2C_SMBUS_BYTE_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE)
++ outb_p(data->byte, SMBHSTDAT0);
++ size = VT596_BYTE_DATA;
++ break;
++ case I2C_SMBUS_WORD_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ outb_p(data->word & 0xff, SMBHSTDAT0);
++ outb_p((data->word & 0xff00) >> 8, SMBHSTDAT1);
++ }
++ size = VT596_WORD_DATA;
++ break;
++ case I2C_SMBUS_BLOCK_DATA:
++ outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
++ SMBHSTADD);
++ outb_p(command, SMBHSTCMD);
++ if (read_write == I2C_SMBUS_WRITE) {
++ len = data->block[0];
++ if (len < 0)
++ len = 0;
++ if (len > 32)
++ len = 32;
++ outb_p(len, SMBHSTDAT0);
++ i = inb_p(SMBHSTCNT); /* Reset SMBBLKDAT */
++ for (i = 1; i <= len; i++)
++ outb_p(data->block[i], SMBBLKDAT);
++ }
++ size = VT596_BLOCK_DATA;
++ break;
++ default:
++ dev_warn(&vt596_adapter, "Unsupported transaction %d\n", size);
++ return -1;
++ }
++
++ outb_p((size & 0x1C) + (ENABLE_INT9 & 1), SMBHSTCNT);
++
++ if (vt596_transaction()) /* Error in transaction */
++ return -1;
++
++ if ((read_write == I2C_SMBUS_WRITE) || (size == VT596_QUICK))
++ return 0;
++
++ switch (size) {
++ case VT596_BYTE:
++ /* Where is the result put? I assume here it is in
++ * SMBHSTDAT0 but it might just as well be in the
++ * SMBHSTCMD. No clue in the docs
++ */
++ data->byte = inb_p(SMBHSTDAT0);
++ break;
++ case VT596_BYTE_DATA:
++ data->byte = inb_p(SMBHSTDAT0);
++ break;
++ case VT596_WORD_DATA:
++ data->word = inb_p(SMBHSTDAT0) + (inb_p(SMBHSTDAT1) << 8);
++ break;
++ case VT596_BLOCK_DATA:
++ data->block[0] = inb_p(SMBHSTDAT0);
++ if (data->block[0] > 32)
++ data->block[0] = 32;
++ i = inb_p(SMBHSTCNT); /* Reset SMBBLKDAT */
++ for (i = 1; i <= data->block[0]; i++)
++ data->block[i] = inb_p(SMBBLKDAT);
++ break;
++ }
++ return 0;
++}
++
++static u32 vt596_func(struct i2c_adapter *adapter)
++{
++ return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
++ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
++ I2C_FUNC_SMBUS_BLOCK_DATA;
++}
++
++static struct i2c_algorithm smbus_algorithm = {
++ .name = "Non-I2C SMBus adapter",
++ .id = I2C_ALGO_SMBUS,
++ .smbus_xfer = vt596_access,
++ .functionality = vt596_func,
++};
++
++static struct i2c_adapter vt596_adapter = {
++ .owner = THIS_MODULE,
++ .id = I2C_ALGO_SMBUS | I2C_HW_SMBUS_VIA2,
++ .algo = &smbus_algorithm,
++ .name = "unset",
++};
++
++static int __devinit vt596_probe(struct pci_dev *pdev,
++ const struct pci_device_id *id)
++{
++ unsigned char temp;
++ int error = -ENODEV;
++
++ /* Determine the address of the SMBus areas */
++ if (force_addr) {
++ vt596_smba = force_addr & 0xfff0;
++ force = 0;
++ goto found;
++ }
++
++ if ((pci_read_config_word(pdev, id->driver_data, &vt596_smba)) ||
++ !(vt596_smba & 0x1)) {
++ /* try 2nd address and config reg. for 596 */
++ if (id->device == PCI_DEVICE_ID_VIA_82C596_3 &&
++ !pci_read_config_word(pdev, SMBBA2, &vt596_smba) &&
++ (vt596_smba & 0x1)) {
++ smb_cf_hstcfg = 0x84;
++ } else {
++ /* no matches at all */
++ dev_err(pdev, "Cannot configure "
++ "SMBus I/O Base address\n");
++ return -ENODEV;
++ }
++ }
++
++ vt596_smba &= 0xfff0;
++ if (vt596_smba == 0) {
++ dev_err(pdev, "SMBus base address "
++ "uninitialized - upgrade BIOS or use "
++ "force_addr=0xaddr\n");
++ return -ENODEV;
++ }
++
++ found:
++ if (!request_region(vt596_smba, 8, "viapro-smbus")) {
++ dev_err(pdev, "SMBus region 0x%x already in use!\n",
++ vt596_smba);
++ return -ENODEV;
++ }
++
++ pci_read_config_byte(pdev, SMBHSTCFG, &temp);
++ /* If force_addr is set, we program the new address here. Just to make
++ sure, we disable the VT596 first. */
++ if (force_addr) {
++ pci_write_config_byte(pdev, SMBHSTCFG, temp & 0xfe);
++ pci_write_config_word(pdev, id->driver_data, vt596_smba);
++ pci_write_config_byte(pdev, SMBHSTCFG, temp | 0x01);
++ dev_warn(pdev, "WARNING: SMBus interface set to new "
++ "address 0x%04x!\n", vt596_smba);
++ } else if ((temp & 1) == 0) {
++ if (force) {
++ /* NOTE: This assumes I/O space and other allocations
++ * WERE done by the Bios! Don't complain if your
++ * hardware does weird things after enabling this.
++ * :') Check for Bios updates before resorting to
++ * this.
++ */
++ pci_write_config_byte(pdev, SMBHSTCFG, temp | 1);
++ dev_info(pdev, "Enabling SMBus device\n");
++ } else {
++ dev_err(pdev, "SMBUS: Error: Host SMBus "
++ "controller not enabled! - upgrade BIOS or "
++ "use force=1\n");
++ goto release_region;
++ }
++ }
++
++ if ((temp & 0x0E) == 8)
++ dev_dbg(pdev, "using Interrupt 9 for SMBus.\n");
++ else if ((temp & 0x0E) == 0)
++ dev_dbg(pdev, "using Interrupt SMI# for SMBus.\n");
++ else
++ dev_dbg(pdev, "Illegal Interrupt configuration "
++ "(or code out of date)!\n");
++
++ pci_read_config_byte(pdev, SMBREV, &temp);
++ dev_dbg(pdev, "SMBREV = 0x%X\n", temp);
++ dev_dbg(pdev, "VT596_smba = 0x%X\n", vt596_smba);
++
++ snprintf(vt596_adapter.name, 32,
++ "SMBus Via Pro adapter at %04x", vt596_smba);
++
++ return i2c_add_adapter(&vt596_adapter);
++
++ release_region:
++ release_region(vt596_smba, 8);
++ return error;
++}
++
++static void __devexit vt596_remove(struct pci_dev *pdev)
++{
++ i2c_del_adapter(&vt596_adapter);
++ release_region(vt596_smba, 8);
++}
++
++/* 8233A is undefined before kernel 2.4.19 */
++#ifndef PCI_DEVICE_ID_VIA_8233A
++#define PCI_DEVICE_ID_VIA_8233A 0x3147
++#endif
++/* 8235 is undefined before kernel 2.4.20 */
++#ifndef PCI_DEVICE_ID_VIA_8235
++#define PCI_DEVICE_ID_VIA_8235 0x3177
++#endif
++/* 8237 is undefined before kernel 2.4.21 */
++#ifndef PCI_DEVICE_ID_VIA_8237
++#define PCI_DEVICE_ID_VIA_8237 0x3227
++#endif
++static struct pci_device_id vt596_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_VIA,
++ .device = PCI_DEVICE_ID_VIA_82C596_3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = SMBBA1,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_VIA,
++ .device = PCI_DEVICE_ID_VIA_82C596B_3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = SMBBA1,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_VIA,
++ .device = PCI_DEVICE_ID_VIA_82C686_4,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = SMBBA1,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_VIA,
++ .device = PCI_DEVICE_ID_VIA_8233_0,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = SMBBA3
++ },
++ {
++ .vendor = PCI_VENDOR_ID_VIA,
++ .device = PCI_DEVICE_ID_VIA_8233A,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = SMBBA3,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_VIA,
++ .device = PCI_DEVICE_ID_VIA_8235,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = SMBBA3
++ },
++ {
++ .vendor = PCI_VENDOR_ID_VIA,
++ .device = PCI_DEVICE_ID_VIA_8237,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = SMBBA3
++ },
++ {
++ .vendor = PCI_VENDOR_ID_VIA,
++ .device = PCI_DEVICE_ID_VIA_8231_4,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ .driver_data = SMBBA1,
++ },
++ { 0, }
++};
++
++/* Don't register driver to avoid driver conflicts */
++/*
++static struct pci_driver vt596_driver = {
++ .name = "vt596 smbus",
++ .id_table = vt596_ids,
++ .probe = vt596_probe,
++ .remove = __devexit_p(vt596_remove),
++};
++*/
++
++static int __init i2c_vt596_init(void)
++{
++ struct pci_dev *dev;
++ const struct pci_device_id *id;
++
++ printk("i2c-viapro.o version %s (%s)\n", LM_VERSION, LM_DATE);
++/*
++ return pci_module_init(&vt596_driver);
++*/
++ pci_for_each_dev(dev) {
++ id = pci_match_device(vt596_ids, dev);
++ if(id)
++ if(vt596_probe(dev, id) >= 0)
++ return 0;
++ }
++ return -ENODEV;
++}
++
++
++static void __exit i2c_vt596_exit(void)
++{
++/*
++ pci_unregister_driver(&vt596_driver);
++*/
++ vt596_remove(NULL);
++}
++
++MODULE_AUTHOR(
++ "Frodo Looijaard <frodol@dds.nl> and "
++ "Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("vt82c596 SMBus driver");
++MODULE_LICENSE("GPL");
++
++module_init(i2c_vt596_init);
++module_exit(i2c_vt596_exit);
+--- linux-old/drivers/i2c/i2c-voodoo3.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/i2c/i2c-voodoo3.c Mon Dec 13 20:18:43 2004
+@@ -0,0 +1,281 @@
++/*
++ voodoo3.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>,
++ Ralph Metzler <rjkm@thp.uni-koeln.de>, and
++ Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ Based on code written by Ralph Metzler <rjkm@thp.uni-koeln.de> and
++ Simon Vogl
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* This interfaces to the I2C bus of the Voodoo3 to gain access to
++ the BT869 and possibly other I2C devices. */
++
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/i2c.h>
++#include <linux/i2c-algo-bit.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#include <asm/param.h> /* for HZ */
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* the only registers we use */
++#define REG 0x78
++#define REG2 0x70
++
++/* bit locations in the register */
++#define DDC_ENAB 0x00040000
++#define DDC_SCL_OUT 0x00080000
++#define DDC_SDA_OUT 0x00100000
++#define DDC_SCL_IN 0x00200000
++#define DDC_SDA_IN 0x00400000
++#define I2C_ENAB 0x00800000
++#define I2C_SCL_OUT 0x01000000
++#define I2C_SDA_OUT 0x02000000
++#define I2C_SCL_IN 0x04000000
++#define I2C_SDA_IN 0x08000000
++
++/* initialization states */
++#define INIT2 0x2
++#define INIT3 0x4
++
++/* delays */
++#define CYCLE_DELAY 10
++#define TIMEOUT (HZ / 2)
++
++
++static void config_v3(struct pci_dev *dev);
++
++static unsigned long ioaddr;
++
++/* The voo GPIO registers don't have individual masks for each bit
++ so we always have to read before writing. */
++
++static void bit_vooi2c_setscl(void *data, int val)
++{
++ unsigned int r;
++ r = readl(ioaddr + REG);
++ if(val)
++ r |= I2C_SCL_OUT;
++ else
++ r &= ~I2C_SCL_OUT;
++ writel(r, ioaddr + REG);
++ readl(ioaddr + REG); /* flush posted write */
++}
++
++static void bit_vooi2c_setsda(void *data, int val)
++{
++ unsigned int r;
++ r = readl(ioaddr + REG);
++ if(val)
++ r |= I2C_SDA_OUT;
++ else
++ r &= ~I2C_SDA_OUT;
++ writel(r, ioaddr + REG);
++ readl(ioaddr + REG); /* flush posted write */
++}
++
++/* The GPIO pins are open drain, so the pins always remain outputs.
++ We rely on the i2c-algo-bit routines to set the pins high before
++ reading the input from other chips. */
++
++static int bit_vooi2c_getscl(void *data)
++{
++ return (0 != (readl(ioaddr + REG) & I2C_SCL_IN));
++}
++
++static int bit_vooi2c_getsda(void *data)
++{
++ return (0 != (readl(ioaddr + REG) & I2C_SDA_IN));
++}
++
++static void bit_vooddc_setscl(void *data, int val)
++{
++ unsigned int r;
++ r = readl(ioaddr + REG);
++ if(val)
++ r |= DDC_SCL_OUT;
++ else
++ r &= ~DDC_SCL_OUT;
++ writel(r, ioaddr + REG);
++ readl(ioaddr + REG); /* flush posted write */
++}
++
++static void bit_vooddc_setsda(void *data, int val)
++{
++ unsigned int r;
++ r = readl(ioaddr + REG);
++ if(val)
++ r |= DDC_SDA_OUT;
++ else
++ r &= ~DDC_SDA_OUT;
++ writel(r, ioaddr + REG);
++ readl(ioaddr + REG); /* flush posted write */
++}
++
++static int bit_vooddc_getscl(void *data)
++{
++ return (0 != (readl(ioaddr + REG) & DDC_SCL_IN));
++}
++
++static int bit_vooddc_getsda(void *data)
++{
++ return (0 != (readl(ioaddr + REG) & DDC_SDA_IN));
++}
++
++
++/* Configures the chip */
++
++void config_v3(struct pci_dev *dev)
++{
++ unsigned int cadr;
++
++ /* map Voodoo3 memory */
++ cadr = dev->resource[0].start;
++ cadr &= PCI_BASE_ADDRESS_MEM_MASK;
++ ioaddr = (unsigned long)ioremap_nocache(cadr, 0x1000);
++ if(ioaddr) {
++ writel(0x8160, ioaddr + REG2);
++ writel(0xcffc0020, ioaddr + REG);
++ printk("i2c-voodoo3: Using Banshee/Voodoo3 at 0x%lx\n", ioaddr);
++ }
++}
++
++static struct i2c_algo_bit_data voo_i2c_bit_data = {
++ .setsda = bit_vooi2c_setsda,
++ .setscl = bit_vooi2c_setscl,
++ .getsda = bit_vooi2c_getsda,
++ .getscl = bit_vooi2c_getscl,
++ .udelay = CYCLE_DELAY,
++ .mdelay = CYCLE_DELAY,
++ .timeout = TIMEOUT
++};
++
++static struct i2c_adapter voodoo3_i2c_adapter = {
++ .owner = THIS_MODULE,
++ .name = "I2C Voodoo3/Banshee adapter",
++ .id = I2C_HW_B_VOO,
++ .algo_data = &voo_i2c_bit_data,
++};
++
++static struct i2c_algo_bit_data voo_ddc_bit_data = {
++ .setsda = bit_vooddc_setsda,
++ .setscl = bit_vooddc_setscl,
++ .getsda = bit_vooddc_getsda,
++ .getscl = bit_vooddc_getscl,
++ .udelay = CYCLE_DELAY,
++ .mdelay = CYCLE_DELAY,
++ .timeout = TIMEOUT
++};
++
++static struct i2c_adapter voodoo3_ddc_adapter = {
++ .owner = THIS_MODULE,
++ .name = "DDC Voodoo3/Banshee adapter",
++ .id = I2C_HW_B_VOO,
++ .algo_data = &voo_ddc_bit_data,
++};
++
++
++static struct pci_device_id voodoo3_ids[] __devinitdata = {
++ {
++ .vendor = PCI_VENDOR_ID_3DFX,
++ .device = PCI_DEVICE_ID_3DFX_VOODOO3,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ {
++ .vendor = PCI_VENDOR_ID_3DFX,
++ .device = PCI_DEVICE_ID_3DFX_BANSHEE,
++ .subvendor = PCI_ANY_ID,
++ .subdevice = PCI_ANY_ID,
++ },
++ { 0, }
++};
++
++static int __devinit voodoo3_probe(struct pci_dev *dev, const struct pci_device_id *id)
++{
++ int retval;
++
++ printk("voodoo3: in probe\n");
++ config_v3(dev);
++ retval = i2c_bit_add_bus(&voodoo3_i2c_adapter);
++ if(retval)
++ return retval;
++ retval = i2c_bit_add_bus(&voodoo3_ddc_adapter);
++ if(retval)
++ i2c_bit_del_bus(&voodoo3_i2c_adapter);
++ return retval;
++}
++
++static void __devexit voodoo3_remove(struct pci_dev *dev)
++{
++ i2c_bit_del_bus(&voodoo3_i2c_adapter);
++ i2c_bit_del_bus(&voodoo3_ddc_adapter);
++}
++
++
++/* Don't register driver to avoid driver conflicts */
++/*
++static struct pci_driver voodoo3_driver = {
++ .name = "voodoo3 smbus",
++ .id_table = voodoo3_ids,
++ .probe = voodoo3_probe,
++ .remove = __devexit_p(voodoo3_remove),
++};
++*/
++
++static int __init i2c_voodoo3_init(void)
++{
++ struct pci_dev *dev;
++ const struct pci_device_id *id;
++
++ printk("i2c-voodoo3.o version %s (%s)\n", LM_VERSION, LM_DATE);
++/*
++ return pci_module_init(&voodoo3_driver);
++*/
++ pci_for_each_dev(dev) {
++ id = pci_match_device(voodoo3_ids, dev);
++ if(id)
++ if(voodoo3_probe(dev, id) >= 0)
++ return 0;
++ }
++ return -ENODEV;
++}
++
++
++static void __exit i2c_voodoo3_exit(void)
++{
++/*
++ pci_unregister_driver(&voodoo3_driver);
++*/
++ voodoo3_remove(NULL);
++ iounmap((void *)ioaddr);
++}
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl>, Philip Edelbrock <phil@netroedge.com>, Ralph Metzler <rjkm@thp.uni-koeln.de>, and Mark D. Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("Voodoo3 I2C/SMBus driver");
++
++module_init(i2c_voodoo3_init);
++module_exit(i2c_voodoo3_exit);
+--- linux-old/drivers/sensors/adm1021.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/adm1021.c Mon Dec 13 20:18:43 2004
+@@ -0,0 +1,594 @@
++/*
++ adm1021.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> and
++ Philip Edelbrock <phil@netroedge.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x18, 0x1a, 0x29, 0x2b,
++ 0x4c, 0x4e, SENSORS_I2C_END
++};
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_8(adm1021, adm1023, max1617, max1617a, thmc10, lm84, gl523sm, mc1066);
++
++/* adm1021 constants specified below */
++
++/* The adm1021 registers */
++/* Read-only */
++#define ADM1021_REG_TEMP 0x00
++#define ADM1021_REG_REMOTE_TEMP 0x01
++#define ADM1021_REG_STATUS 0x02
++#define ADM1021_REG_MAN_ID 0x0FE /* 0x41 = Analog Devices, 0x49 = TI,
++ 0x4D = Maxim, 0x23 = Genesys , 0x54 = Onsemi*/
++#define ADM1021_REG_DEV_ID 0x0FF /* ADM1021 = 0x0X, ADM1021A/ADM1023 = 0x3X */
++#define ADM1021_REG_DIE_CODE 0x0FF /* MAX1617A */
++/* These use different addresses for reading/writing */
++#define ADM1021_REG_CONFIG_R 0x03
++#define ADM1021_REG_CONFIG_W 0x09
++#define ADM1021_REG_CONV_RATE_R 0x04
++#define ADM1021_REG_CONV_RATE_W 0x0A
++/* These are for the ADM1023's additional precision on the remote temp sensor */
++#define ADM1021_REG_REM_TEMP_PREC 0x010
++#define ADM1021_REG_REM_OFFSET 0x011
++#define ADM1021_REG_REM_OFFSET_PREC 0x012
++#define ADM1021_REG_REM_TOS_PREC 0x013
++#define ADM1021_REG_REM_THYST_PREC 0x014
++/* limits */
++#define ADM1021_REG_TOS_R 0x05
++#define ADM1021_REG_TOS_W 0x0B
++#define ADM1021_REG_REMOTE_TOS_R 0x07
++#define ADM1021_REG_REMOTE_TOS_W 0x0D
++#define ADM1021_REG_THYST_R 0x06
++#define ADM1021_REG_THYST_W 0x0C
++#define ADM1021_REG_REMOTE_THYST_R 0x08
++#define ADM1021_REG_REMOTE_THYST_W 0x0E
++/* write-only */
++#define ADM1021_REG_ONESHOT 0x0F
++
++#define ADM1021_ALARM_TEMP (ADM1021_ALARM_TEMP_HIGH | ADM1021_ALARM_TEMP_LOW)
++#define ADM1021_ALARM_RTEMP (ADM1021_ALARM_RTEMP_HIGH | ADM1021_ALARM_RTEMP_LOW\
++ | ADM1021_ALARM_RTEMP_NA)
++#define ADM1021_ALARM_ALL (ADM1021_ALARM_TEMP | ADM1021_ALARM_RTEMP)
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++/* Conversions note: 1021 uses normal integer signed-byte format*/
++#define TEMP_FROM_REG(val) (val > 127 ? val-256 : val)
++#define TEMP_TO_REG(val) (SENSORS_LIMIT((val < 0 ? val+256 : val),0,255))
++
++/* Each client has this additional data */
++struct adm1021_data {
++ struct i2c_client client;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 temp, temp_os, temp_hyst; /* Register values */
++ u8 remote_temp, remote_temp_os, remote_temp_hyst, alarms, die_code;
++ u8 fail;
++ /* Special values for ADM1023 only */
++ u8 remote_temp_prec, remote_temp_os_prec, remote_temp_hyst_prec,
++ remote_temp_offset, remote_temp_offset_prec;
++};
++
++static int adm1021_attach_adapter(struct i2c_adapter *adapter);
++static int adm1021_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void adm1021_init_client(struct i2c_client *client);
++static int adm1021_detach_client(struct i2c_client *client);
++static int adm1021_read_value(struct i2c_client *client, u8 reg);
++static int adm1021_rd_good(u8 *val, struct i2c_client *client, u8 reg, u8 mask);
++static int adm1021_write_value(struct i2c_client *client, u8 reg,
++ u16 value);
++static void adm1021_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1021_remote_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag,
++ long *results);
++static void adm1021_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1021_die_code(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1021_update_client(struct i2c_client *client);
++
++/* (amalysh) read only mode, otherwise any limit's writing confuse BIOS */
++static int read_only = 0;
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver adm1021_driver = {
++ .owner = THIS_MODULE,
++ .name = "ADM1021, MAX1617 sensor driver",
++ .id = I2C_DRIVERID_ADM1021,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = adm1021_attach_adapter,
++ .detach_client = adm1021_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++
++#define ADM1021_SYSCTL_TEMP 1200
++#define ADM1021_SYSCTL_REMOTE_TEMP 1201
++#define ADM1021_SYSCTL_DIE_CODE 1202
++#define ADM1021_SYSCTL_ALARMS 1203
++
++#define ADM1021_ALARM_TEMP_HIGH 0x40
++#define ADM1021_ALARM_TEMP_LOW 0x20
++#define ADM1021_ALARM_RTEMP_HIGH 0x10
++#define ADM1021_ALARM_RTEMP_LOW 0x08
++#define ADM1021_ALARM_RTEMP_NA 0x04
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected adm1021. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table adm1021_dir_table_template[] = {
++ {ADM1021_SYSCTL_TEMP, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1021_temp},
++ {ADM1021_SYSCTL_REMOTE_TEMP, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1021_remote_temp},
++ {ADM1021_SYSCTL_DIE_CODE, "die_code", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1021_die_code},
++ {ADM1021_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1021_alarms},
++ {0}
++};
++
++static ctl_table adm1021_max_dir_table_template[] = {
++ {ADM1021_SYSCTL_TEMP, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1021_temp},
++ {ADM1021_SYSCTL_REMOTE_TEMP, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1021_remote_temp},
++ {ADM1021_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1021_alarms},
++ {0}
++};
++
++static int adm1021_id = 0;
++
++static int adm1021_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, adm1021_detect);
++}
++
++static int adm1021_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct adm1021_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("adm1021.o: adm1021_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto error0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access adm1021_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct adm1021_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto error0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &adm1021_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ if (kind < 0) {
++ if ((adm1021_read_value(new_client, ADM1021_REG_STATUS) & 0x03) != 0x00
++ || (adm1021_read_value(new_client, ADM1021_REG_CONFIG_R) & 0x3F) != 0x00
++ || (adm1021_read_value(new_client, ADM1021_REG_CONV_RATE_R) & 0xF8) != 0x00) {
++ err = -ENODEV;
++ goto error1;
++ }
++ }
++
++ /* Determine the chip type. */
++
++ if (kind <= 0) {
++ i = adm1021_read_value(new_client, ADM1021_REG_MAN_ID);
++ if (i == 0x41)
++ if ((adm1021_read_value (new_client, ADM1021_REG_DEV_ID) & 0xF0) == 0x30)
++ kind = adm1023;
++ else
++ kind = adm1021;
++ else if (i == 0x49)
++ kind = thmc10;
++ else if (i == 0x23)
++ kind = gl523sm;
++ else if ((i == 0x4d) &&
++ (adm1021_read_value
++ (new_client, ADM1021_REG_DEV_ID) == 0x01))
++ kind = max1617a;
++ else if (i == 0x54)
++ kind = mc1066;
++ /* LM84 Mfr ID in a different place, and it has more unused bits */
++ else if (adm1021_read_value(new_client, ADM1021_REG_CONV_RATE_R) == 0x00
++ && (kind == 0 /* skip extra detection */
++ || ((adm1021_read_value(new_client, ADM1021_REG_CONFIG_R) & 0x7F) == 0x00
++ && (adm1021_read_value(new_client, ADM1021_REG_STATUS) & 0xAB) == 0x00)))
++ kind = lm84;
++ else
++ kind = max1617;
++ }
++
++ if (kind == max1617) {
++ type_name = "max1617";
++ client_name = "MAX1617 chip";
++ } else if (kind == max1617a) {
++ type_name = "max1617a";
++ client_name = "MAX1617A chip";
++ } else if (kind == adm1021) {
++ type_name = "adm1021";
++ client_name = "ADM1021 chip";
++ } else if (kind == adm1023) {
++ type_name = "adm1023";
++ client_name = "ADM1023 chip";
++ } else if (kind == thmc10) {
++ type_name = "thmc10";
++ client_name = "THMC10 chip";
++ } else if (kind == lm84) {
++ type_name = "lm84";
++ client_name = "LM84 chip";
++ } else if (kind == gl523sm) {
++ type_name = "gl523sm";
++ client_name = "GL523SM chip";
++ } else if (kind == mc1066) {
++ type_name = "mc1066";
++ client_name = "MC1066 chip";
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = adm1021_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto error3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ data->type == adm1021 ? adm1021_dir_table_template :
++ adm1021_max_dir_table_template)) < 0) {
++ err = i;
++ goto error4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the ADM1021 chip */
++ if (kind != lm84)
++ adm1021_init_client(new_client);
++ return 0;
++
++ error4:
++ i2c_detach_client(new_client);
++ error3:
++ error1:
++ kfree(data);
++ error0:
++ return err;
++}
++
++static void adm1021_init_client(struct i2c_client *client)
++{
++ /* Enable ADC and disable suspend mode */
++ adm1021_write_value(client, ADM1021_REG_CONFIG_W,
++ adm1021_read_value(client, ADM1021_REG_CONFIG_R) & 0xBF);
++ /* Set Conversion rate to 1/sec (this can be tinkered with) */
++ adm1021_write_value(client, ADM1021_REG_CONV_RATE_W, 0x04);
++}
++
++static int adm1021_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct adm1021_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("adm1021.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++
++/* All registers are byte-sized */
++static int adm1021_read_value(struct i2c_client *client, u8 reg)
++{
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++/* only update value if read succeeded; set fail bit if failed */
++static int adm1021_rd_good(u8 *val, struct i2c_client *client, u8 reg, u8 mask)
++{
++ int i;
++ struct adm1021_data *data = client->data;
++
++ i = i2c_smbus_read_byte_data(client, reg);
++ if (i < 0) {
++ data->fail |= mask;
++ return i;
++ }
++ *val = i;
++ return 0;
++}
++
++static int adm1021_write_value(struct i2c_client *client, u8 reg, u16 value)
++{
++ if (read_only > 0)
++ return 0;
++
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++static void adm1021_update_client(struct i2c_client *client)
++{
++ struct adm1021_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting adm1021 update\n");
++#endif
++
++ data->fail = 0;
++ adm1021_rd_good(&(data->temp), client, ADM1021_REG_TEMP,
++ ADM1021_ALARM_TEMP);
++ adm1021_rd_good(&(data->temp_os), client, ADM1021_REG_TOS_R,
++ ADM1021_ALARM_TEMP);
++ adm1021_rd_good(&(data->temp_hyst), client,
++ ADM1021_REG_THYST_R, ADM1021_ALARM_TEMP);
++ adm1021_rd_good(&(data->remote_temp), client,
++ ADM1021_REG_REMOTE_TEMP, ADM1021_ALARM_RTEMP);
++ adm1021_rd_good(&(data->remote_temp_os), client,
++ ADM1021_REG_REMOTE_TOS_R, ADM1021_ALARM_RTEMP);
++ adm1021_rd_good(&(data->remote_temp_hyst), client,
++ ADM1021_REG_REMOTE_THYST_R,
++ ADM1021_ALARM_RTEMP);
++ data->alarms = ADM1021_ALARM_ALL;
++ if (!adm1021_rd_good(&(data->alarms), client,
++ ADM1021_REG_STATUS, 0))
++ data->alarms &= ADM1021_ALARM_ALL;
++ if (data->type == adm1021)
++ adm1021_rd_good(&(data->die_code), client,
++ ADM1021_REG_DIE_CODE, 0);
++ if (data->type == adm1023) {
++ adm1021_rd_good(&(data->remote_temp_prec), client,
++ ADM1021_REG_REM_TEMP_PREC,
++ ADM1021_ALARM_TEMP);
++ adm1021_rd_good(&(data->remote_temp_os_prec), client,
++ ADM1021_REG_REM_TOS_PREC,
++ ADM1021_ALARM_RTEMP);
++ adm1021_rd_good(&(data->remote_temp_hyst_prec), client,
++ ADM1021_REG_REM_THYST_PREC,
++ ADM1021_ALARM_RTEMP);
++ adm1021_rd_good(&(data->remote_temp_offset), client,
++ ADM1021_REG_REM_OFFSET,
++ ADM1021_ALARM_RTEMP);
++ adm1021_rd_good(&(data->remote_temp_offset_prec),
++ client, ADM1021_REG_REM_OFFSET_PREC,
++ ADM1021_ALARM_RTEMP);
++ }
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++void adm1021_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1021_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1021_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_os);
++ results[1] = TEMP_FROM_REG(data->temp_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_os = TEMP_TO_REG(results[0]);
++ adm1021_write_value(client, ADM1021_REG_TOS_W,
++ data->temp_os);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst = TEMP_TO_REG(results[1]);
++ adm1021_write_value(client, ADM1021_REG_THYST_W,
++ data->temp_hyst);
++ }
++ }
++}
++
++void adm1021_remote_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct adm1021_data *data = client->data;
++ int prec = 0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ if (data->type == adm1023) { *nrels_mag = 3; }
++ else { *nrels_mag = 0; }
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1021_update_client(client);
++ results[0] = TEMP_FROM_REG(data->remote_temp_os);
++ results[1] = TEMP_FROM_REG(data->remote_temp_hyst);
++ results[2] = TEMP_FROM_REG(data->remote_temp);
++ if (data->type == adm1023) {
++ results[0]=results[0]*1000 +
++ ((data->remote_temp_os_prec >> 5) * 125);
++ results[1]=results[1]*1000 +
++ ((data->remote_temp_hyst_prec >> 5) * 125);
++ results[2]=(TEMP_FROM_REG(data->remote_temp_offset)*1000) +
++ ((data->remote_temp_offset_prec >> 5) * 125);
++ results[3]=TEMP_FROM_REG(data->remote_temp)*1000 +
++ ((data->remote_temp_prec >> 5) * 125);
++ *nrels_mag = 4;
++ } else {
++ *nrels_mag = 3;
++ }
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (data->type == adm1023) {
++ prec=((results[0]-((results[0]/1000)*1000))/125)<<5;
++ adm1021_write_value(client,
++ ADM1021_REG_REM_TOS_PREC,
++ prec);
++ results[0]=results[0]/1000;
++ data->remote_temp_os_prec=prec;
++ }
++ data->remote_temp_os = TEMP_TO_REG(results[0]);
++ adm1021_write_value(client,
++ ADM1021_REG_REMOTE_TOS_W,
++ data->remote_temp_os);
++ }
++ if (*nrels_mag >= 2) {
++ if (data->type == adm1023) {
++ prec=((results[1]-((results[1]/1000)*1000))/125)<<5;
++ adm1021_write_value(client,
++ ADM1021_REG_REM_THYST_PREC,
++ prec);
++ results[1]=results[1]/1000;
++ data->remote_temp_hyst_prec=prec;
++ }
++ data->remote_temp_hyst = TEMP_TO_REG(results[1]);
++ adm1021_write_value(client,
++ ADM1021_REG_REMOTE_THYST_W,
++ data->remote_temp_hyst);
++ }
++ if (*nrels_mag >= 3) {
++ if (data->type == adm1023) {
++ prec=((results[2]-((results[2]/1000)*1000))/125)<<5;
++ adm1021_write_value(client,
++ ADM1021_REG_REM_OFFSET_PREC,
++ prec);
++ results[2]=results[2]/1000;
++ data->remote_temp_offset_prec=prec;
++ data->remote_temp_offset=results[2];
++ adm1021_write_value(client,
++ ADM1021_REG_REM_OFFSET,
++ data->remote_temp_offset);
++ }
++ }
++ }
++}
++
++void adm1021_die_code(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct adm1021_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1021_update_client(client);
++ results[0] = data->die_code;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ /* Can't write to it */
++ }
++}
++
++void adm1021_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1021_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1021_update_client(client);
++ results[0] = data->alarms | data->fail;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ /* Can't write to it */
++ }
++}
++
++static int __init sm_adm1021_init(void)
++{
++ printk(KERN_INFO "adm1021.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&adm1021_driver);
++}
++
++static void __exit sm_adm1021_exit(void)
++{
++ i2c_del_driver(&adm1021_driver);
++}
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("adm1021 driver");
++MODULE_LICENSE("GPL");
++
++MODULE_PARM(read_only, "i");
++MODULE_PARM_DESC(read_only, "Don't set any values, read only mode");
++
++module_init(sm_adm1021_init)
++module_exit(sm_adm1021_exit)
+--- linux-old/drivers/sensors/adm1024.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/adm1024.c Mon Dec 13 20:18:43 2004
+@@ -0,0 +1,782 @@
++/*
++ adm1024.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Add by Ken Bowley <ken@opnix.com> from the adm1025.c written by
++ Gordon Wu <gwu@esoft.com> and from adm9240.c written by
++ Copyright (c) 1999 Frodo Looijaard <frodol@dds.nl>
++ and Philip Edelbrock <phil@netroedge.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* Supports the Analog Devices ADM1024. See doc/chips/adm1024 for details */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x2c, 0x2e, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(adm1024);
++
++/* Many ADM1024 constants specified below */
++
++#define ADM1024_REG_IN_MAX(nr) (0x2b + (nr) * 2)
++#define ADM1024_REG_IN_MIN(nr) (0x2c + (nr) * 2)
++#define ADM1024_REG_IN(nr) (0x20 + (nr))
++
++/* The ADM1024 registers */
++#define ADM1024_REG_INT_TEMP_TRIP_SET 0x13
++#define ADM1024_REG_EXT_TEMP_TRIP_SET 0x14
++#define ADM1024_REG_TEST 0x15
++#define ADM1024_REG_CHANNEL_MODE 0x16
++#define ADM1024_REG_INT_TEMP_TRIP 0x17 /* read only */
++#define ADM1024_REG_EXT_TEMP_TRIP 0x18 /* read only */
++#define ADM1024_REG_ANALOG_OUT 0x19
++#define ADM1024_REG_AIN1_LOW_LIMIT 0x1A
++#define ADM1024_REG_AIN2_LOW_LIMIT 0x1B
++/* These are all read-only */
++#define ADM1024_REG_2_5V 0x20 /* 2.5V Measured Value/EXT Temp 2 */
++#define ADM1024_REG_VCCP1 0x21
++#define ADM1024_REG_3_3V 0x22 /* VCC Measured Value */
++#define ADM1024_REG_5V 0x23
++#define ADM1024_REG_12V 0x24
++#define ADM1024_REG_VCCP2 0x25
++#define ADM1024_REG_EXT_TEMP1 0x26
++#define ADM1024_REG_TEMP 0x27
++#define ADM1024_REG_FAN1 0x28 /* FAN1/AIN1 Value */
++#define ADM1024_REG_FAN2 0x29 /* FAN2/AIN2 Value */
++#define ADM1024_REG_COMPANY_ID 0x3E /* 0x41 for ADM1024 */
++#define ADM1024_REG_DIE_REV 0x3F
++/* These are read/write */
++#define ADM1024_REG_2_5V_HIGH 0x2B /* 2.5V/Ext Temp2 High Limit */
++#define ADM1024_REG_2_5V_LOW 0x2C /* 2.5V/Ext Temp2 Low Limit */
++#define ADM1024_REG_VCCP1_HIGH 0x2D
++#define ADM1024_REG_VCCP1_LOW 0x2E
++#define ADM1024_REG_3_3V_HIGH 0x2F /* VCC High Limit */
++#define ADM1024_REG_3_3V_LOW 0x30 /* VCC Low Limit */
++#define ADM1024_REG_5V_HIGH 0x31
++#define ADM1024_REG_5V_LOW 0x32
++#define ADM1024_REG_12V_HIGH 0x33
++#define ADM1024_REG_12V_LOW 0x34
++#define ADM1024_REG_VCCP2_HIGH 0x35
++#define ADM1024_REG_VCCP2_LOW 0x36
++#define ADM1024_REG_EXT_TEMP1_HIGH 0x37
++#define ADM1024_REG_EXT_TEMP1_LOW 0x38
++#define ADM1024_REG_TOS 0x39
++#define ADM1024_REG_THYST 0x3A
++#define ADM1024_REG_FAN1_MIN 0x3B
++#define ADM1024_REG_FAN2_MIN 0x3C
++
++#define ADM1024_REG_CONFIG 0x40
++#define ADM1024_REG_INT1_STAT 0x41
++#define ADM1024_REG_INT2_STAT 0x42
++#define ADM1024_REG_INT1_MASK 0x43
++#define ADM1024_REG_INT2_MASK 0x44
++
++#define ADM1024_REG_CHASSIS_CLEAR 0x46
++#define ADM1024_REG_VID_FAN_DIV 0x47
++#define ADM1024_REG_I2C_ADDR 0x48
++#define ADM1024_REG_VID4 0x49
++#define ADM1024_REG_CONFIG2 0x4A
++#define ADM1024_REG_TEMP_CONFIG 0x4B
++#define ADM1024_REG_EXTMODE1 0x4C /* Interupt Status Register Mirror No. 1 */
++#define ADM1024_REG_EXTMODE2 0x4D /* Interupt Status Register Mirror No. 2 */
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++#define IN_TO_REG(val,nr) (SENSORS_LIMIT(((val) & 0xff),0,255))
++#define IN_FROM_REG(val,nr) (val)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?-1:\
++ (val)==255?0:1350000/((div)*(val)))
++
++#define TEMP_FROM_REG(temp) \
++ ((temp)<256?((((temp)&0x1fe) >> 1) * 10) + ((temp) & 1) * 5: \
++ ((((temp)&0x1fe) >> 1) -255) * 10 - ((temp) & 1) * 5) \
++
++#define EXT_TEMP_FROM_REG(temp) (((temp)>0x80?(temp)-0x100:(temp))*10)
++
++
++#define TEMP_LIMIT_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*10)
++
++#define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT(((val)<0?(((val)-5)/10):\
++ ((val)+5)/10), \
++ 0,255)
++
++#define ALARMS_FROM_REG(val) (val)
++
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val)==1?0:((val)==8?3:((val)==4?2:1)))
++
++#define VID_FROM_REG(val) ((val)==0x1f?0:(val)>=0x10?510-(val)*10:\
++ 205-(val)*5)
++
++/* For each registered ADM1024, we need to keep some data in memory. That
++ data is pointed to by adm1024_list[NR]->data. The structure itself is
++ dynamically allocated, at the same time when a new adm1024 client is
++ allocated. */
++struct adm1024_data {
++ struct i2c_client client;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[6]; /* Register value */
++ u8 in_max[6]; /* Register value */
++ u8 in_min[6]; /* Register value */
++ u8 fan[2]; /* Register value */
++ u8 fan_min[2]; /* Register value */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ int temp; /* Temp, shifted right */
++ u8 temp_os_max; /* Register value */
++ u8 temp_os_hyst; /* Register value */
++ int temp1; /* Ext Temp 1 */
++ u8 temp1_os_max;
++ u8 temp1_os_hyst;
++ int temp2; /* Ext Temp 2 */
++ u8 temp2_os_max;
++ u8 temp2_os_hyst;
++ u16 alarms; /* Register encoding, combined */
++ u8 analog_out; /* Register value */
++ u8 vid; /* Register value combined */
++};
++
++
++
++static int adm1024_attach_adapter(struct i2c_adapter *adapter);
++static int adm1024_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int adm1024_detach_client(struct i2c_client *client);
++
++static int adm1024_read_value(struct i2c_client *client, u8 register);
++static int adm1024_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void adm1024_update_client(struct i2c_client *client);
++static void adm1024_init_client(struct i2c_client *client);
++
++
++static void adm1024_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1024_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1024_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1024_temp1(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1024_temp2(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1024_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1024_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1024_analog_out(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag,
++ long *results);
++static void adm1024_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int adm1024_id = 0;
++
++static struct i2c_driver adm1024_driver = {
++ .owner = THIS_MODULE,
++ .name = "ADM1024 sensor driver",
++ .id = I2C_DRIVERID_ADM1024,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = adm1024_attach_adapter,
++ .detach_client = adm1024_detach_client,
++};
++
++/* The /proc/sys entries */
++/* -- SENSORS SYSCTL START -- */
++
++#define ADM1024_SYSCTL_IN0 1000 /* Volts * 100 */
++#define ADM1024_SYSCTL_IN1 1001
++#define ADM1024_SYSCTL_IN2 1002
++#define ADM1024_SYSCTL_IN3 1003
++#define ADM1024_SYSCTL_IN4 1004
++#define ADM1024_SYSCTL_IN5 1005
++#define ADM1024_SYSCTL_FAN1 1101 /* Rotations/min */
++#define ADM1024_SYSCTL_FAN2 1102
++#define ADM1024_SYSCTL_TEMP 1250 /* Degrees Celcius * 100 */
++#define ADM1024_SYSCTL_TEMP1 1290 /* Degrees Celcius */
++#define ADM1024_SYSCTL_TEMP2 1295 /* Degrees Celcius */
++#define ADM1024_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define ADM1024_SYSCTL_ALARMS 2001 /* bitvector */
++#define ADM1024_SYSCTL_ANALOG_OUT 2002
++#define ADM1024_SYSCTL_VID 2003
++
++#define ADM1024_ALARM_IN0 0x0001
++#define ADM1024_ALARM_IN1 0x0002
++#define ADM1024_ALARM_IN2 0x0004
++#define ADM1024_ALARM_IN3 0x0008
++#define ADM1024_ALARM_IN4 0x0100
++#define ADM1024_ALARM_IN5 0x0200
++#define ADM1024_ALARM_FAN1 0x0040
++#define ADM1024_ALARM_FAN2 0x0080
++#define ADM1024_ALARM_TEMP 0x0010
++#define ADM1024_ALARM_TEMP1 0x0020
++#define ADM1024_ALARM_TEMP2 0x0001
++#define ADM1024_ALARM_CHAS 0x1000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected ADM1024. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table adm1024_dir_table_template[] = {
++ {ADM1024_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_in},
++ {ADM1024_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_in},
++ {ADM1024_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_in},
++ {ADM1024_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_in},
++ {ADM1024_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_in},
++ {ADM1024_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_in},
++ {ADM1024_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_fan},
++ {ADM1024_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_fan},
++ {ADM1024_SYSCTL_TEMP, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_temp},
++ {ADM1024_SYSCTL_TEMP1, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_temp1},
++ {ADM1024_SYSCTL_TEMP2, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_temp2},
++ {ADM1024_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_fan_div},
++ {ADM1024_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_alarms},
++ {ADM1024_SYSCTL_ANALOG_OUT, "analog_out", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_analog_out},
++ {ADM1024_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1024_vid},
++ {0}
++};
++
++static int adm1024_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, adm1024_detect);
++}
++
++static int adm1024_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct adm1024_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("adm1024.o: adm1024_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access adm1024_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct adm1024_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &adm1024_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ if (kind < 0) {
++ if((adm1024_read_value(new_client, ADM1024_REG_CONFIG) & 0x80) != 0x00)
++ goto ERROR1;
++ }
++
++ /* Determine the chip type. */
++ if (kind <= 0) {
++ i = adm1024_read_value(new_client, ADM1024_REG_COMPANY_ID);
++ if (i == 0x41)
++ kind = adm1024;
++ else {
++ if (kind == 0)
++ printk
++ ("adm1024.o: Ignoring 'force' parameter for unknown chip at "
++ "adapter %d, address 0x%02x\n",
++ i2c_adapter_id(adapter), address);
++ goto ERROR1;
++ }
++ }
++
++ if (kind == adm1024) {
++ type_name = "adm1024";
++ client_name = "ADM1024 chip";
++ } else {
++#ifdef DEBUG
++ printk("adm1024.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = adm1024_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ adm1024_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the ADM1024 chip */
++ adm1024_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int adm1024_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct adm1024_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("adm1024.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++static int adm1024_read_value(struct i2c_client *client, u8 reg)
++{
++ return 0xFF & i2c_smbus_read_byte_data(client, reg);
++}
++
++static int adm1024_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++static void adm1024_init_client(struct i2c_client *client)
++{
++ /* Enable temperature channel 2 */
++ adm1024_write_value(client, ADM1024_REG_CHANNEL_MODE, adm1024_read_value(client, ADM1024_REG_CHANNEL_MODE) | 0x04);
++
++ /* Start monitoring */
++ adm1024_write_value(client, ADM1024_REG_CONFIG, 0x07);
++}
++
++static void adm1024_update_client(struct i2c_client *client)
++{
++ struct adm1024_data *data = client->data;
++ u8 i;
++
++ down(&data->update_lock);
++
++ if (
++ (jiffies - data->last_updated >
++ (data->type == adm1024 ? HZ / 2 : HZ * 2))
++ || (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting adm1024 update\n");
++#endif
++ for (i = 0; i <= 5; i++) {
++ data->in[i] =
++ adm1024_read_value(client, ADM1024_REG_IN(i));
++ data->in_min[i] =
++ adm1024_read_value(client,
++ ADM1024_REG_IN_MIN(i));
++ data->in_max[i] =
++ adm1024_read_value(client,
++ ADM1024_REG_IN_MAX(i));
++ }
++ data->fan[0] =
++ adm1024_read_value(client, ADM1024_REG_FAN1);
++ data->fan_min[0] =
++ adm1024_read_value(client, ADM1024_REG_FAN1_MIN);
++ data->fan[1] =
++ adm1024_read_value(client, ADM1024_REG_FAN2);
++ data->fan_min[1] =
++ adm1024_read_value(client, ADM1024_REG_FAN2_MIN);
++ data->temp =
++ (adm1024_read_value(client, ADM1024_REG_TEMP) << 1) +
++ ((adm1024_read_value
++ (client, ADM1024_REG_TEMP_CONFIG) & 0x80) >> 7);
++ data->temp_os_max =
++ adm1024_read_value(client, ADM1024_REG_TOS);
++ data->temp_os_hyst =
++ adm1024_read_value(client, ADM1024_REG_THYST);
++ data->temp1 =
++ adm1024_read_value(client, ADM1024_REG_EXT_TEMP1);
++ data->temp1_os_max =
++ adm1024_read_value(client, ADM1024_REG_EXT_TEMP1_HIGH);
++ data->temp1_os_hyst =
++ adm1024_read_value(client, ADM1024_REG_EXT_TEMP1_LOW);
++ data->temp2 =
++ adm1024_read_value(client, ADM1024_REG_2_5V);
++ data->temp2_os_max =
++ adm1024_read_value(client, ADM1024_REG_2_5V_HIGH);
++ data->temp2_os_hyst =
++ adm1024_read_value(client, ADM1024_REG_2_5V_LOW);
++
++ i = adm1024_read_value(client, ADM1024_REG_VID_FAN_DIV);
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = (i >> 6) & 0x03;
++ data->vid = i & 0x0f;
++ data->vid |=
++ (adm1024_read_value(client, ADM1024_REG_VID4) & 0x01)
++ << 4;
++
++ data->alarms =
++ adm1024_read_value(client,
++ ADM1024_REG_INT1_STAT) +
++ (adm1024_read_value(client, ADM1024_REG_INT2_STAT) <<
++ 8);
++ data->analog_out =
++ adm1024_read_value(client, ADM1024_REG_ANALOG_OUT);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void adm1024_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++
++ int scales[6] = { 250, 225, 330, 500, 1200, 270 };
++
++ struct adm1024_data *data = client->data;
++ int nr = ctl_name - ADM1024_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1024_update_client(client);
++ results[0] =
++ IN_FROM_REG(data->in_min[nr], nr) * scales[nr] / 192;
++ results[1] =
++ IN_FROM_REG(data->in_max[nr], nr) * scales[nr] / 192;
++ results[2] =
++ IN_FROM_REG(data->in[nr], nr) * scales[nr] / 192;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] =
++ IN_TO_REG((results[0] * 192) / scales[nr], nr);
++ adm1024_write_value(client, ADM1024_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] =
++ IN_TO_REG((results[1] * 192) / scales[nr], nr);
++ adm1024_write_value(client, ADM1024_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void adm1024_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1024_data *data = client->data;
++ int nr = ctl_name - ADM1024_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1024_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->
++ fan_div[nr - 1]));
++ results[1] =
++ FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = FAN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->
++ fan_div[nr -
++ 1]));
++ adm1024_write_value(client,
++ nr ==
++ 1 ? ADM1024_REG_FAN1_MIN :
++ ADM1024_REG_FAN2_MIN,
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++
++void adm1024_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1024_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1024_update_client(client);
++ results[0] = TEMP_LIMIT_FROM_REG(data->temp_os_max);
++ results[1] = TEMP_LIMIT_FROM_REG(data->temp_os_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_os_max = TEMP_LIMIT_TO_REG(results[0]);
++ adm1024_write_value(client, ADM1024_REG_TOS,
++ data->temp_os_max);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_os_hyst = TEMP_LIMIT_TO_REG(results[1]);
++ adm1024_write_value(client, ADM1024_REG_THYST,
++ data->temp_os_hyst);
++ }
++ }
++}
++
++void adm1024_temp1(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1024_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1024_update_client(client);
++ results[0] = TEMP_LIMIT_FROM_REG(data->temp1_os_max);
++ results[1] = TEMP_LIMIT_FROM_REG(data->temp1_os_hyst);
++ results[2] = EXT_TEMP_FROM_REG(data->temp1);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp1_os_max = TEMP_LIMIT_TO_REG(results[0]);
++ adm1024_write_value(client, ADM1024_REG_EXT_TEMP1_HIGH,
++ data->temp1_os_max);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp1_os_hyst = TEMP_LIMIT_TO_REG(results[1]);
++ adm1024_write_value(client, ADM1024_REG_EXT_TEMP1_LOW,
++ data->temp1_os_hyst);
++ }
++ }
++}
++
++void adm1024_temp2(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1024_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1024_update_client(client);
++ results[0] = TEMP_LIMIT_FROM_REG(data->temp2_os_max);
++ results[1] = TEMP_LIMIT_FROM_REG(data->temp2_os_hyst);
++ results[2] = EXT_TEMP_FROM_REG(data->temp2);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp2_os_max = TEMP_LIMIT_TO_REG(results[0]);
++ adm1024_write_value(client, ADM1024_REG_2_5V_HIGH,
++ data->temp2_os_max);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp2_os_hyst = TEMP_LIMIT_TO_REG(results[1]);
++ adm1024_write_value(client, ADM1024_REG_2_5V_LOW,
++ data->temp2_os_hyst);
++ }
++ }
++}
++
++void adm1024_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1024_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1024_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void adm1024_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct adm1024_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1024_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = adm1024_read_value(client, ADM1024_REG_VID_FAN_DIV);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | (data->fan_div[1] << 6);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan_div[0] << 4);
++ adm1024_write_value(client,
++ ADM1024_REG_VID_FAN_DIV, old);
++ }
++ }
++}
++
++void adm1024_analog_out(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct adm1024_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1024_update_client(client);
++ results[0] = data->analog_out;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->analog_out = results[0];
++ adm1024_write_value(client, ADM1024_REG_ANALOG_OUT,
++ data->analog_out);
++ }
++ }
++}
++
++void adm1024_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1024_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1024_update_client(client);
++ results[0] = VID_FROM_REG(data->vid);
++ *nrels_mag = 1;
++ }
++}
++
++static int __init sm_adm1024_init(void)
++{
++ printk("adm1024.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&adm1024_driver);
++}
++
++static void __exit sm_adm1024_exit(void)
++{
++ i2c_del_driver(&adm1024_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("ADM1024 driver");
++
++MODULE_LICENSE("GPL");
++
++module_init(sm_adm1024_init);
++module_exit(sm_adm1024_exit);
+--- linux-old/drivers/sensors/adm1025.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/adm1025.c Mon Dec 13 20:18:43 2004
+@@ -0,0 +1,594 @@
++/*
++ adm1025.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2000 Chen-Yuan Wu <gwu@esoft.com>
++ Copyright (c) 2003-2004 Jean Delvare <khali@linux-fr.org>
++
++ Based on the adm9240 driver.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* Supports the Analog Devices ADM1025 and the Philips NE1619.
++ See doc/chips/adm1025 for details */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x2c, 0x2e, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_2(adm1025, ne1619);
++
++/* Many ADM1025 constants specified below */
++
++
++/* The ADM1025 registers */
++
++/* These are all read-only */
++#define ADM1025_REG_2_5V 0x20 /* not used directly, see */
++#define ADM1025_REG_VCCP1 0x21 /* ADM1025_REG_IN(nr) below */
++#define ADM1025_REG_3_3V 0x22
++#define ADM1025_REG_5V 0x23
++#define ADM1025_REG_12V 0x24
++#define ADM1025_REG_VCC 0x25
++
++#define ADM1025_REG_RTEMP 0x26 /* not used directly, see */
++#define ADM1025_REG_LTEMP 0x27 /* ADM1025_REG_TEMP(nr) below */
++
++#define ADM1025_REG_COMPANY_ID 0x3E /* 0x41 for Analog Devices,
++ 0xA1 for Philips */
++#define ADM1025_REG_DIE_REV 0x3F /* 0x20-0x2F for ADM1025 and compatible */
++
++#define ADM1025_REG_STATUS1 0x41
++#define ADM1025_REG_STATUS2 0x42
++
++#define ADM1025_REG_VID 0x47
++#define ADM1025_REG_VID4 0x49 /* actually R/W
++ but we don't write to it */
++
++/* These are read/write */
++#define ADM1025_REG_2_5V_HIGH 0x2B /* not used directly, see */
++#define ADM1025_REG_2_5V_LOW 0x2C /* ADM1025_REG_IN_MAX(nr) and */
++#define ADM1025_REG_VCCP1_HIGH 0x2D /* ADM1025_REG_IN_MIN(nr) below */
++#define ADM1025_REG_VCCP1_LOW 0x2E
++#define ADM1025_REG_3_3V_HIGH 0x2F
++#define ADM1025_REG_3_3V_LOW 0x30
++#define ADM1025_REG_5V_HIGH 0x31
++#define ADM1025_REG_5V_LOW 0x32
++#define ADM1025_REG_12V_HIGH 0x33
++#define ADM1025_REG_12V_LOW 0x34
++#define ADM1025_REG_VCC_HIGH 0x35
++#define ADM1025_REG_VCC_LOW 0x36
++
++#define ADM1025_REG_RTEMP_HIGH 0x37 /* not used directly, see */
++#define ADM1025_REG_RTEMP_LOW 0x38 /* ADM1025_REG_TEMP_MAX(nr) and */
++#define ADM1025_REG_LTEMP_HIGH 0x39 /* ADM1025_REG_TEMP_MIN(nr) below */
++#define ADM1025_REG_LTEMP_LOW 0x3A
++
++#define ADM1025_REG_CONFIG 0x40
++
++/* Useful macros */
++#define ADM1025_REG_IN(nr) (ADM1025_REG_2_5V + (nr))
++#define ADM1025_REG_IN_MAX(nr) (ADM1025_REG_2_5V_HIGH + (nr) * 2)
++#define ADM1025_REG_IN_MIN(nr) (ADM1025_REG_2_5V_LOW + (nr) * 2)
++#define ADM1025_REG_TEMP(nr) (ADM1025_REG_RTEMP + (nr))
++#define ADM1025_REG_TEMP_HIGH(nr) (ADM1025_REG_RTEMP_HIGH + (nr) * 2)
++#define ADM1025_REG_TEMP_LOW(nr) (ADM1025_REG_RTEMP_LOW + (nr) * 2)
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++#define IN_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
++#define IN_FROM_REG(val) (val)
++
++#define TEMP_FROM_REG(val) (((val)>=0x80?(val)-0x100:(val))*10)
++#define TEMP_TO_REG(val) SENSORS_LIMIT(((val)<0?(((val)-5)/10):\
++ ((val)+5)/10),-128,127)
++
++#define ALARMS_FROM_REG(val) (val)
++
++/* For each registered ADM1025, we need to keep some data in memory. That
++ data is pointed to by adm1025_list[NR]->data. The structure itself is
++ dynamically allocated, at the same time when a new adm1025 client is
++ allocated. */
++struct adm1025_data {
++ struct i2c_client client;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[6]; /* Register value */
++ u8 in_max[6]; /* Register value */
++ u8 in_min[6]; /* Register value */
++ u8 temp[2]; /* Register value */
++ u8 temp_high[2]; /* Register value */
++ u8 temp_low[2]; /* Register value */
++ u16 alarms; /* Register encoding, combined */
++ u8 vid; /* Register value combined */
++ u8 vrm;
++};
++
++
++static int adm1025_attach_adapter(struct i2c_adapter *adapter);
++static int adm1025_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int adm1025_detach_client(struct i2c_client *client);
++static void adm1025_update_client(struct i2c_client *client);
++static void adm1025_init_client(struct i2c_client *client);
++
++
++static void adm1025_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1025_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1025_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1025_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1025_vrm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int adm1025_id = 0;
++
++static struct i2c_driver adm1025_driver = {
++ .owner = THIS_MODULE,
++ .name = "ADM1025 sensor driver",
++ .id = I2C_DRIVERID_ADM1025,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = adm1025_attach_adapter,
++ .detach_client = adm1025_detach_client,
++};
++
++/* The /proc/sys entries */
++/* -- SENSORS SYSCTL START -- */
++
++#define ADM1025_SYSCTL_IN0 1000 /* Volts * 100 */
++#define ADM1025_SYSCTL_IN1 1001
++#define ADM1025_SYSCTL_IN2 1002
++#define ADM1025_SYSCTL_IN3 1003
++#define ADM1025_SYSCTL_IN4 1004
++#define ADM1025_SYSCTL_IN5 1005
++
++#define ADM1025_SYSCTL_RTEMP 1250 /* Degrees Celcius * 10 */
++#define ADM1025_SYSCTL_TEMP 1251
++
++#define ADM1025_SYSCTL_ALARMS 2001 /* bitvector */
++#define ADM1025_SYSCTL_VID 2003 /* Volts * 1000 */
++#define ADM1025_SYSCTL_VRM 2004
++
++#define ADM1025_ALARM_IN0 0x0001
++#define ADM1025_ALARM_IN1 0x0002
++#define ADM1025_ALARM_IN2 0x0004
++#define ADM1025_ALARM_IN3 0x0008
++#define ADM1025_ALARM_IN4 0x0100
++#define ADM1025_ALARM_IN5 0x0200
++#define ADM1025_ALARM_RTEMP 0x0020
++#define ADM1025_ALARM_TEMP 0x0010
++#define ADM1025_ALARM_RFAULT 0x4000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected ADM1025. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table adm1025_dir_table_template[] = {
++ {ADM1025_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_in},
++ {ADM1025_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_in},
++ {ADM1025_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_in},
++ {ADM1025_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_in},
++ {ADM1025_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_in},
++ {ADM1025_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_in},
++ {ADM1025_SYSCTL_RTEMP, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_temp},
++ {ADM1025_SYSCTL_TEMP, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_temp},
++ {ADM1025_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_alarms},
++ {ADM1025_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_vid},
++ {ADM1025_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1025_vrm},
++ {0}
++};
++
++static int adm1025_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, adm1025_detect);
++}
++
++static int adm1025_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct adm1025_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("adm1025.o: adm1025_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access adm1025_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct adm1025_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &adm1025_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ if (kind < 0) {
++ if ((i2c_smbus_read_byte_data(new_client,
++ ADM1025_REG_CONFIG) & 0x80) != 0x00
++ || (i2c_smbus_read_byte_data(new_client,
++ ADM1025_REG_STATUS1) & 0xC0) != 0x00
++ || (i2c_smbus_read_byte_data(new_client,
++ ADM1025_REG_STATUS2) & 0xBC) != 0x00)
++ goto ERROR1;
++ }
++
++ /* Determine the chip type. */
++ if (kind <= 0) {
++ u8 man_id, chip_id;
++
++ man_id = i2c_smbus_read_byte_data(new_client,
++ ADM1025_REG_COMPANY_ID);
++ chip_id = i2c_smbus_read_byte_data(new_client,
++ ADM1025_REG_DIE_REV);
++
++ if (man_id == 0x41) { /* Analog Devices */
++ if ((chip_id & 0xF0) == 0x20) /* ADM1025 */
++ kind = adm1025;
++ } else if (man_id == 0xA1) { /* Philips */
++ if (address != 0x2E
++ && (chip_id & 0xF0) == 0x20) /* NE1619 */
++ kind = ne1619;
++ }
++ }
++
++ if (kind <= 0) { /* Identification failed */
++ printk("adm1025.o: Unsupported chip.\n");
++ goto ERROR1;
++ }
++
++ if (kind == adm1025) {
++ type_name = "adm1025";
++ client_name = "ADM1025 chip";
++ } else if (kind == ne1619) {
++ type_name = "ne1619";
++ client_name = "NE1619 chip";
++ } else {
++#ifdef DEBUG
++ printk("adm1025.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = adm1025_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ adm1025_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the ADM1025 chip */
++ adm1025_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int adm1025_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct adm1025_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("adm1025.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++/* Called when we have found a new ADM1025. */
++static void adm1025_init_client(struct i2c_client *client)
++{
++ struct adm1025_data *data = client->data;
++ u8 reg;
++ int i;
++
++ data->vrm = 82;
++
++ /* Set high limits
++ Usually we avoid setting limits on driver init, but it happens
++ that the ADM1025 comes with stupid default limits (all registers
++ set to 0). In case the chip has not gone through any limit
++ setting yet, we better set the high limits to the max so that
++ no alarm triggers. */
++ for (i=0; i<6; i++) {
++ reg = i2c_smbus_read_byte_data(client,
++ ADM1025_REG_IN_MAX(i));
++ if (reg == 0)
++ i2c_smbus_write_byte_data(client,
++ ADM1025_REG_IN_MAX(i),
++ 0xFF);
++ }
++ for (i=0; i<2; i++) {
++ reg = i2c_smbus_read_byte_data(client,
++ ADM1025_REG_TEMP_HIGH(i));
++ if (reg == 0)
++ i2c_smbus_write_byte_data(client,
++ ADM1025_REG_TEMP_HIGH(i),
++ 0x7F);
++ }
++
++ /* Start monitoring */
++ reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
++ i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG, (reg|0x01)&0x7F);
++}
++
++static void adm1025_update_client(struct i2c_client *client)
++{
++ struct adm1025_data *data = client->data;
++ u8 nr;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > 2 * HZ)
++ || (jiffies < data->last_updated) || !data->valid) {
++#ifdef DEBUG
++ printk("Starting adm1025 update\n");
++#endif
++
++ /* Voltages */
++ for (nr = 0; nr < 6; nr++) {
++ data->in[nr] = i2c_smbus_read_byte_data(client, ADM1025_REG_IN(nr));
++ data->in_min[nr] = i2c_smbus_read_byte_data(client, ADM1025_REG_IN_MIN(nr));
++ data->in_max[nr] = i2c_smbus_read_byte_data(client, ADM1025_REG_IN_MAX(nr));
++ }
++
++ /* Temperatures */
++ for (nr = 0; nr < 2; nr++) {
++ data->temp[nr] = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP(nr));
++ data->temp_high[nr] = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP_HIGH(nr));
++ data->temp_low[nr] = i2c_smbus_read_byte_data(client, ADM1025_REG_TEMP_LOW(nr));
++ }
++
++ /* VID */
++ data->vid = (i2c_smbus_read_byte_data(client, ADM1025_REG_VID) & 0x0f)
++ + ((i2c_smbus_read_byte_data(client, ADM1025_REG_VID4) & 0x01) << 4);
++
++ /* Alarms */
++ data->alarms = (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS1) & 0x3f)
++ + ((i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS2) & 0x43) << 8);
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the data
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void adm1025_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ int scales[6] = { 250, 225, 330, 500, 1200, 330 };
++
++ struct adm1025_data *data = client->data;
++ int nr = ctl_name - ADM1025_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1025_update_client(client);
++ results[0] = (IN_FROM_REG(data->in_min[nr]) * scales[nr] + 96) / 192;
++ results[1] = (IN_FROM_REG(data->in_max[nr]) * scales[nr] + 96) / 192;
++ results[2] = (IN_FROM_REG(data->in[nr]) * scales[nr] + 96) / 192;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG((results[0] * 192 + scales[nr] / 2)
++ / scales[nr]);
++ i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG((results[1] * 192 + scales[nr] / 2)
++ / scales[nr]);
++ i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void adm1025_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1025_data *data = client->data;
++ int nr = ctl_name - ADM1025_SYSCTL_RTEMP;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1025_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_high[nr]);
++ results[1] = TEMP_FROM_REG(data->temp_low[nr]);
++ results[2] = TEMP_FROM_REG(data->temp[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_high[nr] = TEMP_TO_REG(results[0]);
++ i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(nr),
++ data->temp_high[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_low[nr] = TEMP_TO_REG(results[1]);
++ i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(nr),
++ data->temp_low[nr]);
++ }
++ }
++}
++
++void adm1025_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1025_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1025_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void adm1025_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1025_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1025_update_client(client);
++ results[0] = vid_from_reg(data->vid, data->vrm);
++ *nrels_mag = 1;
++ }
++}
++
++void adm1025_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1025_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1)
++ data->vrm = results[0];
++ }
++}
++
++static int __init sm_adm1025_init(void)
++{
++ printk("adm1025.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&adm1025_driver);
++}
++
++static void __exit sm_adm1025_exit(void)
++{
++ i2c_del_driver(&adm1025_driver);
++}
++
++
++
++MODULE_AUTHOR("Chen-Yuan Wu <gwu@esoft.com>"
++ " and Jean Delvare <khali@linux-fr.org>");
++MODULE_DESCRIPTION("ADM1025 driver");
++
++module_init(sm_adm1025_init);
++module_exit(sm_adm1025_exit);
+--- linux-old/drivers/sensors/adm1026.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/adm1026.c Mon Dec 13 20:18:44 2004
+@@ -0,0 +1,1745 @@
++/*
++ adm1026.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++
++ CHANGELOG
++
++ 2003-03-13 Initial development
++ 2003-05-07 First Release. Includes GPIO fixup and full
++ functionality.
++ 2003-05-18 Minor fixups and tweaks.
++ Print GPIO config after fixup.
++ Adjust fan MIN if DIV changes.
++ 2003-05-21 Fix printing of FAN/GPIO config
++ Fix silly bug in fan_div logic
++ Fix fan_min handling so that 0xff is 0 is 0xff
++ 2003-05-25 Fix more silly typos...
++ 2003-06-11 Change FAN_xx_REG macros to use different scaling
++ Most (all?) drivers assume two pulses per rev fans
++ and the old scaling was producing double the RPM's
++ Thanks to Jerome Hsiao @ Arima for pointing this out.
++ 2004-01-27 Remove use of temporary ID.
++ Define addresses as a range.
++*/
++
++#include <linux/version.h>
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++
++#ifndef I2C_DRIVERID_ADM1026
++#define I2C_DRIVERID_ADM1026 1048
++#endif
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x2c, 0x2e, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(adm1026);
++
++static int gpio_input[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
++ -1, -1, -1, -1, -1, -1, -1, -1 };
++static int gpio_output[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
++ -1, -1, -1, -1, -1, -1, -1, -1 };
++static int gpio_inverted[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
++ -1, -1, -1, -1, -1, -1, -1, -1 };
++static int gpio_normal[17] = { -1, -1, -1, -1, -1, -1, -1, -1, -1,
++ -1, -1, -1, -1, -1, -1, -1, -1 };
++static int gpio_fan[8] = { -1, -1, -1, -1, -1, -1, -1, -1 };
++MODULE_PARM(gpio_input,"1-17i");
++MODULE_PARM_DESC(gpio_input,"List of GPIO pins (0-16) to program as inputs");
++MODULE_PARM(gpio_output,"1-17i");
++MODULE_PARM_DESC(gpio_output,"List of GPIO pins (0-16) to program as outputs");
++MODULE_PARM(gpio_inverted,"1-17i");
++MODULE_PARM_DESC(gpio_inverted,"List of GPIO pins (0-16) to program as inverted");
++MODULE_PARM(gpio_normal,"1-17i");
++MODULE_PARM_DESC(gpio_normal,"List of GPIO pins (0-16) to program as normal/non-inverted");
++MODULE_PARM(gpio_fan,"1-8i");
++MODULE_PARM_DESC(gpio_fan,"List of GPIO pins (0-7) to program as fan tachs");
++
++/* Many ADM1026 constants specified below */
++
++/* The ADM1026 registers */
++#define ADM1026_REG_CONFIG1 (0x00)
++#define CFG1_MONITOR (0x01)
++#define CFG1_INT_ENABLE (0x02)
++#define CFG1_INT_CLEAR (0x04)
++#define CFG1_AIN8_9 (0x08)
++#define CFG1_THERM_HOT (0x10)
++#define CFG1_DAC_AFC (0x20)
++#define CFG1_PWM_AFC (0x40)
++#define CFG1_RESET (0x80)
++#define ADM1026_REG_CONFIG2 (0x01)
++/* CONFIG2 controls FAN0/GPIO0 through FAN7/GPIO7 */
++#define ADM1026_REG_CONFIG3 (0x07)
++#define CFG3_GPIO16_ENABLE (0x01)
++#define CFG3_CI_CLEAR (0x02)
++#define CFG3_VREF_250 (0x04)
++#define CFG3_GPIO16_DIR (0x40)
++#define CFG3_GPIO16_POL (0x80)
++#define ADM1026_REG_E2CONFIG (0x13)
++#define E2CFG_READ (0x01)
++#define E2CFG_WRITE (0x02)
++#define E2CFG_ERASE (0x04)
++#define E2CFG_ROM (0x08)
++#define E2CFG_CLK_EXT (0x80)
++
++/* There are 10 general analog inputs and 7 dedicated inputs
++ * They are:
++ * 0 - 9 = AIN0 - AIN9
++ * 10 = Vbat
++ * 11 = 3.3V Standby
++ * 12 = 3.3V Main
++ * 13 = +5V
++ * 14 = Vccp (CPU core voltage)
++ * 15 = +12V
++ * 16 = -12V
++ */
++static u16 REG_IN[] = {
++ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
++ 0x36, 0x37, 0x27, 0x29, 0x26, 0x2a,
++ 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
++ };
++static u16 REG_IN_MIN[] = {
++ 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d,
++ 0x5e, 0x5f, 0x6d, 0x49, 0x6b, 0x4a,
++ 0x4b, 0x4c, 0x4d, 0x4e, 0x4f
++ };
++static u16 REG_IN_MAX[] = {
++ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55,
++ 0x56, 0x57, 0x6c, 0x41, 0x6a, 0x42,
++ 0x43, 0x44, 0x45, 0x46, 0x47
++ };
++#define ADM1026_REG_IN(nr) (REG_IN[(nr)])
++#define ADM1026_REG_IN_MIN(nr) (REG_IN_MIN[(nr)])
++#define ADM1026_REG_IN_MAX(nr) (REG_IN_MAX[(nr)])
++
++/* Temperatures are:
++ * 0 - Internal
++ * 1 - External 1
++ * 2 - External 2
++ */
++static u16 REG_TEMP[] = { 0x1f, 0x28, 0x29 };
++static u16 REG_TEMP_MIN[] = { 0x69, 0x48, 0x49 };
++static u16 REG_TEMP_MAX[] = { 0x68, 0x40, 0x41 };
++static u16 REG_TEMP_TMIN[] = { 0x10, 0x11, 0x12 };
++static u16 REG_TEMP_THERM[] = { 0x0d, 0x0e, 0x0f };
++static u16 REG_TEMP_OFFSET[] = { 0x1e, 0x6e, 0x6f };
++#define ADM1026_REG_TEMP(nr) (REG_TEMP[(nr)])
++#define ADM1026_REG_TEMP_MIN(nr) (REG_TEMP_MIN[(nr)])
++#define ADM1026_REG_TEMP_MAX(nr) (REG_TEMP_MAX[(nr)])
++#define ADM1026_REG_TEMP_TMIN(nr) (REG_TEMP_TMIN[(nr)])
++#define ADM1026_REG_TEMP_THERM(nr) (REG_TEMP_THERM[(nr)])
++#define ADM1026_REG_TEMP_OFFSET(nr) (REG_TEMP_OFFSET[(nr)])
++
++#define ADM1026_REG_FAN(nr) (0x38 + (nr))
++#define ADM1026_REG_FAN_MIN(nr) (0x60 + (nr))
++#define ADM1026_REG_FAN_DIV_0_3 (0x02)
++#define ADM1026_REG_FAN_DIV_4_7 (0x03)
++
++#define ADM1026_REG_DAC (0x04)
++#define ADM1026_REG_PWM (0x05)
++
++#define ADM1026_REG_GPIO_CFG_0_3 (0x08)
++#define ADM1026_REG_GPIO_CFG_4_7 (0x09)
++#define ADM1026_REG_GPIO_CFG_8_11 (0x0a)
++#define ADM1026_REG_GPIO_CFG_12_15 (0x0b)
++/* CFG_16 in REG_CFG3 */
++#define ADM1026_REG_GPIO_STATUS_0_7 (0x24)
++#define ADM1026_REG_GPIO_STATUS_8_15 (0x25)
++/* STATUS_16 in REG_STATUS4 */
++#define ADM1026_REG_GPIO_MASK_0_7 (0x1c)
++#define ADM1026_REG_GPIO_MASK_8_15 (0x1d)
++/* MASK_16 in REG_MASK4 */
++
++#define ADM1026_REG_COMPANY 0x16
++#define ADM1026_REG_VERSTEP 0x17
++/* These are the recognized values for the above regs */
++#define ADM1026_COMPANY_ANALOG_DEV 0x41
++#define ADM1026_VERSTEP_GENERIC 0x40
++#define ADM1026_VERSTEP_ADM1026 0x44
++
++#define ADM1026_REG_MASK1 0x18
++#define ADM1026_REG_MASK2 0x19
++#define ADM1026_REG_MASK3 0x1a
++#define ADM1026_REG_MASK4 0x1b
++
++#define ADM1026_REG_STATUS1 0x20
++#define ADM1026_REG_STATUS2 0x21
++#define ADM1026_REG_STATUS3 0x22
++#define ADM1026_REG_STATUS4 0x23
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ */
++
++/* IN are scaled acording to built-in resistors. These are the
++ * voltages corresponding to 3/4 of full scale (192 or 0xc0)
++ * NOTE: The -12V input needs an additional factor to account
++ * for the Vref pullup resistor.
++ * NEG12_OFFSET = SCALE * Vref / V-192 - Vref
++ * = 13875 * 2.50 / 1.875 - 2500
++ * = 16000
++ */
++#if 1
++/* The values in this table are based on Table II, page 15 of the
++ * datasheet.
++ */
++static int adm1026_scaling[] = { /* .001 Volts */
++ 2250, 2250, 2250, 2250, 2250, 2250,
++ 1875, 1875, 1875, 1875, 3000, 3330,
++ 3330, 4995, 2250, 12000, 13875
++ };
++#define NEG12_OFFSET 16000
++#else
++/* The values in this table are based on the resistors in
++ * Figure 5 on page 16. But the 3.3V inputs are not in
++ * the figure and the values for the 5V input are wrong.
++ * For 5V, I'm guessing that R2 at 55.2k is right, but
++ * the total resistance should be 1400 or 1449 like the
++ * other inputs. Using 1449, gives 4.922V at 192.
++ */
++static int adm1026_scaling[] = { /* .001 Volts */
++ 2249, 2249, 2249, 2249, 2249, 2249,
++ 1875, 1875, 1875, 1875, 3329, 3329,
++ 3329, 4922, 2249, 11969, 13889
++ };
++#define NEG12_OFFSET 16019
++#endif
++
++#define SCALE(val,from,to) (((val)*(to) + ((from)/2))/(from))
++#define INS_TO_REG(n,val) (SENSORS_LIMIT(SCALE(val,adm1026_scaling[n],192),0,255))
++#if 0 /* If we have extended A/D bits */
++#define INSEXT_FROM_REG(n,val,ext) (SCALE((val)*4 + (ext),192*4,adm1026_scaling[n]))
++#define INS_FROM_REG(n,val) (INSEXT_FROM_REG(n,val,0))
++#else
++#define INS_FROM_REG(n,val) (SCALE(val,192,adm1026_scaling[n]))
++#endif
++
++/* FAN speed is measured using 22.5kHz clock and counts for 2 pulses
++ * and we assume a 2 pulse-per-rev fan tach signal
++ * 22500 kHz * 60 (sec/min) * 2 (pulse) / 2 (pulse/rev) == 1350000
++ */
++#define FAN_TO_REG(val,div) ((val)<=0 ? 0xff : SENSORS_LIMIT(1350000/((val)*(div)),1,254))
++#define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==0xff ? 0 : 1350000/((val)*(div)))
++#define DIV_FROM_REG(val) (1<<(val))
++#define DIV_TO_REG(val) ((val)>=8 ? 3 : (val)>=4 ? 2 : (val)>=2 ? 1 : 0)
++
++/* Temperature is reported in 1 degC increments */
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(val,-127,127))
++#define TEMP_FROM_REG(val) (val)
++#define OFFSET_TO_REG(val) (SENSORS_LIMIT(val,-127,127))
++#define OFFSET_FROM_REG(val) (val)
++
++#define PWM_TO_REG(val) (SENSORS_LIMIT(val,0,255))
++#define PWM_FROM_REG(val) (val)
++
++/* Analog output is a voltage, but it's used like a PWM
++ * Seems like this should be scaled, but to be consistent
++ * with other drivers, we do it this way.
++ */
++#define DAC_TO_REG(val) (SENSORS_LIMIT(val,0,255))
++#define DAC_FROM_REG(val) (val)
++
++/* sensors_vid.h defines vid_from_reg() */
++#define VID_FROM_REG(val,vrm) (vid_from_reg(val,vrm))
++
++#define ALARMS_FROM_REG(val) (val)
++
++/* Unlike some other drivers we DO NOT set initial limits. Use
++ * the config file to set limits.
++ */
++
++/* Typically used with systems using a v9.1 VRM spec ? */
++#define ADM1026_INIT_VRM 91
++#define ADM1026_INIT_VID -1
++
++/* Chip sampling rates
++ *
++ * Some sensors are not updated more frequently than once per second
++ * so it doesn't make sense to read them more often than that.
++ * We cache the results and return the saved data if the driver
++ * is called again before a second has elapsed.
++ *
++ * Also, there is significant configuration data for this chip
++ * So, we keep the config data up to date in the cache
++ * when it is written and only sample it once every 5 *minutes*
++ */
++#define ADM1026_DATA_INTERVAL (1 * HZ)
++#define ADM1026_CONFIG_INTERVAL (5 * 60 * HZ)
++
++/* We allow for multiple chips in a single system.
++ *
++ * For each registered ADM1026, we need to keep state information
++ * at client->data. The adm1026_data structure is dynamically
++ * allocated, when a new client structure is allocated. */
++
++struct adm1026_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ int valid; /* !=0 if following fields are valid */
++ unsigned long last_reading; /* In jiffies */
++ unsigned long last_config; /* In jiffies */
++
++ u8 in[17]; /* Register value */
++ u8 in_max[17]; /* Register value */
++ u8 in_min[17]; /* Register value */
++ s8 temp[3]; /* Register value */
++ s8 temp_min[3]; /* Register value */
++ s8 temp_max[3]; /* Register value */
++ s8 temp_tmin[3]; /* Register value */
++ s8 temp_therm[3]; /* Register value */
++ s8 temp_offset[3]; /* Register value */
++ u8 fan[8]; /* Register value */
++ u8 fan_min[8]; /* Register value */
++ u8 fan_div[8]; /* Decoded value */
++ u8 pwm; /* Register value */
++ u8 analog_out; /* Register value */
++ int vid; /* Decoded value */
++ u8 vrm; /* VRM version */
++ long alarms; /* Register encoding, combined */
++ long alarm_mask; /* Register encoding, combined */
++ long gpio; /* Register encoding, combined */
++ long gpio_mask; /* Register encoding, combined */
++ u8 gpio_config[17]; /* Decoded value */
++ u8 config1; /* Register value */
++ u8 config2; /* Register value */
++ u8 config3; /* Register value */
++};
++
++static int adm1026_attach_adapter(struct i2c_adapter *adapter);
++static int adm1026_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int adm1026_detach_client(struct i2c_client *client);
++
++static int adm1026_read_value(struct i2c_client *client, u8 register);
++static int adm1026_write_value(struct i2c_client *client, u8 register, int value);
++static void adm1026_print_gpio(struct i2c_client *client);
++static void adm1026_fixup_gpio(struct i2c_client *client);
++static void adm1026_update_client(struct i2c_client *client);
++static void adm1026_init_client(struct i2c_client *client);
++
++
++static void adm1026_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++static void adm1026_in16(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++static void adm1026_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_fixup_fan_min(struct i2c_client *client,
++ int fan, int old_div);
++static void adm1026_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_temp_offset(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_temp_tmin(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_temp_therm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_vrm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_alarm_mask(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_gpio(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_gpio_mask(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_analog_out(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1026_afc(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static struct i2c_driver adm1026_driver = {
++ .owner = THIS_MODULE,
++ .name = "ADM1026 compatible sensor driver",
++ .id = I2C_DRIVERID_ADM1026,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = &adm1026_attach_adapter,
++ .detach_client = &adm1026_detach_client,
++};
++
++/* Unique ID assigned to each ADM1026 detected */
++static int adm1026_id = 0;
++
++/* -- SENSORS SYSCTL START -- */
++#define ADM1026_SYSCTL_FAN0 1000
++#define ADM1026_SYSCTL_FAN1 1001
++#define ADM1026_SYSCTL_FAN2 1002
++#define ADM1026_SYSCTL_FAN3 1003
++#define ADM1026_SYSCTL_FAN4 1004
++#define ADM1026_SYSCTL_FAN5 1005
++#define ADM1026_SYSCTL_FAN6 1006
++#define ADM1026_SYSCTL_FAN7 1007
++#define ADM1026_SYSCTL_FAN_DIV 1008
++#define ADM1026_SYSCTL_GPIO 1009
++#define ADM1026_SYSCTL_GPIO_MASK 1010
++#define ADM1026_SYSCTL_ALARMS 1011
++#define ADM1026_SYSCTL_ALARM_MASK 1012
++#define ADM1026_SYSCTL_IN0 1013
++#define ADM1026_SYSCTL_IN1 1014
++#define ADM1026_SYSCTL_IN2 1015
++#define ADM1026_SYSCTL_IN3 1016
++#define ADM1026_SYSCTL_IN4 1017
++#define ADM1026_SYSCTL_IN5 1018
++#define ADM1026_SYSCTL_IN6 1019
++#define ADM1026_SYSCTL_IN7 1020
++#define ADM1026_SYSCTL_IN8 1021
++#define ADM1026_SYSCTL_IN9 1022
++#define ADM1026_SYSCTL_IN10 1023
++#define ADM1026_SYSCTL_IN11 1024
++#define ADM1026_SYSCTL_IN12 1025
++#define ADM1026_SYSCTL_IN13 1026
++#define ADM1026_SYSCTL_IN14 1027
++#define ADM1026_SYSCTL_IN15 1028
++#define ADM1026_SYSCTL_IN16 1029
++#define ADM1026_SYSCTL_PWM 1030
++#define ADM1026_SYSCTL_ANALOG_OUT 1031
++#define ADM1026_SYSCTL_AFC 1032
++#define ADM1026_SYSCTL_TEMP1 1033
++#define ADM1026_SYSCTL_TEMP2 1034
++#define ADM1026_SYSCTL_TEMP3 1035
++#define ADM1026_SYSCTL_TEMP_OFFSET1 1036
++#define ADM1026_SYSCTL_TEMP_OFFSET2 1037
++#define ADM1026_SYSCTL_TEMP_OFFSET3 1038
++#define ADM1026_SYSCTL_TEMP_THERM1 1039
++#define ADM1026_SYSCTL_TEMP_THERM2 1040
++#define ADM1026_SYSCTL_TEMP_THERM3 1041
++#define ADM1026_SYSCTL_TEMP_TMIN1 1042
++#define ADM1026_SYSCTL_TEMP_TMIN2 1043
++#define ADM1026_SYSCTL_TEMP_TMIN3 1044
++#define ADM1026_SYSCTL_VID 1045
++#define ADM1026_SYSCTL_VRM 1046
++
++#define ADM1026_ALARM_TEMP2 (1L << 0)
++#define ADM1026_ALARM_TEMP3 (1L << 1)
++#define ADM1026_ALARM_IN9 (1L << 1)
++#define ADM1026_ALARM_IN11 (1L << 2)
++#define ADM1026_ALARM_IN12 (1L << 3)
++#define ADM1026_ALARM_IN13 (1L << 4)
++#define ADM1026_ALARM_IN14 (1L << 5)
++#define ADM1026_ALARM_IN15 (1L << 6)
++#define ADM1026_ALARM_IN16 (1L << 7)
++#define ADM1026_ALARM_IN0 (1L << 8)
++#define ADM1026_ALARM_IN1 (1L << 9)
++#define ADM1026_ALARM_IN2 (1L << 10)
++#define ADM1026_ALARM_IN3 (1L << 11)
++#define ADM1026_ALARM_IN4 (1L << 12)
++#define ADM1026_ALARM_IN5 (1L << 13)
++#define ADM1026_ALARM_IN6 (1L << 14)
++#define ADM1026_ALARM_IN7 (1L << 15)
++#define ADM1026_ALARM_FAN0 (1L << 16)
++#define ADM1026_ALARM_FAN1 (1L << 17)
++#define ADM1026_ALARM_FAN2 (1L << 18)
++#define ADM1026_ALARM_FAN3 (1L << 19)
++#define ADM1026_ALARM_FAN4 (1L << 20)
++#define ADM1026_ALARM_FAN5 (1L << 21)
++#define ADM1026_ALARM_FAN6 (1L << 22)
++#define ADM1026_ALARM_FAN7 (1L << 23)
++#define ADM1026_ALARM_TEMP1 (1L << 24)
++#define ADM1026_ALARM_IN10 (1L << 25)
++#define ADM1026_ALARM_IN8 (1L << 26)
++#define ADM1026_ALARM_THERM (1L << 27)
++#define ADM1026_ALARM_AFC_FAN (1L << 28)
++#define ADM1026_ALARM_UNUSED (1L << 29)
++#define ADM1026_ALARM_CI (1L << 30)
++/* -- SENSORS SYSCTL END -- */
++
++/* The /proc/sys entries */
++/* These files are created for each detected ADM1026. This is just a template;
++ * The actual list is built from this and additional per-chip
++ * custom lists below. Note the XXX_LEN macros. These must be
++ * compile time constants because they will be used to allocate
++ * space for the final template passed to i2c_register_entry.
++ * We depend on the ability of GCC to evaluate expressions at
++ * compile time to turn these expressions into compile time
++ * constants, but this can generate a warning.
++ */
++static ctl_table adm1026_common[] = {
++ {ADM1026_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN9, "in9", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN10, "in10", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN11, "in11", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN12, "in12", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN13, "in13", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN14, "in14", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN15, "in15", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in},
++ {ADM1026_SYSCTL_IN16, "in16", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_in16},
++
++ {ADM1026_SYSCTL_FAN0, "fan0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_fan},
++ {ADM1026_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_fan},
++ {ADM1026_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_fan},
++ {ADM1026_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_fan},
++ {ADM1026_SYSCTL_FAN4, "fan4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_fan},
++ {ADM1026_SYSCTL_FAN5, "fan5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_fan},
++ {ADM1026_SYSCTL_FAN6, "fan6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_fan},
++ {ADM1026_SYSCTL_FAN7, "fan7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_fan},
++ {ADM1026_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_fan_div},
++
++ {ADM1026_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_temp},
++ {ADM1026_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_temp},
++ {ADM1026_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_temp},
++ {ADM1026_SYSCTL_TEMP_OFFSET1, "temp1_offset", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_temp_offset},
++ {ADM1026_SYSCTL_TEMP_OFFSET2, "temp2_offset", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_temp_offset},
++ {ADM1026_SYSCTL_TEMP_OFFSET3, "temp3_offset", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_temp_offset},
++ {ADM1026_SYSCTL_TEMP_TMIN1, "temp1_tmin", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_temp_tmin},
++ {ADM1026_SYSCTL_TEMP_TMIN2, "temp2_tmin", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_temp_tmin},
++ {ADM1026_SYSCTL_TEMP_TMIN3, "temp3_tmin", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_temp_tmin},
++ {ADM1026_SYSCTL_TEMP_THERM1, "temp1_therm", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_temp_therm},
++ {ADM1026_SYSCTL_TEMP_THERM2, "temp2_therm", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_temp_therm},
++ {ADM1026_SYSCTL_TEMP_THERM3, "temp3_therm", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_temp_therm},
++
++ {ADM1026_SYSCTL_VID, "vid", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_vid},
++ {ADM1026_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_vrm},
++
++ {ADM1026_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_alarms},
++ {ADM1026_SYSCTL_ALARM_MASK, "alarm_mask", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_alarm_mask},
++
++ {ADM1026_SYSCTL_GPIO, "gpio", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_gpio},
++ {ADM1026_SYSCTL_GPIO_MASK, "gpio_mask", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_gpio_mask},
++
++ {ADM1026_SYSCTL_PWM, "pwm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_pwm},
++ {ADM1026_SYSCTL_ANALOG_OUT, "analog_out", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1026_analog_out},
++ {ADM1026_SYSCTL_AFC, "afc", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm1026_afc},
++
++ {0}
++};
++#define CTLTBL_COMMON (sizeof(adm1026_common)/sizeof(adm1026_common[0]))
++
++#define MAX2(a,b) ((a)>(b)?(a):(b))
++#define MAX3(a,b,c) ((a)>(b)?MAX2((a),(c)):MAX2((b),(c)))
++#define MAX4(a,b,c,d) ((a)>(b)?MAX3((a),(c),(d)):MAX3((b),(c),(d)))
++
++#define CTLTBL_MAX (CTLTBL_COMMON)
++
++/* This function is called when:
++ * the module is loaded
++ * a new adapter is loaded
++ */
++int adm1026_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, adm1026_detect);
++}
++
++/* This function is called by i2c_detect */
++int adm1026_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ int company, verstep ;
++ struct i2c_client *new_client;
++ struct adm1026_data *data;
++ int err = 0;
++ const char *type_name = "";
++ struct ctl_table template[CTLTBL_MAX] ;
++ struct ctl_table * template_next = template ;
++
++ if (i2c_is_isa_adapter(adapter)) {
++ /* This chip has no ISA interface */
++ goto ERROR0 ;
++ }
++
++ if (!i2c_check_functionality(adapter,
++ I2C_FUNC_SMBUS_BYTE_DATA)) {
++ /* We need to be able to do byte I/O */
++ goto ERROR0 ;
++ }
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access adm1026_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct adm1026_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &adm1026_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ company = adm1026_read_value(new_client, ADM1026_REG_COMPANY);
++ verstep = adm1026_read_value(new_client, ADM1026_REG_VERSTEP);
++
++#ifdef DEBUG
++ printk("adm1026: Detecting device at %d,0x%02x with"
++ " COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
++ i2c_adapter_id(new_client->adapter), new_client->addr,
++ company, verstep
++ );
++#endif
++
++ /* If auto-detecting, Determine the chip type. */
++ if (kind <= 0) {
++#ifdef DEBUG
++ printk("adm1026: Autodetecting device at %d,0x%02x ...\n",
++ i2c_adapter_id(adapter), address );
++#endif
++ if( company == ADM1026_COMPANY_ANALOG_DEV
++ && verstep == ADM1026_VERSTEP_ADM1026 ) {
++ kind = adm1026 ;
++ } else if( company == ADM1026_COMPANY_ANALOG_DEV
++ && (verstep & 0xf0) == ADM1026_VERSTEP_GENERIC ) {
++ printk("adm1026: Unrecgonized stepping 0x%02x"
++ " Defaulting to ADM1026.\n", verstep );
++ kind = adm1026 ;
++ } else if( (verstep & 0xf0) == ADM1026_VERSTEP_GENERIC ) {
++ printk("adm1026: Found version/stepping 0x%02x"
++ " Assuming generic ADM1026.\n", verstep );
++ kind = any_chip ;
++ } else {
++#ifdef DEBUG
++ printk("adm1026: Autodetection failed\n");
++#endif
++ /* Not an ADM1026 ... */
++ if( kind == 0 ) { /* User used force=x,y */
++ printk("adm1026: Generic ADM1026 Version 6 not"
++ " found at %d,0x%02x. Try force_adm1026.\n",
++ i2c_adapter_id(adapter), address );
++ }
++ err = 0 ;
++ goto ERROR1;
++ }
++ }
++
++ /* Fill in the chip specific driver values */
++ switch (kind) {
++ case any_chip :
++ type_name = "adm1026";
++ strcpy(new_client->name, "Generic ADM1026");
++ template_next = template ; /* None used */
++ break ;
++ case adm1026 :
++ type_name = "adm1026";
++ strcpy(new_client->name, "Analog Devices ADM1026");
++ template_next = template ;
++ break ;
++#if 0
++ /* Example of another adm1026 "compatible" device */
++ case adx1000 :
++ type_name = "adx1000";
++ strcpy(new_client->name, "Compatible ADX1000");
++ memcpy( template, adx_specific, sizeof(adx_specific) );
++ template_next = template + CTLTBL_ADX1000 ;
++ break ;
++#endif
++ default :
++ printk("adm1026: Internal error, invalid kind (%d)!", kind);
++ err = -EFAULT ;
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields */
++ new_client->id = adm1026_id++;
++ printk("adm1026(%d): Assigning ID %d to %s at %d,0x%02x\n",
++ new_client->id, new_client->id, new_client->name,
++ i2c_adapter_id(new_client->adapter),
++ new_client->addr
++ );
++
++ /* Housekeeping values */
++ data->type = kind;
++ data->valid = 0;
++
++ /* Set the VRM version */
++ data->vrm = ADM1026_INIT_VRM ;
++ data->vid = ADM1026_INIT_VID ;
++
++ init_MUTEX(&data->update_lock);
++
++ /* Initialize the ADM1026 chip */
++ adm1026_init_client(new_client);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR1;
++
++ /* Finish out the template */
++ memcpy(template_next, adm1026_common, sizeof(adm1026_common));
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ template)) < 0) {
++ err = i;
++ goto ERROR2;
++ }
++ data->sysctl_id = i;
++
++ return 0;
++
++ /* Error out and cleanup code */
++ ERROR2:
++ i2c_detach_client(new_client);
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++int adm1026_detach_client(struct i2c_client *client)
++{
++ int err;
++ int id ;
++
++ id = client->id;
++ i2c_deregister_entry(((struct adm1026_data *)(client->data))->sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk("adm1026(%d): Client deregistration failed,"
++ " client not detached.\n", id );
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++int adm1026_read_value(struct i2c_client *client, u8 reg)
++{
++ int res;
++
++ if( reg < 0x80 ) {
++ /* "RAM" locations */
++ res = i2c_smbus_read_byte_data(client, reg) & 0xff ;
++ } else {
++ /* EEPROM, do nothing */
++ res = 0 ;
++ }
++
++ return res ;
++}
++
++int adm1026_write_value(struct i2c_client *client, u8 reg, int value)
++{
++ int res ;
++
++ if( reg < 0x80 ) {
++ /* "RAM" locations */
++ res = i2c_smbus_write_byte_data(client, reg, value);
++ } else {
++ /* EEPROM, do nothing */
++ res = 0 ;
++ }
++
++ return res ;
++}
++
++/* Called when we have found a new ADM1026. */
++void adm1026_init_client(struct i2c_client *client)
++{
++ int value ;
++ int i;
++ struct adm1026_data *data = client->data;
++
++#ifdef DEBUG
++ printk("adm1026(%d): Initializing device\n", client->id);
++#endif
++
++ /* Read chip config */
++ data->config1 = adm1026_read_value(client, ADM1026_REG_CONFIG1);
++ data->config2 = adm1026_read_value(client, ADM1026_REG_CONFIG2);
++ data->config3 = adm1026_read_value(client, ADM1026_REG_CONFIG3);
++
++ /* Inform user of chip config */
++#ifdef DEBUG
++ printk("adm1026(%d): ADM1026_REG_CONFIG1 is: 0x%02x\n",
++ client->id, data->config1 );
++#endif
++ if( (data->config1 & CFG1_MONITOR) == 0 ) {
++ printk("adm1026(%d): Monitoring not currently enabled.\n",
++ client->id );
++ }
++ if( data->config1 & CFG1_INT_ENABLE ) {
++ printk("adm1026(%d): SMBALERT interrupts are enabled.\n",
++ client->id );
++ }
++ if( data->config1 & CFG1_AIN8_9 ) {
++ printk("adm1026(%d): in8 and in9 enabled. temp3 disabled.\n",
++ client->id );
++ } else {
++ printk("adm1026(%d): temp3 enabled. in8 and in9 disabled.\n",
++ client->id );
++ }
++ if( data->config1 & CFG1_THERM_HOT ) {
++ printk("adm1026(%d): Automatic THERM, PWM, and temp limits enabled.\n",
++ client->id );
++ }
++
++ value = data->config3 ;
++ if( data->config3 & CFG3_GPIO16_ENABLE ) {
++ printk("adm1026(%d): GPIO16 enabled. THERM pin disabled.\n",
++ client->id );
++ } else {
++ printk("adm1026(%d): THERM pin enabled. GPIO16 disabled.\n",
++ client->id );
++ }
++ if( data->config3 & CFG3_VREF_250 ) {
++ printk("adm1026(%d): Vref is 2.50 Volts.\n", client->id );
++ } else {
++ printk("adm1026(%d): Vref is 1.82 Volts.\n", client->id );
++ }
++
++ /* Read and pick apart the existing GPIO configuration */
++ value = 0 ;
++ for( i = 0 ; i <= 15 ; ++i ) {
++ if( (i & 0x03) == 0 ) {
++ value = adm1026_read_value(client,
++ ADM1026_REG_GPIO_CFG_0_3 + i/4 );
++ }
++ data->gpio_config[i] = value & 0x03 ;
++ value >>= 2 ;
++ }
++ data->gpio_config[16] = (data->config3 >> 6) & 0x03 ;
++
++ /* ... and then print it */
++ adm1026_print_gpio(client);
++
++ /* If the user asks us to reprogram the GPIO config, then
++ * do it now. But only if this is the first ADM1026.
++ */
++ if( client->id == 0
++ && (gpio_input[0] != -1 || gpio_output[0] != -1
++ || gpio_inverted[0] != -1 || gpio_normal[0] != -1
++ || gpio_fan[0] != -1 ) ) {
++ adm1026_fixup_gpio(client);
++ }
++
++ /* WE INTENTIONALLY make no changes to the limits,
++ * offsets, pwms and fans. If they were
++ * configured, we don't want to mess with them.
++ * If they weren't, the default is generally safe
++ * and will suffice until 'sensors -s' can be run.
++ */
++
++ /* Start monitoring */
++ value = adm1026_read_value(client, ADM1026_REG_CONFIG1);
++
++ /* Set MONITOR, clear interrupt acknowledge and s/w reset */
++ value = (value | CFG1_MONITOR) & (~CFG1_INT_CLEAR & ~CFG1_RESET) ;
++#ifdef DEBUG
++ printk("adm1026(%d): Setting CONFIG to: 0x%02x\n", client->id, value );
++#endif
++ data->config1 = value ;
++ adm1026_write_value(client, ADM1026_REG_CONFIG1, value);
++
++}
++
++void adm1026_print_gpio(struct i2c_client *client)
++{
++ struct adm1026_data *data = client->data;
++ int i ;
++
++ printk("adm1026(%d): GPIO config is:\nadm1026(%d):",
++ client->id, client->id );
++ for( i = 0 ; i <= 7 ; ++i ) {
++ if( data->config2 & (1 << i) ) {
++ printk( " %sGP%s%d",
++ data->gpio_config[i] & 0x02 ? "" : "!",
++ data->gpio_config[i] & 0x01 ? "OUT" : "IN",
++ i );
++ } else {
++ printk( " FAN%d", i );
++ }
++ }
++ printk( "\nadm1026(%d):", client->id );
++ for( i = 8 ; i <= 15 ; ++i ) {
++ printk( " %sGP%s%d",
++ data->gpio_config[i] & 0x02 ? "" : "!",
++ data->gpio_config[i] & 0x01 ? "OUT" : "IN",
++ i );
++ }
++ if( data->config3 & CFG3_GPIO16_ENABLE ) {
++ printk( " %sGP%s16\n",
++ data->gpio_config[16] & 0x02 ? "" : "!",
++ data->gpio_config[16] & 0x01 ? "OUT" : "IN" );
++ } else {
++ /* GPIO16 is THERM */
++ printk( " THERM\n" );
++ }
++}
++
++void adm1026_fixup_gpio(struct i2c_client *client)
++{
++ struct adm1026_data *data = client->data;
++ int i ;
++ int value ;
++
++ /* Make the changes requested. */
++ /* We may need to unlock/stop monitoring or soft-reset the
++ * chip before we can make changes. This hasn't been
++ * tested much. FIXME
++ */
++
++ /* Make outputs */
++ for( i = 0 ; i <= 16 ; ++i ) {
++ if( gpio_output[i] >= 0 && gpio_output[i] <= 16 ) {
++ data->gpio_config[gpio_output[i]] |= 0x01 ;
++ }
++ /* if GPIO0-7 is output, it isn't a FAN tach */
++ if( gpio_output[i] >= 0 && gpio_output[i] <= 7 ) {
++ data->config2 |= 1 << gpio_output[i] ;
++ }
++ }
++
++ /* Input overrides output */
++ for( i = 0 ; i <= 16 ; ++i ) {
++ if( gpio_input[i] >= 0 && gpio_input[i] <= 16 ) {
++ data->gpio_config[gpio_input[i]] &= ~ 0x01 ;
++ }
++ /* if GPIO0-7 is input, it isn't a FAN tach */
++ if( gpio_input[i] >= 0 && gpio_input[i] <= 7 ) {
++ data->config2 |= 1 << gpio_input[i] ;
++ }
++ }
++
++ /* Inverted */
++ for( i = 0 ; i <= 16 ; ++i ) {
++ if( gpio_inverted[i] >= 0 && gpio_inverted[i] <= 16 ) {
++ data->gpio_config[gpio_inverted[i]] &= ~ 0x02 ;
++ }
++ }
++
++ /* Normal overrides inverted */
++ for( i = 0 ; i <= 16 ; ++i ) {
++ if( gpio_normal[i] >= 0 && gpio_normal[i] <= 16 ) {
++ data->gpio_config[gpio_normal[i]] |= 0x02 ;
++ }
++ }
++
++ /* Fan overrides input and output */
++ for( i = 0 ; i <= 7 ; ++i ) {
++ if( gpio_fan[i] >= 0 && gpio_fan[i] <= 7 ) {
++ data->config2 &= ~( 1 << gpio_fan[i] );
++ }
++ }
++
++ /* Write new configs to registers */
++ adm1026_write_value(client, ADM1026_REG_CONFIG2, data->config2);
++ data->config3 = (data->config3 & 0x3f)
++ | ((data->gpio_config[16] & 0x03) << 6) ;
++ adm1026_write_value(client, ADM1026_REG_CONFIG3, data->config3);
++ for( i = 15, value = 0 ; i >= 0 ; --i ) {
++ value <<= 2 ;
++ value |= data->gpio_config[i] & 0x03 ;
++ if( (i & 0x03) == 0 ) {
++ adm1026_write_value(client,
++ ADM1026_REG_GPIO_CFG_0_3 + i/4,
++ value );
++ value = 0 ;
++ }
++ }
++
++ /* Print the new config */
++ adm1026_print_gpio(client);
++}
++
++void adm1026_update_client(struct i2c_client *client)
++{
++ struct adm1026_data *data = client->data;
++ int i;
++ long value, alarms, gpio ;
++
++ down(&data->update_lock);
++
++ if (!data->valid
++ || (jiffies - data->last_reading > ADM1026_DATA_INTERVAL )) {
++ /* Things that change quickly */
++
++#ifdef DEBUG
++ printk("adm1026(%d): Reading sensor values\n", client->id);
++#endif
++ for (i = 0 ; i <= 16 ; ++i) {
++ data->in[i] =
++ adm1026_read_value(client, ADM1026_REG_IN(i));
++ }
++
++ for (i = 0 ; i <= 7 ; ++i) {
++ data->fan[i] =
++ adm1026_read_value(client, ADM1026_REG_FAN(i));
++ }
++
++ for (i = 0 ; i <= 2 ; ++i) {
++ /* NOTE: temp[] is s8 and we assume 2's complement
++ * "conversion" in the assignment */
++ data->temp[i] =
++ adm1026_read_value(client, ADM1026_REG_TEMP(i));
++ }
++
++ data->pwm = adm1026_read_value(client, ADM1026_REG_PWM);
++ data->analog_out = adm1026_read_value(client, ADM1026_REG_DAC);
++
++ /* GPIO16 is MSbit of alarms, move it to gpio */
++ alarms = adm1026_read_value(client, ADM1026_REG_STATUS4);
++ gpio = alarms & 0x80 ? 0x0100 : 0 ; /* GPIO16 */
++ alarms &= 0x7f ;
++ alarms <<= 8 ;
++ alarms |= adm1026_read_value(client, ADM1026_REG_STATUS3);
++ alarms <<= 8 ;
++ alarms |= adm1026_read_value(client, ADM1026_REG_STATUS2);
++ alarms <<= 8 ;
++ alarms |= adm1026_read_value(client, ADM1026_REG_STATUS1);
++ data->alarms = alarms ;
++
++ /* Read the GPIO values */
++ gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_STATUS_8_15);
++ gpio <<= 8 ;
++ gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_STATUS_0_7);
++ data->gpio = gpio ;
++
++ data->last_reading = jiffies ;
++ }; /* last_reading */
++
++ if (!data->valid
++ || (jiffies - data->last_config > ADM1026_CONFIG_INTERVAL) ) {
++ /* Things that don't change often */
++
++#ifdef DEBUG
++ printk("adm1026(%d): Reading config values\n", client->id);
++#endif
++ for (i = 0 ; i <= 16 ; ++i) {
++ data->in_min[i] =
++ adm1026_read_value(client, ADM1026_REG_IN_MIN(i));
++ data->in_max[i] =
++ adm1026_read_value(client, ADM1026_REG_IN_MAX(i));
++ }
++
++ value = adm1026_read_value(client, ADM1026_REG_FAN_DIV_0_3)
++ | (adm1026_read_value(client, ADM1026_REG_FAN_DIV_4_7) << 8);
++ for (i = 0 ; i <= 7 ; ++i) {
++ data->fan_min[i] =
++ adm1026_read_value(client, ADM1026_REG_FAN_MIN(i));
++ data->fan_div[i] = DIV_FROM_REG(value & 0x03);
++ value >>= 2 ;
++ }
++
++ for (i = 0; i <= 2; ++i) {
++ /* NOTE: temp_xxx[] are s8 and we assume 2's complement
++ * "conversion" in the assignment */
++ data->temp_min[i] =
++ adm1026_read_value(client, ADM1026_REG_TEMP_MIN(i));
++ data->temp_max[i] =
++ adm1026_read_value(client, ADM1026_REG_TEMP_MAX(i));
++ data->temp_tmin[i] =
++ adm1026_read_value(client, ADM1026_REG_TEMP_TMIN(i));
++ data->temp_therm[i] =
++ adm1026_read_value(client, ADM1026_REG_TEMP_THERM(i));
++ data->temp_offset[i] =
++ adm1026_read_value(client, ADM1026_REG_TEMP_OFFSET(i));
++ }
++
++ /* Read the STATUS/alarm masks */
++ alarms = adm1026_read_value(client, ADM1026_REG_MASK4);
++ gpio = alarms & 0x80 ? 0x0100 : 0 ; /* GPIO16 */
++ alarms = (alarms & 0x7f) << 8 ;
++ alarms |= adm1026_read_value(client, ADM1026_REG_MASK3);
++ alarms <<= 8 ;
++ alarms |= adm1026_read_value(client, ADM1026_REG_MASK2);
++ alarms <<= 8 ;
++ alarms |= adm1026_read_value(client, ADM1026_REG_MASK1);
++ data->alarm_mask = alarms ;
++
++ /* Read the GPIO values */
++ gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_MASK_8_15);
++ gpio <<= 8 ;
++ gpio |= adm1026_read_value(client, ADM1026_REG_GPIO_MASK_0_7);
++ data->gpio_mask = gpio ;
++
++ /* Read the GPIO config */
++ data->config2 = adm1026_read_value(client, ADM1026_REG_CONFIG2);
++ data->config3 = adm1026_read_value(client, ADM1026_REG_CONFIG3);
++ data->gpio_config[16] = (data->config3 >> 6) & 0x03 ;
++
++ value = 0 ;
++ for( i = 0 ; i <= 15 ; ++i ) {
++ if( (i & 0x03) == 0 ) {
++ value = adm1026_read_value(client,
++ ADM1026_REG_GPIO_CFG_0_3 + i/4 );
++ }
++ data->gpio_config[i] = value & 0x03 ;
++ value >>= 2 ;
++ }
++
++ data->last_config = jiffies;
++ }; /* last_config */
++
++ /* We don't know where or even _if_ the VID might be on the GPIO
++ * pins. But the datasheet gives an example config showing
++ * GPIO11-15 being used to monitor VID0-4, so we go with that
++ * but make the vid WRITEABLE so if it's wrong, the user can
++ * set it in /etc/sensors.conf perhaps using an expression or
++ * 0 to trigger a re-read from the GPIO pins.
++ */
++ if( data->vid == ADM1026_INIT_VID ) {
++ /* Hasn't been set yet, make a bold assumption */
++ printk("adm1026(%d): Setting VID from GPIO11-15.\n",
++ client->id );
++ data->vid = (data->gpio >> 11) & 0x1f ;
++ }
++
++ data->valid = 1;
++
++ up(&data->update_lock);
++}
++
++
++/* The following functions are the call-back functions of the /proc/sys and
++ sysctl files. The appropriate function is referenced in the ctl_table
++ extra1 field.
++
++ Each function must return the magnitude (power of 10 to divide the
++ data with) if it is called with operation set to SENSORS_PROC_REAL_INFO.
++ It must put a maximum of *nrels elements in results reflecting the
++ data of this file, and set *nrels to the number it actually put in
++ it, if operation is SENSORS_PROC_REAL_READ. Finally, it must get
++ up to *nrels elements from results and write them to the chip, if
++ operations is SENSORS_PROC_REAL_WRITE.
++ */
++void adm1026_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ int nr = ctl_name - ADM1026_SYSCTL_IN0;
++
++ /* We handle in0 - in15 here. in16 (-12V) is handled below */
++ if (nr < 0 || nr > 15)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3; /* 1.000 */
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = INS_FROM_REG(nr,data->in_min[nr]);
++ results[1] = INS_FROM_REG(nr,data->in_max[nr]);
++ results[2] = INS_FROM_REG(nr,data->in[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 1) {
++ data->in_max[nr] = INS_TO_REG(nr,results[1]);
++ adm1026_write_value(client, ADM1026_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ if (*nrels_mag > 0) {
++ data->in_min[nr] = INS_TO_REG(nr,results[0]);
++ adm1026_write_value(client, ADM1026_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_in16(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ int nr = ctl_name - ADM1026_SYSCTL_IN0;
++
++ /* We handle in16 (-12V) here */
++ if (nr != 16)
++ return ; /* ERROR */
++
++ /* Apply offset and swap min/max so that min is 90% of
++ * target and max is 110% of target.
++ */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3; /* 1.000 */
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = INS_FROM_REG(nr,data->in_max[nr])-NEG12_OFFSET ;
++ results[1] = INS_FROM_REG(nr,data->in_min[nr])-NEG12_OFFSET ;
++ results[2] = INS_FROM_REG(nr,data->in[nr])-NEG12_OFFSET ;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 1) {
++ data->in_min[nr] = INS_TO_REG(nr,results[1]+NEG12_OFFSET);
++ adm1026_write_value(client, ADM1026_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag > 0) {
++ data->in_max[nr] = INS_TO_REG(nr,results[0]+NEG12_OFFSET);
++ adm1026_write_value(client, ADM1026_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ int nr = ctl_name - ADM1026_SYSCTL_FAN0 ;
++
++ if (nr < 0 || nr > 7)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr], data->fan_div[nr]);
++ results[1] = FAN_FROM_REG(data->fan[nr], data->fan_div[nr]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->fan_min[nr] = FAN_TO_REG(results[0],
++ data->fan_div[nr]);
++ adm1026_write_value(client, ADM1026_REG_FAN_MIN(nr),
++ data->fan_min[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++/* Adjust fan_min to account for new fan divisor */
++void adm1026_fixup_fan_min(struct i2c_client *client, int fan, int old_div)
++{
++ struct adm1026_data *data = client->data;
++ int new_div = data->fan_div[fan] ;
++ int new_min;
++
++ /* 0 and 0xff are special. Don't adjust them */
++ if( data->fan_min[fan] == 0 || data->fan_min[fan] == 0xff ) {
++ return ;
++ }
++
++ new_min = data->fan_min[fan] * old_div / new_div ;
++ new_min = SENSORS_LIMIT(new_min, 1, 254);
++ data->fan_min[fan] = new_min ;
++ adm1026_write_value(client, ADM1026_REG_FAN_MIN(fan), new_min);
++}
++
++void adm1026_fan_div(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ int i ;
++ int value, div, old ;
++
++ if (ctl_name != ADM1026_SYSCTL_FAN_DIV)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ for( i = 0 ; i <= 7 ; ++i ) {
++ results[i] = data->fan_div[i] ;
++ }
++ *nrels_mag = 8;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ value = 0 ;
++ for( i = 7 ; i >= 0 ; --i ) {
++ value <<= 2 ;
++ if (*nrels_mag > i) {
++ old = data->fan_div[i] ;
++ div = DIV_TO_REG(results[i]) ;
++ data->fan_div[i] = DIV_FROM_REG(div) ;
++ if( data->fan_div[i] != old ) {
++ adm1026_fixup_fan_min(client,i,old);
++ }
++ } else {
++ div = DIV_TO_REG(data->fan_div[i]) ;
++ }
++ value |= div ;
++ }
++ adm1026_write_value(client, ADM1026_REG_FAN_DIV_0_3,
++ value & 0xff);
++ adm1026_write_value(client, ADM1026_REG_FAN_DIV_4_7,
++ (value >> 8) & 0xff);
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ int nr = ctl_name - ADM1026_SYSCTL_TEMP1 ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_min[nr]);
++ results[1] = TEMP_FROM_REG(data->temp_max[nr]);
++ results[2] = TEMP_FROM_REG(data->temp[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 1) {
++ data->temp_max[nr] = TEMP_TO_REG(results[1]);
++ adm1026_write_value(client, ADM1026_REG_TEMP_MAX(nr),
++ data->temp_max[nr]);
++ }
++ if (*nrels_mag > 0) {
++ data->temp_min[nr] = TEMP_TO_REG(results[0]);
++ adm1026_write_value(client, ADM1026_REG_TEMP_MIN(nr),
++ data->temp_min[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_temp_offset(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ int nr = ctl_name - ADM1026_SYSCTL_TEMP_OFFSET1 ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_offset[nr]);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->temp_offset[nr] = TEMP_TO_REG(results[0]);
++ adm1026_write_value(client, ADM1026_REG_TEMP_OFFSET(nr),
++ data->temp_offset[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_temp_tmin(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ int nr = ctl_name - ADM1026_SYSCTL_TEMP_TMIN1 ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_tmin[nr]);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->temp_tmin[nr] = TEMP_TO_REG(results[0]);
++ adm1026_write_value(client, ADM1026_REG_TEMP_TMIN(nr),
++ data->temp_tmin[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_temp_therm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ int nr = ctl_name - ADM1026_SYSCTL_TEMP_THERM1 ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_therm[nr]);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->temp_therm[nr] = TEMP_TO_REG(results[0]);
++ adm1026_write_value(client, ADM1026_REG_TEMP_THERM(nr),
++ data->temp_therm[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++
++ if (ctl_name != ADM1026_SYSCTL_PWM)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = PWM_FROM_REG(data->pwm);
++ results[1] = 1 ; /* Always enabled */
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ /* PWM enable is read-only */
++ if (*nrels_mag > 0) {
++ data->pwm = PWM_TO_REG(results[0]);
++ adm1026_write_value(client, ADM1026_REG_PWM,
++ data->pwm);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_analog_out(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++
++ if (ctl_name != ADM1026_SYSCTL_ANALOG_OUT)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* 0 - 255 */
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = DAC_FROM_REG(data->analog_out);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->analog_out = DAC_TO_REG(results[0]);
++ adm1026_write_value(client, ADM1026_REG_DAC,
++ data->analog_out);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_afc(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++
++ if (ctl_name != ADM1026_SYSCTL_AFC)
++ return ; /* ERROR */
++
++ /* PWM auto fan control, DAC auto fan control */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = (data->config1 & CFG1_PWM_AFC) != 0 ;
++ results[1] = (data->config1 & CFG1_DAC_AFC) != 0 ;
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 1) {
++ data->config1 = (data->config1 & ~CFG1_DAC_AFC)
++ | (results[1] ? CFG1_DAC_AFC : 0) ;
++ }
++ if (*nrels_mag > 0) {
++ data->config1 = (data->config1 & ~CFG1_PWM_AFC)
++ | (results[0] ? CFG1_PWM_AFC : 0) ;
++ adm1026_write_value(client, ADM1026_REG_CONFIG1,
++ data->config1);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++
++ if( ctl_name != ADM1026_SYSCTL_VID )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = VID_FROM_REG((data->vid)&0x3f,data->vrm);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ /* Hmmm... There isn't a VID_TO_REG mapping */
++ if (*nrels_mag > 0) {
++ if( results[0] >= 0 ) {
++ data->vid = results[0] & 0x3f ;
++ } else {
++ data->vid = ADM1026_INIT_VID ;
++ }
++ }
++ up(&data->update_lock);
++ }
++
++}
++
++void adm1026_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++
++ if( ctl_name != ADM1026_SYSCTL_VRM )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm ;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag > 0) {
++ data->vrm = results[0] ;
++ }
++ }
++}
++
++void adm1026_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++
++ if( ctl_name != ADM1026_SYSCTL_ALARMS )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = data->alarms ;
++ *nrels_mag = 1;
++ }
++ /* FIXME: Perhaps we should implement a write function
++ * to clear an alarm?
++ */
++}
++
++void adm1026_alarm_mask(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ unsigned long mask ;
++
++ if( ctl_name != ADM1026_SYSCTL_ALARM_MASK )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = data->alarm_mask ;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->alarm_mask = results[0] & 0x7fffffff ;
++ mask = data->alarm_mask
++ | (data->gpio_mask & 0x10000 ? 0x80000000 : 0) ;
++ adm1026_write_value(client, ADM1026_REG_MASK1,
++ mask & 0xff);
++ mask >>= 8 ;
++ adm1026_write_value(client, ADM1026_REG_MASK2,
++ mask & 0xff);
++ mask >>= 8 ;
++ adm1026_write_value(client, ADM1026_REG_MASK3,
++ mask & 0xff);
++ mask >>= 8 ;
++ adm1026_write_value(client, ADM1026_REG_MASK4,
++ mask & 0xff);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_gpio(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ long gpio ;
++
++ if( ctl_name != ADM1026_SYSCTL_GPIO )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = data->gpio ;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->gpio = results[0] & 0x1ffff ;
++ gpio = data->gpio ;
++ adm1026_write_value(client,
++ ADM1026_REG_GPIO_STATUS_0_7,
++ gpio & 0xff );
++ gpio >>= 8 ;
++ adm1026_write_value(client,
++ ADM1026_REG_GPIO_STATUS_8_15,
++ gpio & 0xff );
++ gpio = ((gpio >> 1) & 0x80)
++ | (data->alarms >> 24 & 0x7f);
++ adm1026_write_value(client,
++ ADM1026_REG_STATUS4,
++ gpio & 0xff );
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1026_gpio_mask(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct adm1026_data *data = client->data;
++ long mask ;
++
++ if( ctl_name != ADM1026_SYSCTL_GPIO_MASK )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm1026_update_client(client);
++ results[0] = data->gpio_mask ;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->gpio_mask = results[0] & 0x1ffff ;
++ mask = data->gpio_mask ;
++ adm1026_write_value(client, ADM1026_REG_GPIO_MASK_0_7,
++ mask & 0xff);
++ mask >>= 8 ;
++ adm1026_write_value(client, ADM1026_REG_GPIO_MASK_8_15,
++ mask & 0xff);
++ mask = ((mask >> 1) & 0x80)
++ | (data->alarm_mask >> 24 & 0x7f);
++ adm1026_write_value(client, ADM1026_REG_MASK1,
++ mask & 0xff);
++ }
++ up(&data->update_lock);
++ }
++}
++
++static int __init sm_adm1026_init(void)
++{
++ printk("adm1026: Version %s (%s)\n", LM_VERSION, LM_DATE);
++ printk("adm1026: See http://www.penguincomputing.com/lm_sensors for more info.\n" );
++ return i2c_add_driver(&adm1026_driver);
++}
++
++static void __exit sm_adm1026_exit(void)
++{
++ i2c_del_driver(&adm1026_driver);
++}
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com");
++MODULE_DESCRIPTION("ADM1026 driver");
++
++module_init(sm_adm1026_init);
++module_exit(sm_adm1026_exit);
+--- linux-old/drivers/sensors/adm9240.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/adm9240.c Mon Dec 13 20:18:44 2004
+@@ -0,0 +1,713 @@
++/*
++ adm9240.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (C) 1999 Frodo Looijaard <frodol@dds.nl>
++ and Philip Edelbrock <phil@netroedge.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* Supports ADM9240, DS1780, and LM81. See doc/chips/adm9240 for details */
++
++/*
++ A couple notes about the ADM9240:
++
++* It claims to be 'LM7x' register compatible. This must be in reference
++ to only the LM78, because it is missing stuff to emulate LM75's as well.
++ (like the Winbond W83781 does)
++
++* This driver was written from rev. 0 of the PDF, but it seems well
++ written and complete (unlike the W83781 which is horrible and has
++ supposidly gone through a few revisions.. rev 0 of that one must
++ have been in crayon on construction paper...)
++
++* All analog inputs can range from 0 to 2.5, eventhough some inputs are
++ marked as being 5V, 12V, etc. I don't have any real voltages going
++ into my prototype, so I'm not sure that things are computed right,
++ but at least the limits seem to be working OK.
++
++* Another curiousity is that the fan_div seems to be read-only. I.e.,
++ any written value to it doesn't seem to make any difference. The
++ fan_div seems to be 'stuck' at 2 (which isn't a bad value in most cases).
++
++
++ --Phil
++
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x2c, 0x2f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_3(adm9240, ds1780, lm81);
++
++/* Many ADM9240 constants specified below */
++
++#define ADM9240_REG_IN_MAX(nr) (0x2b + (nr) * 2)
++#define ADM9240_REG_IN_MIN(nr) (0x2c + (nr) * 2)
++#define ADM9240_REG_IN(nr) (0x20 + (nr))
++
++/* The ADM9240 registers */
++#define ADM9240_REG_TEST 0x15
++#define ADM9240_REG_ANALOG_OUT 0x19
++/* These are all read-only */
++#define ADM9240_REG_2_5V 0x20
++#define ADM9240_REG_VCCP1 0x21
++#define ADM9240_REG_3_3V 0x22
++#define ADM9240_REG_5V 0x23
++#define ADM9240_REG_12V 0x24
++#define ADM9240_REG_VCCP2 0x25
++#define ADM9240_REG_TEMP 0x27
++#define ADM9240_REG_FAN1 0x28
++#define ADM9240_REG_FAN2 0x29
++#define ADM9240_REG_COMPANY_ID 0x3E /* 0x23 for ADM9240; 0xDA for DS1780 */
++ /* 0x01 for LM81 */
++#define ADM9240_REG_DIE_REV 0x3F
++/* These are read/write */
++#define ADM9240_REG_2_5V_HIGH 0x2B
++#define ADM9240_REG_2_5V_LOW 0x2C
++#define ADM9240_REG_VCCP1_HIGH 0x2D
++#define ADM9240_REG_VCCP1_LOW 0x2E
++#define ADM9240_REG_3_3V_HIGH 0x2F
++#define ADM9240_REG_3_3V_LOW 0x30
++#define ADM9240_REG_5V_HIGH 0x31
++#define ADM9240_REG_5V_LOW 0x32
++#define ADM9240_REG_12V_HIGH 0x33
++#define ADM9240_REG_12V_LOW 0x34
++#define ADM9240_REG_VCCP2_HIGH 0x35
++#define ADM9240_REG_VCCP2_LOW 0x36
++#define ADM9240_REG_TCRIT_LIMIT 0x37 /* LM81 only - not supported */
++#define ADM9240_REG_LOW_LIMIT 0x38 /* LM81 only - not supported */
++#define ADM9240_REG_TOS 0x39
++#define ADM9240_REG_THYST 0x3A
++#define ADM9240_REG_FAN1_MIN 0x3B
++#define ADM9240_REG_FAN2_MIN 0x3C
++
++#define ADM9240_REG_CONFIG 0x40
++#define ADM9240_REG_INT1_STAT 0x41
++#define ADM9240_REG_INT2_STAT 0x42
++#define ADM9240_REG_INT1_MASK 0x43
++#define ADM9240_REG_INT2_MASK 0x44
++
++#define ADM9240_REG_COMPAT 0x45 /* dummy compat. register for other drivers? */
++#define ADM9240_REG_CHASSIS_CLEAR 0x46
++#define ADM9240_REG_VID_FAN_DIV 0x47
++#define ADM9240_REG_I2C_ADDR 0x48
++#define ADM9240_REG_VID4 0x49
++#define ADM9240_REG_TEMP_CONFIG 0x4B
++#define ADM9240_REG_EXTMODE1 0x4C /* LM81 only - not supported */
++#define ADM9240_REG_EXTMODE2 0x4D /* LM81 only - not supported */
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++#define IN_TO_REG(val,nr) (SENSORS_LIMIT((val), 0, 255))
++#define IN_FROM_REG(val,nr) (val)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?-1:\
++ (val)==255?0:1350000/((div)*(val)))
++
++#define TEMP_FROM_REG(temp) ((temp)<256 ? (temp) * 5 : \
++ ((temp) - 512) * 5)
++
++#define TEMP_LIMIT_FROM_REG(val) (((val)>=0x80?(val)-0x100:(val))*10)
++
++#define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT(((val)<0?(((val)-5)/10)+256:\
++ ((val)+5)/10), \
++ 0,255)
++
++#define ALARMS_FROM_REG(val) (val)
++
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val)==1?0:((val)==8?3:((val)==4?2:1)))
++
++#define VID_FROM_REG(val) ((val)==0x1f?0:(val)>=0x10?510-(val)*10:\
++ 205-(val)*5)
++
++/* For each registered ADM9240, we need to keep some data in memory. */
++struct adm9240_data {
++ struct i2c_client client;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[6]; /* Register value */
++ u8 in_max[6]; /* Register value */
++ u8 in_min[6]; /* Register value */
++ u8 fan[2]; /* Register value */
++ u8 fan_min[2]; /* Register value */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ int temp; /* Temp, shifted right */
++ u8 temp_os_max; /* Register value */
++ u8 temp_os_hyst; /* Register value */
++ u16 alarms; /* Register encoding, combined */
++ u8 analog_out; /* Register value */
++ u8 vid; /* Register value combined */
++};
++
++
++static int adm9240_attach_adapter(struct i2c_adapter *adapter);
++static int adm9240_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int adm9240_detach_client(struct i2c_client *client);
++
++static int adm9240_read_value(struct i2c_client *client, u8 reg);
++static int adm9240_write_value(struct i2c_client *client, u8 reg, u8 value);
++static void adm9240_update_client(struct i2c_client *client);
++static void adm9240_init_client(struct i2c_client *client);
++
++
++static void adm9240_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm9240_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm9240_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm9240_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm9240_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm9240_analog_out(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag,
++ long *results);
++static void adm9240_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int adm9240_id = 0;
++
++static struct i2c_driver adm9240_driver = {
++ .owner = THIS_MODULE,
++ .name = "ADM9240 sensor driver",
++ .id = I2C_DRIVERID_ADM9240,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = adm9240_attach_adapter,
++ .detach_client = adm9240_detach_client,
++};
++
++/* The /proc/sys entries */
++
++/* -- SENSORS SYSCTL START -- */
++
++#define ADM9240_SYSCTL_IN0 1000 /* Volts * 100 */
++#define ADM9240_SYSCTL_IN1 1001
++#define ADM9240_SYSCTL_IN2 1002
++#define ADM9240_SYSCTL_IN3 1003
++#define ADM9240_SYSCTL_IN4 1004
++#define ADM9240_SYSCTL_IN5 1005
++#define ADM9240_SYSCTL_FAN1 1101 /* Rotations/min */
++#define ADM9240_SYSCTL_FAN2 1102
++#define ADM9240_SYSCTL_TEMP 1250 /* Degrees Celcius * 100 */
++#define ADM9240_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define ADM9240_SYSCTL_ALARMS 2001 /* bitvector */
++#define ADM9240_SYSCTL_ANALOG_OUT 2002
++#define ADM9240_SYSCTL_VID 2003
++
++#define ADM9240_ALARM_IN0 0x0001
++#define ADM9240_ALARM_IN1 0x0002
++#define ADM9240_ALARM_IN2 0x0004
++#define ADM9240_ALARM_IN3 0x0008
++#define ADM9240_ALARM_IN4 0x0100
++#define ADM9240_ALARM_IN5 0x0200
++#define ADM9240_ALARM_FAN1 0x0040
++#define ADM9240_ALARM_FAN2 0x0080
++#define ADM9240_ALARM_TEMP 0x0010
++#define ADM9240_ALARM_CHAS 0x1000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected ADM9240. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table adm9240_dir_table_template[] = {
++ {ADM9240_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_in},
++ {ADM9240_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_in},
++ {ADM9240_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_in},
++ {ADM9240_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_in},
++ {ADM9240_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_in},
++ {ADM9240_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_in},
++ {ADM9240_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_fan},
++ {ADM9240_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_fan},
++ {ADM9240_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_temp},
++ {ADM9240_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_fan_div},
++ {ADM9240_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_alarms},
++ {ADM9240_SYSCTL_ANALOG_OUT, "analog_out", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_analog_out},
++ {ADM9240_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &adm9240_vid},
++ {0}
++};
++
++static int adm9240_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, adm9240_detect);
++}
++
++static int adm9240_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct adm9240_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access adm9240_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct adm9240_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &adm9240_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ if (kind < 0) {
++ if (
++ ((adm9240_read_value
++ (new_client, ADM9240_REG_CONFIG) & 0x80) != 0x00)
++ ||
++ (adm9240_read_value(new_client, ADM9240_REG_I2C_ADDR)
++ != address))
++ goto ERROR1;
++ }
++
++ /* Determine the chip type. */
++ if (kind <= 0) {
++ i = adm9240_read_value(new_client, ADM9240_REG_COMPANY_ID);
++ if (i == 0x23)
++ kind = adm9240;
++ else if (i == 0xda)
++ kind = ds1780;
++ else if (i == 0x01)
++ kind = lm81;
++ else {
++ if (kind == 0)
++ printk
++ ("adm9240.o: Ignoring 'force' parameter for unknown chip at "
++ "adapter %d, address 0x%02x\n",
++ i2c_adapter_id(adapter), address);
++ goto ERROR1;
++ }
++ }
++
++ if (kind == adm9240) {
++ type_name = "adm9240";
++ client_name = "ADM9240 chip";
++ } else if (kind == ds1780) {
++ type_name = "ds1780";
++ client_name = "DS1780 chip";
++ } else if (kind == lm81) {
++ type_name = "lm81";
++ client_name = "LM81 chip";
++ } else {
++#ifdef DEBUG
++ printk("adm9240.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = adm9240_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ adm9240_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the ADM9240 chip */
++ adm9240_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int adm9240_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct adm9240_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("adm9240.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++
++static int adm9240_read_value(struct i2c_client *client, u8 reg)
++{
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++static int adm9240_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++/* Called when we have found a new ADM9240. */
++static void adm9240_init_client(struct i2c_client *client)
++{
++ /* Start monitoring */
++ adm9240_write_value(client, ADM9240_REG_CONFIG, 0x01);
++}
++
++static void adm9240_update_client(struct i2c_client *client)
++{
++ struct adm9240_data *data = client->data;
++ u8 i;
++
++ down(&data->update_lock);
++
++ if (
++ (jiffies - data->last_updated >
++ (data->type == adm9240 ? HZ / 2 : HZ * 2))
++ || (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting adm9240 update\n");
++#endif
++ for (i = 0; i <= 5; i++) {
++ data->in[i] =
++ adm9240_read_value(client, ADM9240_REG_IN(i));
++ data->in_min[i] =
++ adm9240_read_value(client,
++ ADM9240_REG_IN_MIN(i));
++ data->in_max[i] =
++ adm9240_read_value(client,
++ ADM9240_REG_IN_MAX(i));
++ }
++ data->fan[0] =
++ adm9240_read_value(client, ADM9240_REG_FAN1);
++ data->fan_min[0] =
++ adm9240_read_value(client, ADM9240_REG_FAN1_MIN);
++ data->fan[1] =
++ adm9240_read_value(client, ADM9240_REG_FAN2);
++ data->fan_min[1] =
++ adm9240_read_value(client, ADM9240_REG_FAN2_MIN);
++ data->temp =
++ (adm9240_read_value(client, ADM9240_REG_TEMP) << 1) +
++ ((adm9240_read_value
++ (client, ADM9240_REG_TEMP_CONFIG) & 0x80) >> 7);
++ data->temp_os_max =
++ adm9240_read_value(client, ADM9240_REG_TOS);
++ data->temp_os_hyst =
++ adm9240_read_value(client, ADM9240_REG_THYST);
++
++ i = adm9240_read_value(client, ADM9240_REG_VID_FAN_DIV);
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = (i >> 6) & 0x03;
++ data->vid = i & 0x0f;
++ data->vid |=
++ (adm9240_read_value(client, ADM9240_REG_VID4) & 0x01)
++ << 4;
++
++ data->alarms =
++ adm9240_read_value(client,
++ ADM9240_REG_INT1_STAT) +
++ (adm9240_read_value(client, ADM9240_REG_INT2_STAT) <<
++ 8);
++ data->analog_out =
++ adm9240_read_value(client, ADM9240_REG_ANALOG_OUT);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void adm9240_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++
++ int scales[6] = { 250, 270, 330, 500, 1200, 270 };
++
++ struct adm9240_data *data = client->data;
++ int nr = ctl_name - ADM9240_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm9240_update_client(client);
++ results[0] =
++ IN_FROM_REG(data->in_min[nr], nr) * scales[nr] / 192;
++ results[1] =
++ IN_FROM_REG(data->in_max[nr], nr) * scales[nr] / 192;
++ results[2] =
++ IN_FROM_REG(data->in[nr], nr) * scales[nr] / 192;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] =
++ IN_TO_REG((results[0] * 192) / scales[nr], nr);
++ adm9240_write_value(client, ADM9240_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] =
++ IN_TO_REG((results[1] * 192) / scales[nr], nr);
++ adm9240_write_value(client, ADM9240_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void adm9240_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm9240_data *data = client->data;
++ int nr = ctl_name - ADM9240_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm9240_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->
++ fan_div[nr - 1]));
++ results[1] =
++ FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = FAN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->
++ fan_div[nr -
++ 1]));
++ adm9240_write_value(client,
++ nr ==
++ 1 ? ADM9240_REG_FAN1_MIN :
++ ADM9240_REG_FAN2_MIN,
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++
++void adm9240_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm9240_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm9240_update_client(client);
++ results[0] = TEMP_LIMIT_FROM_REG(data->temp_os_max);
++ results[1] = TEMP_LIMIT_FROM_REG(data->temp_os_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_os_max = TEMP_LIMIT_TO_REG(results[0]);
++ adm9240_write_value(client, ADM9240_REG_TOS,
++ data->temp_os_max);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_os_hyst = TEMP_LIMIT_TO_REG(results[1]);
++ adm9240_write_value(client, ADM9240_REG_THYST,
++ data->temp_os_hyst);
++ }
++ }
++}
++
++void adm9240_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm9240_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm9240_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void adm9240_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct adm9240_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm9240_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = adm9240_read_value(client, ADM9240_REG_VID_FAN_DIV);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | (data->fan_div[1] << 6);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan_div[0] << 4);
++ adm9240_write_value(client,
++ ADM9240_REG_VID_FAN_DIV, old);
++ }
++ }
++}
++
++void adm9240_analog_out(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct adm9240_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm9240_update_client(client);
++ results[0] = data->analog_out;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->analog_out = results[0];
++ adm9240_write_value(client, ADM9240_REG_ANALOG_OUT,
++ data->analog_out);
++ }
++ }
++}
++
++void adm9240_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct adm9240_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ adm9240_update_client(client);
++ results[0] = VID_FROM_REG(data->vid);
++ *nrels_mag = 1;
++ }
++}
++
++static int __init sm_adm9240_init(void)
++{
++ printk("adm9240.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&adm9240_driver);
++}
++
++static void __exit sm_adm9240_exit(void)
++{
++ i2c_del_driver(&adm9240_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
++MODULE_LICENSE("GPL");
++MODULE_DESCRIPTION("ADM9240 driver");
++
++module_init(sm_adm9240_init);
++module_exit(sm_adm9240_exit);
+--- linux-old/drivers/sensors/asb100.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/asb100.c Mon Dec 13 20:18:45 2004
+@@ -0,0 +1,1025 @@
++/*
++ asb100.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++
++ Copyright (c) 2003 Mark M. Hoffman <mhoffman@lightlink.com>
++
++ (derived from w83781d.c)
++
++ Copyright (c) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>, and
++ Mark Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ This driver supports the hardware sensor chips: Asus ASB100 and
++ ASB100-A "BACH".
++
++ ASB100-A supports pwm1, while plain ASB100 does not. There is no known
++ way for the driver to tell which one is there.
++
++ Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
++ asb100 7 3 1 4 0x31 0x0694 yes no
++*/
++
++//#define DEBUG 1
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++#include "lm75.h"
++
++#ifndef I2C_DRIVERID_ASB100
++#define I2C_DRIVERID_ASB100 1043
++#endif
++
++/* I2C addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x28, 0x2f, SENSORS_I2C_END };
++
++/* ISA addresses to scan (none) */
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* default VRM to 9.0 instead of 8.2 */
++#define ASB100_DEFAULT_VRM 90
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(asb100);
++SENSORS_MODULE_PARM(force_subclients, "List of subclient addresses: " \
++ "{bus, clientaddr, subclientaddr1, subclientaddr2}");
++
++/* Voltage IN registers 0-6 */
++#define ASB100_REG_IN(nr) (0x20 + (nr))
++#define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
++#define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
++
++/* FAN IN registers 1-3 */
++#define ASB100_REG_FAN(nr) (0x27 + (nr))
++#define ASB100_REG_FAN_MIN(nr) (0x3a + (nr))
++
++/* TEMPERATURE registers 1-4 */
++static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
++static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
++static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
++
++#define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
++#define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
++#define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
++
++#define ASB100_REG_TEMP2_CONFIG 0x0152
++#define ASB100_REG_TEMP3_CONFIG 0x0252
++
++
++#define ASB100_REG_CONFIG 0x40
++#define ASB100_REG_ALARM1 0x41
++#define ASB100_REG_ALARM2 0x42
++#define ASB100_REG_SMIM1 0x43
++#define ASB100_REG_SMIM2 0x44
++#define ASB100_REG_VID_FANDIV 0x47
++#define ASB100_REG_I2C_ADDR 0x48
++#define ASB100_REG_CHIPID 0x49
++#define ASB100_REG_I2C_SUBADDR 0x4a
++#define ASB100_REG_PIN 0x4b
++#define ASB100_REG_IRQ 0x4c
++#define ASB100_REG_BANK 0x4e
++#define ASB100_REG_CHIPMAN 0x4f
++
++#define ASB100_REG_WCHIPID 0x58
++
++/* bit 7 -> enable, bits 0-3 -> duty cycle */
++#define ASB100_REG_PWM1 0x59
++
++/* CONVERSIONS
++ Rounding and limit checking is only done on the TO_REG variants. */
++
++/* These constants are a guess, consistent w/ w83781d */
++#define ASB100_IN_MIN ( 0)
++#define ASB100_IN_MAX (408)
++
++/* IN: 1/100 V (0V to 4.08V)
++ REG: 16mV/bit */
++static u8 IN_TO_REG(unsigned val)
++{
++ unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
++ return (nval * 10 + 8) / 16;
++}
++
++static unsigned IN_FROM_REG(u8 reg)
++{
++ return (reg * 16 + 5) / 10;
++}
++
++static u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
++}
++
++static int FAN_FROM_REG(u8 val, int div)
++{
++ return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
++}
++
++/* These constants are a guess, consistent w/ w83781d */
++#define ASB100_TEMP_MIN (-1280)
++#define ASB100_TEMP_MAX ( 1270)
++
++/* TEMP: 1/10 degrees C (-128C to +127C)
++ REG: 1C/bit, two's complement */
++static u8 TEMP_TO_REG(int temp)
++{
++ int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
++ ntemp += (ntemp<0 ? -5 : 5);
++ return (u8)(ntemp / 10);
++}
++
++static int TEMP_FROM_REG(u8 reg)
++{
++ return (s8)reg * 10;
++}
++
++/* PWM: 0 - 255 per sensors documentation
++ REG: (6.25% duty cycle per bit) */
++static u8 ASB100_PWM_TO_REG(int pwm)
++{
++ pwm = SENSORS_LIMIT(pwm, 0, 255);
++ return (u8)(pwm / 16);
++}
++
++static int ASB100_PWM_FROM_REG(u8 reg)
++{
++ return reg * 16;
++}
++
++#define ALARMS_FROM_REG(val) (val)
++
++#define DIV_FROM_REG(val) (1 << (val))
++
++/* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
++ REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
++static u8 DIV_TO_REG(long val)
++{
++ return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
++}
++
++/* For each registered client, we need to keep some data in memory. That
++ data is pointed to by client->data. The structure itself is
++ dynamically allocated, at the same time the client itself is allocated. */
++struct asb100_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ unsigned long last_updated; /* In jiffies */
++
++ /* array of 2 pointers to subclients */
++ struct i2c_client *lm75[2];
++
++ char valid; /* !=0 if following fields are valid */
++ u8 in[7]; /* Register value */
++ u8 in_max[7]; /* Register value */
++ u8 in_min[7]; /* Register value */
++ u8 fan[3]; /* Register value */
++ u8 fan_min[3]; /* Register value */
++ u16 temp[4]; /* Register value (0 and 3 are u8 only) */
++ u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
++ u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
++ u8 fan_div[3]; /* Register encoding, right justified */
++ u8 pwm; /* Register encoding */
++ u8 vid; /* Register encoding, combined */
++ u32 alarms; /* Register encoding, combined */
++ u8 vrm;
++};
++
++static int asb100_attach_adapter(struct i2c_adapter *adapter);
++static int asb100_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int asb100_detach_client(struct i2c_client *client);
++
++static int asb100_read_value(struct i2c_client *client, u16 reg);
++static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
++static void asb100_update_client(struct i2c_client *client);
++static void asb100_init_client(struct i2c_client *client);
++
++static void asb100_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void asb100_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void asb100_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void asb100_temp_add(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void asb100_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void asb100_vrm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void asb100_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void asb100_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void asb100_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static struct i2c_driver asb100_driver = {
++ .owner = THIS_MODULE,
++ .name = "asb100",
++ .id = I2C_DRIVERID_ASB100,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = asb100_attach_adapter,
++ .detach_client = asb100_detach_client,
++};
++
++/* The /proc/sys entries */
++/* -- SENSORS SYSCTL START -- */
++
++#define ASB100_SYSCTL_IN0 1000 /* Volts * 100 */
++#define ASB100_SYSCTL_IN1 1001
++#define ASB100_SYSCTL_IN2 1002
++#define ASB100_SYSCTL_IN3 1003
++#define ASB100_SYSCTL_IN4 1004
++#define ASB100_SYSCTL_IN5 1005
++#define ASB100_SYSCTL_IN6 1006
++
++#define ASB100_SYSCTL_FAN1 1101 /* Rotations/min */
++#define ASB100_SYSCTL_FAN2 1102
++#define ASB100_SYSCTL_FAN3 1103
++
++#define ASB100_SYSCTL_TEMP1 1200 /* Degrees Celcius * 10 */
++#define ASB100_SYSCTL_TEMP2 1201
++#define ASB100_SYSCTL_TEMP3 1202
++#define ASB100_SYSCTL_TEMP4 1203
++
++#define ASB100_SYSCTL_VID 1300 /* Volts * 1000 */
++#define ASB100_SYSCTL_VRM 1301
++
++#define ASB100_SYSCTL_PWM1 1401 /* 0-255 => 0-100% duty cycle */
++
++#define ASB100_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define ASB100_SYSCTL_ALARMS 2001 /* bitvector */
++
++#define ASB100_ALARM_IN0 0x0001 /* ? */
++#define ASB100_ALARM_IN1 0x0002 /* ? */
++#define ASB100_ALARM_IN2 0x0004
++#define ASB100_ALARM_IN3 0x0008
++#define ASB100_ALARM_TEMP1 0x0010
++#define ASB100_ALARM_TEMP2 0x0020
++#define ASB100_ALARM_FAN1 0x0040
++#define ASB100_ALARM_FAN2 0x0080
++#define ASB100_ALARM_IN4 0x0100
++#define ASB100_ALARM_IN5 0x0200 /* ? */
++#define ASB100_ALARM_IN6 0x0400 /* ? */
++#define ASB100_ALARM_FAN3 0x0800
++#define ASB100_ALARM_CHAS 0x1000
++#define ASB100_ALARM_TEMP3 0x2000
++
++#define ASB100_ALARM_IN7 0x10000 /* ? */
++#define ASB100_ALARM_IN8 0x20000 /* ? */
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected chip. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++
++/* no datasheet - but we did get some hints from someone who
++ claimed to have the datasheet */
++#define ASB100_SYSCTL_IN(nr) {ASB100_SYSCTL_IN##nr, "in" #nr, NULL, 0, \
++ 0644, NULL, &i2c_proc_real, &i2c_sysctl_real, NULL, &asb100_in}
++#define ASB100_SYSCTL_FAN(nr) {ASB100_SYSCTL_FAN##nr, "fan" #nr, NULL, 0, \
++ 0644, NULL, &i2c_proc_real, &i2c_sysctl_real, NULL, &asb100_fan}
++#define ASB100_SYSCTL_TEMP(nr, func) {ASB100_SYSCTL_TEMP##nr, "temp" #nr, \
++ NULL, 0, 0644, NULL, &i2c_proc_real, &i2c_sysctl_real, NULL, func}
++static ctl_table asb100_dir_table_template[] = {
++ ASB100_SYSCTL_IN(0),
++ ASB100_SYSCTL_IN(1),
++ ASB100_SYSCTL_IN(2),
++ ASB100_SYSCTL_IN(3),
++ ASB100_SYSCTL_IN(4),
++ ASB100_SYSCTL_IN(5),
++ ASB100_SYSCTL_IN(6),
++
++ ASB100_SYSCTL_FAN(1),
++ ASB100_SYSCTL_FAN(2),
++ ASB100_SYSCTL_FAN(3),
++
++ ASB100_SYSCTL_TEMP(1, &asb100_temp),
++ ASB100_SYSCTL_TEMP(2, &asb100_temp_add),
++ ASB100_SYSCTL_TEMP(3, &asb100_temp_add),
++ ASB100_SYSCTL_TEMP(4, &asb100_temp),
++
++ {ASB100_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &asb100_vid},
++ {ASB100_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &asb100_vrm},
++ {ASB100_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &asb100_fan_div},
++ {ASB100_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &asb100_alarms},
++ {ASB100_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &asb100_pwm},
++ {0}
++};
++
++/* This function is called when:
++ asb100_driver is inserted (when this module is loaded), for each
++ available adapter
++ when a new adapter is inserted (and asb100_driver is still present)
++ */
++static int asb100_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, asb100_detect);
++}
++
++static int asb100_detect_subclients(struct i2c_adapter *adapter, int address,
++ int kind, struct i2c_client *new_client)
++{
++ int i, id, err;
++ struct asb100_data *data = new_client->data;
++
++ data->lm75[0] = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
++ if (!(data->lm75[0])) {
++ err = -ENOMEM;
++ goto ERROR_SC_0;
++ }
++ memset(data->lm75[0], 0x00, sizeof(struct i2c_client));
++
++ data->lm75[1] = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
++ if (!(data->lm75[1])) {
++ err = -ENOMEM;
++ goto ERROR_SC_1;
++ }
++ memset(data->lm75[1], 0x00, sizeof(struct i2c_client));
++
++ id = i2c_adapter_id(adapter);
++
++ if (force_subclients[0] == id && force_subclients[1] == address) {
++ for (i = 2; i <= 3; i++) {
++ if (force_subclients[i] < 0x48 ||
++ force_subclients[i] > 0x4f) {
++ printk(KERN_ERR "asb100.o: invalid subclient "
++ "address %d; must be 0x48-0x4f\n",
++ force_subclients[i]);
++ err = -ENODEV;
++ goto ERROR_SC_2;
++ }
++ }
++ asb100_write_value(new_client, ASB100_REG_I2C_SUBADDR,
++ (force_subclients[2] & 0x07) |
++ ((force_subclients[3] & 0x07) <<4));
++ data->lm75[0]->addr = force_subclients[2];
++ data->lm75[1]->addr = force_subclients[3];
++ } else {
++ int val = asb100_read_value(new_client, ASB100_REG_I2C_SUBADDR);
++ data->lm75[0]->addr = 0x48 + (val & 0x07);
++ data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07);
++ }
++
++ if(data->lm75[0]->addr == data->lm75[1]->addr) {
++ printk(KERN_ERR "asb100.o: duplicate addresses 0x%x "
++ "for subclients\n", data->lm75[0]->addr);
++ err = -ENODEV;
++ goto ERROR_SC_2;
++ }
++
++ for (i = 0; i <= 1; i++) {
++ data->lm75[i]->data = NULL;
++ data->lm75[i]->adapter = adapter;
++ data->lm75[i]->driver = &asb100_driver;
++ data->lm75[i]->flags = 0;
++ strcpy(data->lm75[i]->name, "asb100 subclient");
++ }
++
++ if ((err = i2c_attach_client(data->lm75[0]))) {
++ printk(KERN_ERR "asb100.o: Subclient %d registration "
++ "at address 0x%x failed.\n", i, data->lm75[0]->addr);
++ goto ERROR_SC_2;
++ }
++
++ if ((err = i2c_attach_client(data->lm75[1]))) {
++ printk(KERN_ERR "asb100.o: Subclient %d registration "
++ "at address 0x%x failed.\n", i, data->lm75[1]->addr);
++ goto ERROR_SC_3;
++ }
++
++ return 0;
++
++/* Undo inits in case of errors */
++ERROR_SC_3:
++ i2c_detach_client(data->lm75[0]);
++ERROR_SC_2:
++ kfree(data->lm75[1]);
++ERROR_SC_1:
++ kfree(data->lm75[0]);
++ERROR_SC_0:
++ return err;
++}
++
++static int asb100_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int err;
++ struct i2c_client *new_client;
++ struct asb100_data *data;
++
++ /* asb100 is SMBus only */
++ if (i2c_is_isa_adapter(adapter)) {
++ pr_debug("asb100.o: detect failed, "
++ "cannot attach to legacy adapter!\n");
++ err = -ENODEV;
++ goto ERROR0;
++ }
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
++ pr_debug("asb100.o: detect failed, "
++ "smbus byte data not supported!\n");
++ err = -ENODEV;
++ goto ERROR0;
++ }
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access asb100_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct asb100_data), GFP_KERNEL))) {
++ pr_debug("asb100.o: detect failed, kmalloc failed!\n");
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ init_MUTEX(&data->lock);
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &asb100_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ /* The chip may be stuck in some other bank than bank 0. This may
++ make reading other information impossible. Specify a force=... or
++ force_*=... parameter, and the chip will be reset to the right
++ bank. */
++ if (kind < 0) {
++
++ int val1 = asb100_read_value(new_client, ASB100_REG_BANK);
++ int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
++
++ /* If we're in bank 0 */
++ if ( (!(val1 & 0x07)) &&
++ /* Check for ASB100 ID (low byte) */
++ ( ((!(val1 & 0x80)) && (val2 != 0x94)) ||
++ /* Check for ASB100 ID (high byte ) */
++ ((val1 & 0x80) && (val2 != 0x06)) ) ) {
++ pr_debug("asb100.o: detect failed, "
++ "bad chip id 0x%02x!\n", val2);
++ err = -ENODEV;
++ goto ERROR1;
++ }
++
++ } /* kind < 0 */
++
++ /* We have either had a force parameter, or we have already detected
++ Winbond. Put it now into bank 0 and Vendor ID High Byte */
++ asb100_write_value(new_client, ASB100_REG_BANK,
++ (asb100_read_value(new_client, ASB100_REG_BANK) & 0x78) | 0x80);
++
++ /* Determine the chip type. */
++ if (kind <= 0) {
++ int val1 = asb100_read_value(new_client, ASB100_REG_WCHIPID);
++ int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
++
++ if ((val1 == 0x31) && (val2 == 0x06))
++ kind = asb100;
++ else {
++ if (kind == 0)
++ printk (KERN_WARNING "asb100.o: Ignoring "
++ "'force' parameter for unknown chip "
++ "at adapter %d, address 0x%02x.\n",
++ i2c_adapter_id(adapter), address);
++ err = -ENODEV;
++ goto ERROR1;
++ }
++ }
++
++ /* Fill in remaining client fields and put it into the global list */
++ strcpy(new_client->name, "ASB100 chip");
++ data->type = kind;
++
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR1;
++
++ /* Attach secondary lm75 clients */
++ if ((err = asb100_detect_subclients(adapter, address, kind,
++ new_client)))
++ goto ERROR2;
++
++ /* Initialize the chip */
++ asb100_init_client(new_client);
++
++ /* Register a new directory entry with module sensors */
++ if ((data->sysctl_id = i2c_register_entry(new_client, "asb100",
++ asb100_dir_table_template)) < 0) {
++ err = data->sysctl_id;
++ goto ERROR3;
++ }
++
++ return 0;
++
++ERROR3:
++ i2c_detach_client(data->lm75[0]);
++ kfree(data->lm75[1]);
++ kfree(data->lm75[0]);
++ERROR2:
++ i2c_detach_client(new_client);
++ERROR1:
++ kfree(data);
++ERROR0:
++ return err;
++}
++
++static int asb100_detach_client(struct i2c_client *client)
++{
++ int err;
++ struct asb100_data *data = client->data;
++
++ /* remove sysctl table (primary client only) */
++ if ((data))
++ i2c_deregister_entry(data->sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk (KERN_ERR "asb100.o: Client deregistration failed; "
++ "client not detached.\n");
++ return err;
++ }
++
++ if (data) {
++ /* primary client */
++ kfree(data);
++ } else {
++ /* subclients */
++ kfree(client);
++ }
++
++ return 0;
++}
++
++/* The SMBus locks itself, usually, but nothing may access the Winbond between
++ bank switches. ISA access must always be locked explicitly!
++ We ignore the W83781D BUSY flag at this moment - it could lead to deadlocks,
++ would slow down the W83781D access and should not be necessary.
++ There are some ugly typecasts here, but the good news is - they should
++ nowhere else be necessary! */
++static int asb100_read_value(struct i2c_client *client, u16 reg)
++{
++ struct asb100_data *data = client->data;
++ struct i2c_client *cl;
++ int res, bank;
++
++ down(&data->lock);
++
++ bank = (reg >> 8) & 0x0f;
++ if (bank > 2)
++ /* switch banks */
++ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
++
++ if (bank == 0 || bank > 2) {
++ res = i2c_smbus_read_byte_data(client, reg & 0xff);
++ } else {
++ /* switch to subclient */
++ cl = data->lm75[bank - 1];
++
++ /* convert from ISA to LM75 I2C addresses */
++ switch (reg & 0xff) {
++ case 0x50: /* TEMP */
++ res = swab16(i2c_smbus_read_word_data (cl, 0));
++ break;
++ case 0x52: /* CONFIG */
++ res = i2c_smbus_read_byte_data(cl, 1);
++ break;
++ case 0x53: /* HYST */
++ res = swab16(i2c_smbus_read_word_data (cl, 2));
++ break;
++ case 0x55: /* MAX */
++ default:
++ res = swab16(i2c_smbus_read_word_data (cl, 3));
++ break;
++ }
++ }
++
++ if (bank > 2)
++ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
++
++ up(&data->lock);
++
++ return res;
++}
++
++static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
++{
++ struct asb100_data *data = client->data;
++ struct i2c_client *cl;
++ int bank;
++
++ down(&data->lock);
++
++ bank = (reg >> 8) & 0x0f;
++ if (bank > 2)
++ /* switch banks */
++ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
++
++ if (bank == 0 || bank > 2) {
++ i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
++ } else {
++ /* switch to subclient */
++ cl = data->lm75[bank - 1];
++
++ /* convert from ISA to LM75 I2C addresses */
++ switch (reg & 0xff) {
++ case 0x52: /* CONFIG */
++ i2c_smbus_write_byte_data(cl, 1, value & 0xff);
++ break;
++ case 0x53: /* HYST */
++ i2c_smbus_write_word_data(cl, 2, swab16(value));
++ break;
++ case 0x55: /* MAX */
++ i2c_smbus_write_word_data(cl, 3, swab16(value));
++ break;
++ }
++ }
++
++ if (bank > 2)
++ i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
++
++ up(&data->lock);
++}
++
++static void asb100_init_client(struct i2c_client *client)
++{
++ struct asb100_data *data = client->data;
++ int vid = 0;
++
++ vid = asb100_read_value(client, ASB100_REG_VID_FANDIV) & 0x0f;
++ vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4;
++ data->vrm = ASB100_DEFAULT_VRM;
++ vid = vid_from_reg(vid, data->vrm);
++
++ /* Start monitoring */
++ asb100_write_value(client, ASB100_REG_CONFIG,
++ (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
++}
++
++static void asb100_update_client(struct i2c_client *client)
++{
++ struct asb100_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if (time_after(jiffies - data->last_updated, HZ + HZ / 2) ||
++ time_before(jiffies, data->last_updated) || !data->valid) {
++
++ pr_debug("asb100.o: starting device update...\n");
++
++ /* 7 voltage inputs */
++ for (i = 0; i < 7; i++) {
++ data->in[i] = asb100_read_value(client,
++ ASB100_REG_IN(i));
++ data->in_min[i] = asb100_read_value(client,
++ ASB100_REG_IN_MIN(i));
++ data->in_max[i] = asb100_read_value(client,
++ ASB100_REG_IN_MAX(i));
++ }
++
++ /* 3 fan inputs */
++ for (i = 1; i <= 3; i++) {
++ data->fan[i-1] = asb100_read_value(client,
++ ASB100_REG_FAN(i));
++ data->fan_min[i-1] = asb100_read_value(client,
++ ASB100_REG_FAN_MIN(i));
++ }
++
++ /* 4 temperature inputs */
++ for (i = 1; i <= 4; i++) {
++ data->temp[i-1] = asb100_read_value(client,
++ ASB100_REG_TEMP(i));
++ data->temp_max[i-1] = asb100_read_value(client,
++ ASB100_REG_TEMP_MAX(i));
++ data->temp_hyst[i-1] = asb100_read_value(client,
++ ASB100_REG_TEMP_HYST(i));
++ }
++
++ /* VID and fan divisors */
++ i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
++ data->vid = i & 0x0f;
++ data->vid |= (asb100_read_value(client,
++ ASB100_REG_CHIPID) & 0x01) << 4;
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = (i >> 6) & 0x03;
++ data->fan_div[2] = (asb100_read_value(client,
++ ASB100_REG_PIN) >> 6) & 0x03;
++
++ /* PWM */
++ data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
++
++ /* alarms */
++ data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
++ (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++
++ pr_debug("asb100.o: ... update complete.\n");
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++static void asb100_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct asb100_data *data = client->data;
++ int nr = ctl_name - ASB100_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ asb100_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0]);
++ asb100_write_value(client, ASB100_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1]);
++ asb100_write_value(client, ASB100_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void asb100_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct asb100_data *data = client->data;
++ int nr = ctl_name - ASB100_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ asb100_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ results[1] = FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] =
++ FAN_TO_REG(results[0],
++ DIV_FROM_REG(data->fan_div[nr-1]));
++ asb100_write_value(client,
++ ASB100_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++void asb100_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct asb100_data *data = client->data;
++ int nr = ctl_name - ASB100_SYSCTL_TEMP1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ asb100_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_max[nr]);
++ results[1] = TEMP_FROM_REG(data->temp_hyst[nr]);
++ results[2] = TEMP_FROM_REG(data->temp[nr]);
++ *nrels_mag = 3;
++
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_max[nr] = TEMP_TO_REG(results[0]);
++ asb100_write_value(client, ASB100_REG_TEMP_MAX(nr+1),
++ data->temp_max[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst[nr] = TEMP_TO_REG(results[1]);
++ asb100_write_value(client, ASB100_REG_TEMP_HYST(nr+1),
++ data->temp_hyst[nr]);
++ }
++ }
++}
++
++void asb100_temp_add(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct asb100_data *data = client->data;
++ int nr = ctl_name - ASB100_SYSCTL_TEMP1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ asb100_update_client(client);
++
++ results[0] = LM75_TEMP_FROM_REG(data->temp_max[nr]);
++ results[1] = LM75_TEMP_FROM_REG(data->temp_hyst[nr]);
++ results[2] = LM75_TEMP_FROM_REG(data->temp[nr]);
++ *nrels_mag = 3;
++
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_max[nr] =
++ LM75_TEMP_TO_REG(results[0]);
++ asb100_write_value(client, ASB100_REG_TEMP_MAX(nr+1),
++ data->temp_max[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst[nr] =
++ LM75_TEMP_TO_REG(results[1]);
++ asb100_write_value(client, ASB100_REG_TEMP_HYST(nr+1),
++ data->temp_hyst[nr]);
++ }
++ }
++}
++
++void asb100_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct asb100_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ asb100_update_client(client);
++ results[0] = vid_from_reg(data->vid, data->vrm);
++ *nrels_mag = 1;
++ }
++}
++
++void asb100_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct asb100_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1)
++ data->vrm = results[0];
++ }
++}
++
++void asb100_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct asb100_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ asb100_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void asb100_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct asb100_data *data = client->data;
++ int old, old2;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ asb100_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ results[2] = DIV_FROM_REG(data->fan_div[2]);
++ *nrels_mag = 3;
++
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = asb100_read_value(client, ASB100_REG_VID_FANDIV);
++ if (*nrels_mag >= 3) {
++ data->fan_div[2] = DIV_TO_REG(results[2]);
++ old2 = asb100_read_value(client, ASB100_REG_PIN);
++ old2 = (old2 & 0x3f) | ((data->fan_div[2] & 0x03) << 6);
++ asb100_write_value(client, ASB100_REG_PIN, old2);
++ }
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | ((data->fan_div[1] & 0x03) << 6);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | ((data->fan_div[0] & 0x03) << 4);
++ asb100_write_value(client, ASB100_REG_VID_FANDIV, old);
++ }
++ }
++}
++
++void asb100_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct asb100_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ asb100_update_client(client);
++ results[0] = ASB100_PWM_FROM_REG(data->pwm & 0x0f);
++ results[1] = (data->pwm & 0x80) ? 1 : 0;
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ u8 val = data->pwm;
++ if (*nrels_mag >= 1) {
++ val = 0x0f & ASB100_PWM_TO_REG(results[0]);
++ if (*nrels_mag >= 2) {
++ if (results[1])
++ val |= 0x80;
++ else
++ val &= ~0x80;
++ }
++ asb100_write_value(client, ASB100_REG_PWM1, val);
++ }
++ }
++}
++
++static int __init asb100_init(void)
++{
++ printk(KERN_INFO "asb100.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&asb100_driver);
++}
++
++static void __exit asb100_exit(void)
++{
++ i2c_del_driver(&asb100_driver);
++}
++
++MODULE_AUTHOR( "Mark M. Hoffman <mhoffman@lightlink.com>, "
++ "Frodo Looijaard <frodol@dds.nl>, "
++ "Philip Edelbrock <phil@netroedge.com>, and"
++ "Mark Studebaker <mdsxyz123@yahoo.com>");
++
++MODULE_DESCRIPTION("ASB100 'Bach' driver");
++MODULE_LICENSE("GPL");
++
++module_init(asb100_init);
++module_exit(asb100_exit);
++
+--- linux-old/drivers/sensors/bt869.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/bt869.c Mon Dec 13 20:18:45 2004
+@@ -0,0 +1,891 @@
++/*
++ bt869.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
++ Copyright (c) 2001, 2002 Stephen Davies <steve@daviesfam.org>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++
++#define DEBUG 1
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++
++/* found only at 0x44 or 0x45 */
++static unsigned short normal_i2c_range[] = { 0x44, 0x45, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(bt869);
++
++/* Many bt869 constants specified below */
++
++/* The bt869 registers */
++/* Coming soon: Many, many registers */
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++
++ /*none */
++
++/* Initial values */
++/*none*/
++
++/* Each client has this additional data */
++struct bt869_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 status[3]; /* Register values */
++ u16 res[2]; /* Resolution XxY */
++ u8 ntsc; /* 1=NTSC, 0=PAL */
++ u8 half; /* go half res */
++ u8 depth; /* screen depth */
++ u8 colorbars; /* turn on/off colorbar calibration screen */
++ u8 svideo; /* output format: (2=RGB) 1=SVIDEO, 0=Composite */
++};
++
++static int bt869_attach_adapter(struct i2c_adapter *adapter);
++static int bt869_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void bt869_init_client(struct i2c_client *client);
++static int bt869_detach_client(struct i2c_client *client);
++static int bt869_read_value(struct i2c_client *client, u8 reg);
++static int bt869_write_value(struct i2c_client *client, u8 reg, u16 value);
++static void bt869_write_values(struct i2c_client *client, u16 *values);
++static void bt869_status(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void bt869_ntsc(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void bt869_res(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void bt869_half(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void bt869_colorbars(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void bt869_svideo(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void bt869_depth(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void bt869_update_client(struct i2c_client *client);
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver bt869_driver = {
++ .owner = THIS_MODULE,
++ .name = "BT869 video-output chip driver",
++ .id = I2C_DRIVERID_BT869,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = bt869_attach_adapter,
++ .detach_client = bt869_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++#define BT869_SYSCTL_STATUS 1000
++#define BT869_SYSCTL_NTSC 1001
++#define BT869_SYSCTL_HALF 1002
++#define BT869_SYSCTL_RES 1003
++#define BT869_SYSCTL_COLORBARS 1004
++#define BT869_SYSCTL_DEPTH 1005
++#define BT869_SYSCTL_SVIDEO 1006
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected bt869. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table bt869_dir_table_template[] = {
++ {BT869_SYSCTL_STATUS, "status", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &bt869_status},
++ {BT869_SYSCTL_NTSC, "ntsc", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &bt869_ntsc},
++ {BT869_SYSCTL_RES, "res", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &bt869_res},
++ {BT869_SYSCTL_HALF, "half", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &bt869_half},
++ {BT869_SYSCTL_COLORBARS, "colorbars", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &bt869_colorbars},
++ {BT869_SYSCTL_DEPTH, "depth", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &bt869_depth},
++ {BT869_SYSCTL_SVIDEO, "svideo", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &bt869_svideo},
++ {0}
++};
++
++/* ******************
++
++720x576, 27.5MHz, PAL, no overscan compensation.
++
++This mode should be use for digital video, DVD playback etc.
++
++NOTE: This mode for PAL, see 720x480 for an equivalent NTSC mode
++NOTE: -- Steve Davies <steve@daviesfam.org>
++
++
++Compatible X modeline:
++
++ Mode "720x576-BT869"
++ DotClock 27.5
++ HTimings 720 744 800 880
++ VTimings 576 581 583 625
++ EndMode
++
++
++625LINE=1 625 line output format
++BST_AMP[7:0]=x57 87 Burst ampl. multiplication factor (PAL std??)
++BY_PLL=0 Use the PLL
++CATTENUATE[2:0]=0 No chroma attenuation
++CCF1B1[7:0]=0 close caption stuff
++CCF1B2[7:0]=0 close caption stuff
++CCF2B1[7:0]=0 close caption stuff
++CCF2B2[7:0]=0 close caption stuff
++CCORING[2:0]=0 Bypass chroma coring
++CCR_START[8:0]=0 [CCR_START[8]=0; CCR_START[7:0]=0] Close-caption clock runin start from hsync
++CC_ADD[11:0]=xD2 210 [CC_ADD[11:8]=0; CC_ADD[7:0]=xD2] Close-caption DTO increment
++CHECK_STAT=0 Don't check monitor status
++CLPF[1:0]=0 Hoz chroma lowpass filter=Bypass
++DACDISA=1 Disable DACA
++DACDISB=0 Don't disable DACB
++DACDISC=0 Don't disable DACC
++DACOFF=0 Don't disable the DACs
++DATDLY = 0 normal
++DATSWP=0 normal
++DCHROMA=0 Don't blank chroma
++DIS_FFILT=1 Disable flickerfilter
++DIS_GMSHC=1 Disable chroma psuedo-gamma removal
++DIS_GMSHY=1 Disable luma pseudo gamma removal
++DIS_GMUSHC=1 Disable chroma anti-pseudo gamma removal
++DIS_GMUSHY=1 Disable luma anti-pseudo gamma removal
++DIS_SCRESET=0 Normal subcarrier phase resets
++DIS_YFLPF=0 Disable Luma initial hoz low pass filter
++DIV2=0 Input pixel rate not divided by 2
++ECBAR=0 No colour bars
++ECCF1=0 Disable closed caption
++ECCF2=0 Disable closed caption
++ECCGATE=0 Normal close caption encoding
++ECLIP=0 0=disable clipping
++EN_ASYNC=0 set to 0 for normal operation
++EN_BLANKO=0 BLANK is an input
++EN_DOT=0 Disables dot clock sync on BLANK pin
++EN_OUT=1 Allows outputs to be enabled
++EN_XCLK=1 Use CLKI pin as clock source
++ESTATUS[1:0]=0 Used to select readback register
++FIELDI=0 Logical 1 on FIELD indicates even field
++F_SELC[2:0]=0 5 line chroma flickerfilter
++F_SELY[2:0]=0 5 line luma flickerfilter
++HBURST_BEGIN[7:0]=x98 152 Chroma burst start point in clocks
++HBURST_END[7:0]=x58 88 Chroma burst end point in clocks - 128
++HSYNCI=0 Active low HSYNC
++HSYNC_WIDTH[7:0]=x80 128 Analogue sync width in clocks
++HSYNOFFSET[9:0]=0 [HSYNOFFSET[9:8]=0; HSYNOFFSET[7:0]=0] hsync in "standard position"
++HSYNWIDTH[5:0]=2 2 pixel hsync width
++H_ACTIVE[9:0]=x2D0 720 [H_ACTIVE[9:8]=2; H_ACTIVE[7:0]=xD0] Active pixels per line
++H_BLANKI[8:0]=x84 132 [H_BLANKI[8]=0; H_BLANKI[7:0]=x84] End of blanking of input video
++H_BLANKO[9:0]=x120 288 [H_BLANKO[9:8]=1; H_BLANKO[7:0]=x20] End of blanking from hoz sync leading edge
++H_CLKI[10:0]=x378 888 [H_CLKI[10:8]=3; H_CLKI[7:0]=x78] Input line length total in clocks
++H_CLKO[11:0]=x6e0 1760 [H_CLKO[11:8]=6; H_CLKO[7:0]=xe0] Output clocks per line
++H_FRACT[7:0]=0 0 fractional input clocks per line
++IN_MODE[2:0]=0 24Bit RGB muxed
++LUMADLY[1:0]=0 0 pixel delay on Y_DLY luma
++MCB[7:0]=x49 73 Mult factor for CB prior to subcarrier mod.
++MCR[7:0]=x82 130 Mult factor for CR prior to subcarrier mod.
++MODE2X=0 Don't divide clock input by 2
++MSC[31:0]=x2945E0B4 692445365 [MSC[31:24]=x29; MSC[23:16]=x45; MSC[15:8]=xE0; MSC[7:0]=xB4] Subcarrier incr.
++MY[7:0]=x8C 140 Mult factor for Y
++NI_OUT=0 Normal interlaced output
++OUT_MODE[1:0]=0 video0-3 is CVBS, Y, C, Y_DLY
++OUT_MUXA[1:0]=0 Don't care as DACA is disabled
++OUT_MUXB[1:0]=1 Output video[1] (Y) on DACB
++OUT_MUXC[1:0]=2 Output video[2] (C) on DACC
++PAL_MD=1 Video output in PAL mode
++PHASE_OFF[7:0]=0 Subcarrier phase offset
++PLL_FRACT[15:0]=x30 48 [PLL_FRACT[15:8]=0x0; PLL_FRACT[7:0]=x30] frac portion of pll multiplier
++PLL_INT[5:0]=0x0C 12 Int portion of pll multiplier
++SETUP=0 7.5-IRE setup disabled
++SLAVER=1
++SRESET=0 Don't do a software reset
++SYNC_AMP[7:0]=xF0 240 Sync amp mult. factor (PAL std???)
++VBLANKDLY=0 Extra line of blanking in 2nd field?
++VSYNCI=0 Active low VSYNC
++VSYNC_DUR=0 2.5line VSYNC duration on output
++VSYNCOFFSET[10:0]=0 [VSYNOFFSET[10:8]=0; VSYNOFFSET[7:0]=0] VSYNC in standard position
++VSYNWIDTH[2:0]=1 1 line of vsync width
++V_ACTIVEI[9:0]=x240 576 [V_ACTIVEI[9:0]=2; V_ACTIVEI[7:0]=x40] Active input lines
++V_ACTIVEO[8:0]=x122 290 [V_ACTIVE0[8]=1; V_ACTIVEO[7:0]=x22]
++V_BLANKI[7:0]=x2A 42 Input lines from vsync to first active line
++V_BLANKO[7:0]=x16 22
++V_LINESI[9:0]=x271 625 [V_LINESI[9:8]=2; V_LINESI[7:0]=x71] Number of input lines
++V_SCALE[13:0]=x1000 4096 [V_SCALE[13:8]=x10; V_SCALE[7:0]=0] Vert scale coefficient="none"?
++YATTENUATE[2:0]=0 no luma attenuation
++YCORING[2:0]=0 Luma-coring bypass
++YLPF[1:0]=0 Luma hoz low pass filter=bypass
++
++***************** */
++
++static u16 registers_720_576[] =
++ {
++ 0x6e, 0x00, /* HSYNOFFSET[7:0]=0 */
++ 0x70, 0x02, /* HSYNOFFSET[9:8]=0; HSYNWIDTH[5:0]=2 */
++ 0x72, 0x00, /* VSYNOFFSET[7:0]=0 */
++ 0x74, 0x01, /* DATDLY = 0; DATSWP=0; VSYNOFFSET[10:8]=0; VSYNWIDTH[2:0]=1 */
++ 0x76, 0xe0, /* H_CLKO[7:0]=xe0 */
++ 0x78, 0xd0, /* H_ACTIVE[7:0]=xD0 */
++ 0x7a, 0x80, /* HSYNC_WIDTH[7:0]=x80 */
++ 0x7c, 0x98, /* HBURST_BEGIN[7:0]=x98 */
++ 0x7e, 0x58, /* HBURST_END[7:0]=x58 */
++ 0x80, 0x20, /* H_BLANKO[7:0]=x20 */
++ 0x82, 0x16, /* V_BLANKO[7:0]=x16 */
++ 0x84, 0x22, /* V_ACTIVEO[7:0]=x22 */
++ 0x86, 0xa6, /* V_ACTIVE0[8]=1; H_ACTIVE[9:8]=2; H_CLKO[11:8]=6 */
++ 0x88, 0x00, /* H_FRACT[7:0]=0 */
++ 0x8a, 0x78, /* H_CLKI[7:0]=x78 */
++ 0x8c, 0x80, /* H_BLANKI[7:0]=x84 */
++ 0x8e, 0x03, /* VBLANKDLY=0; H_BLANKI[8]=0; H_CLKI[10:8]=3 */
++ 0x90, 0x71, /* V_LINESI[7:0]=x71 */
++ 0x92, 0x2a, /* V_BLANKI[7:0]=x2A */
++ 0x94, 0x40, /* V_ACTIVEI[7:0]=x40 */
++ 0x96, 0x0a, /* CLPF[1:0]=0; YLPF[1:0]=0; V_ACTIVEI[9:0]=2; V_LINESI[9:8]=2 */
++ 0x98, 0x00, /* V_SCALE[7:0]=0 */
++ 0x9a, 0x50, /* H_BLANKO[9:8]=1; V_SCALE[13:8]=x10 */
++ 0x9c, 0x30, /* PLL_FRACT[7:0]=x30 */
++ 0x9e, 0x0, /* PLL_FRACT[15:8]=0x0 */
++ 0xa0, 0x8c, /* EN_XCLK=1; BY_PLL=0; PLL_INT[5:0]=0x0C */
++ 0xa2, 0x24, /* ECLIP=0; PAL_MD=1; DIS_SCRESET=0; VSYNC_DUR=0; 625LINE=1; SETUP=0; NI_OUT=0 */
++ 0xa4, 0xf0, /* SYNC_AMP[7:0]=xF0 */
++ 0xa6, 0x57, /* BST_AMP[7:0]=x57 */
++ 0xa8, 0x82, /* MCR[7:0]=x82 */
++ 0xaa, 0x49, /* MCB[7:0]=x49 */
++ 0xac, 0x8c, /* MY[7:0]=x8C */
++ 0xae, 0xb4, /* MSC[7:0]=xb4 */
++ 0xb0, 0xe0, /* MSC[15:8]=xe0 */
++ 0xb2, 0x45, /* MSC[23:16]=x45 */
++ 0xb4, 0x29, /* MSC[31:24]=x29 */
++ 0xb6, 0x00, /* PHASE_OFF[7:0]=0 */
++ //0xba, 0x21, /* SRESET=0; CHECK_STAT=0; SLAVER=1; DACOFF=0; DACDISC=0; DACDISB=0; DACDISA=1 */
++ 0xc4, 0x01, /* ESTATUS[1:0]=0; ECCF2=0; ECCF1=0; ECCGATE=0; ECBAR=0; DCHROMA=0; EN_OUT=1 */
++ 0xc6, 0x00, /* EN_BLANKO=0; EN_DOT=0; FIELDI=0; VSYNCI=0; HSYNCI=0; IN_MODE[2:0]=0(24bRGB) */
++ 0xc8, 0x40, /* DIS_YFLPF=0; DIS_FFILT=1; F_SELC[2:0]=0; F_SELY[2:0]=0 */
++ 0xca, 0xc0, /* DIS_GMUSHY=1; DIS_GMSHY=1; YCORING[2:0]=0; YATTENUATE[2:0]=0 */
++ 0xcc, 0xc0, /* DIS_GMUSHC=1; DIS_GMSHC=1; CCORING[2:0]=0; CATTENUATE[2:0]=0 */
++ //0xce, 0x24, /* OUT_MUXC=2 [C]; OUT_MUXB=1 [Y]; OUT_MUXA=0 [CVBS, but disabled]*/
++ //0xce, 0x04, /* OUT_MUXC=0 [CVBS]; OUT_MUXB=1 [Y]; OUT_MUXA=0 [CVBS, but disabled]*/
++ 0xd6, 0x00, /* OUT_MODE[1:0]=0; LUMADLY[1:0]=0 */
++ 0, 0
++ };
++
++
++/* ******************
++
++720x480, 27.5MHz, NTSC no overscan compensation.
++
++This mode should be use for digital video, DVD playback etc.
++
++NOTE: This mode for NTSC, see 720x576 for an equivalent PAL mode
++NOTE: -- Steve Davies <steve@daviesfam.org>
++
++Compatible X modeline:
++
++ Mode "720x480-BT869"
++ DotClock 27.5
++ HTimings 720 744 800 872
++ VTimings 480 483 485 525
++ EndMode
++
++
++625LINE=0 not 625 line output format
++BST_AMP[7:0]=x74 116 Burst ampl. multiplication factor (NTSC std??)
++BY_PLL=0 Use the PLL
++CATTENUATE[2:0]=0 No chroma attenuation
++CCF1B1[7:0]=0 close caption stuff
++CCF1B2[7:0]=0 close caption stuff
++CCF2B1[7:0]=0 close caption stuff
++CCF2B2[7:0]=0 close caption stuff
++CCORING[2:0]=0 Bypass chroma coring
++CCR_START[8:0]=0 [CCR_START[8]=0; CCR_START[7:0]=0] Close-caption clock runin start from hsync
++CC_ADD[11:0]=xD2 210 [CC_ADD[11:8]=0; CC_ADD[7:0]=xD2] Close-caption DTO increment
++CHECK_STAT=0 Don't check monitor status
++CLPF[1:0]=0 Hoz chroma lowpass filter=Bypass
++DACDISA=1 Disable DACA
++DACDISB=0 Don't disable DACB
++DACDISC=0 Don't disable DACC
++DACOFF=0 Don't disable the DACs
++DATDLY = 0 normal
++DATSWP=0 normal
++DCHROMA=0 Don't blank chroma
++DIS_FFILT=1 Disable flickerfilter
++DIS_GMSHC=1 Disable chroma psuedo-gamma removal
++DIS_GMSHY=1 Disable luma pseudo gamma removal
++DIS_GMUSHC=1 Disable chroma anti-pseudo gamma removal
++DIS_GMUSHY=1 Disable luma anti-pseudo gamma removal
++DIS_SCRESET=0 Normal subcarrier phase resets
++DIS_YFLPF=0 Disable Luma initial hoz low pass filter
++DIV2=0 Input pixel rate not divided by 2
++ECBAR=0 No colour bars
++ECCF1=0 Disable closed caption
++ECCF2=0 Disable closed caption
++ECCGATE=0 Normal close caption encoding
++ECLIP=0 0=disable clipping
++EN_ASYNC=0 set to 0 for normal operation
++EN_BLANKO=0 BLANK is an input
++EN_DOT=0 Disables dot clock sync on BLANK pin
++EN_OUT=1 Allows outputs to be enabled
++EN_XCLK=1 Use CLKI pin as clock source
++ESTATUS[1:0]=0 Used to select readback register
++FIELDI=0 Logical 1 on FIELD indicates even field
++F_SELC[2:0]=0 5 line chroma flickerfilter
++F_SELY[2:0]=0 5 line luma flickerfilter
++HBURST_BEGIN[7:0]=x92 146 Chroma burst start point in clocks
++HBURST_END[7:0]=x57 87 Chroma burst end point in clocks - 128
++HSYNCI=0 Active low HSYNC
++HSYNC_WIDTH[7:0]=x80 128 Analogue sync width in clocks
++HSYNOFFSET[9:0]=0 [HSYNOFFSET[9:8]=0; HSYNOFFSET[7:0]=0] hsync in "standard position"
++HSYNWIDTH[5:0]=2 2 pixel hsync width
++H_ACTIVE[9:0]=x2D0 720 [H_ACTIVE[9:8]=2; H_ACTIVE[7:0]=xD0] Active pixels per line
++H_BLANKI[8:0]=x80 128 [H_BLANKI[8]=0; H_BLANKI[7:0]=x80] End of blanking of input video
++H_BLANKO[9:0]=x102 258 [H_BLANKO[9:8]=1; H_BLANKO[7:0]=x2] End of blanking from hoz sync leading edge
++H_CLKI[10:0]=x368 872 [H_CLKI[10:8]=3; H_CLKI[7:0]=x68] Input line length total in clocks
++H_CLKO[11:0]=x6d0 1744 [H_CLKO[11:8]=6; H_CLKO[7:0]=xD0] Output clocks per line
++H_FRACT[7:0]=0 0 fractional input clocks per line
++IN_MODE[2:0]=0 24Bit RGB muxed
++LUMADLY[1:0]=0 0 pixel delay on Y_DLY luma
++MCB[7:0]=x43 67 Mult factor for CB prior to subcarrier mod.
++MCR[7:0]=x77 119 Mult factor for CR prior to subcarrier mod.
++MODE2X=0 Don't divide clock input by 2
++MSC[31:0]=x215282E5 559055589 [MSC[31:24]=x21; MSC[23:16]=x52; MSC[15:8]=x82; MSC[7:0]=xE5] Subcarrier incr.
++MY[7:0]=x85 133 Mult factor for Y
++NI_OUT=0 Normal interlaced output
++OUT_MODE[1:0]=0 video0-3 is CVBS, Y, C, Y_DLY
++OUT_MUXA[1:0]=0 Don't care as DACA is disabled
++OUT_MUXB[1:0]=1 Output video[1] (Y) on DACB
++OUT_MUXC[1:0]=2 Output video[2] (C) on DACC
++PAL_MD=0 Video output in PAL mode? No.
++PHASE_OFF[7:0]=0 Subcarrier phase offset
++PLL_FRACT[15:0]=x30 48 [PLL_FRACT[15:8]=0x0; PLL_FRACT[7:0]=x30] frac portion of pll multiplier
++PLL_INT[5:0]=0x0C 12 Int portion of pll multiplier
++SETUP=1 7.5-IRE enabled for NTSC
++SLAVER=1
++SRESET=0 Don't do a software reset
++SYNC_AMP[7:0]=xE5 229 Sync amp mult. factor (PAL std???)
++VBLANKDLY=0 Extra line of blanking in 2nd field?
++VSYNCI=0 Active low VSYNC
++VSYNC_DUR=1 2.5line VSYNC duration on output (Yes for NTSC)
++VSYNCOFFSET[10:0]=0 [VSYNOFFSET[10:8]=0; VSYNOFFSET[7:0]=0] VSYNC in standard position
++VSYNWIDTH[2:0]=1 1 line of vsync width
++V_ACTIVEI[9:0]=x1E0 480 [V_ACTIVEI[9:0]=1; V_ACTIVEI[7:0]=xE0] Active input lines
++V_ACTIVEO[8:0]=xF0 240 [V_ACTIVE0[8]=0; V_ACTIVEO[7:0]=xF0]
++V_BLANKI[7:0]=x2A 42 Input lines from vsync to first active line
++V_BLANKO[7:0]=x16 22
++V_LINESI[9:0]=x20D 525 [V_LINESI[9:8]=2; V_LINESI[7:0]=x0D] Number of input lines
++V_SCALE[13:0]=x1000 4096 [V_SCALE[13:8]=x10; V_SCALE[7:0]=0] Vert scale coefficient="none"?
++YATTENUATE[2:0]=0 no luma attenuation
++YCORING[2:0]=0 Luma-coring bypass
++YLPF[1:0]=0 Luma hoz low pass filter=bypass
++
++***************** */
++
++static u16 registers_720_480[] =
++ {
++ 0x6e, 0x00, /* HSYNOFFSET[7:0]=0 */
++ 0x70, 0x02, /* HSYNOFFSET[9:8]=0; HSYNWIDTH[5:0]=2 */
++ 0x72, 0x00, /* VSYNOFFSET[7:0]=0 */
++ 0x74, 0x01, /* DATDLY = 0; DATSWP=0; VSYNOFFSET[10:8]=0; VSYNWIDTH[2:0]=1 */
++ 0x76, 0xD0, /* H_CLKO[7:0]=xD0 */
++ 0x78, 0xD0, /* H_ACTIVE[7:0]=xD0 */
++ 0x7a, 0x80, /* HSYNC_WIDTH[7:0]=x80 */
++ 0x7c, 0x92, /* HBURST_BEGIN[7:0]=x92 */
++ 0x7e, 0x57, /* HBURST_END[7:0]=x57 */
++ 0x80, 0x02, /* H_BLANKO[7:0]=x2 */
++ 0x82, 0x16, /* V_BLANKO[7:0]=x16 */
++ 0x84, 0xF0, /* V_ACTIVEO[7:0]=xF0 */
++ 0x86, 0x26, /* V_ACTIVE0[8]=0; H_ACTIVE[9:8]=2; H_CLKO[11:8]=6 */
++ 0x88, 0x00, /* H_FRACT[7:0]=0 */
++ 0x8a, 0xD0, /* H_CLKI[7:0]=xD0 */
++ 0x8c, 0x80, /* H_BLANKI[7:0]=x80 */
++ 0x8e, 0x03, /* VBLANKDLY=0; H_BLANKI[8]=0; H_CLKI[10:8]=3 */
++ 0x90, 0x0D, /* V_LINESI[7:0]=x0D */
++ 0x92, 0x2A, /* V_BLANKI[7:0]=x2A */
++ 0x94, 0xE0, /* V_ACTIVEI[7:0]=xE0 */
++ 0x96, 0x06, /* CLPF[1:0]=0; YLPF[1:0]=0; V_ACTIVEI[9:8]=1; V_LINESI[9:8]=2 */
++ 0x98, 0x00, /* V_SCALE[7:0]=0 */
++ 0x9a, 0x50, /* H_BLANKO[9:8]=1; V_SCALE[13:8]=x10 */
++ 0x9c, 0x30, /* PLL_FRACT[7:0]=x30 */
++ 0x9e, 0x0, /* PLL_FRACT[15:8]=0x0 */
++ 0xa0, 0x8c, /* EN_XCLK=1; BY_PLL=0; PLL_INT[5:0]=0x0C */
++ 0xa2, 0x0A, /* ECLIP=0; PAL_MD=0; DIS_SCRESET=0; VSYNC_DUR=1; 625LINE=0; SETUP=1; NI_OUT=0 */
++ 0xa4, 0xE5, /* SYNC_AMP[7:0]=xE5 */
++ 0xa6, 0x74, /* BST_AMP[7:0]=x74 */
++ 0xa8, 0x77, /* MCR[7:0]=x77 */
++ 0xaa, 0x43, /* MCB[7:0]=x43 */
++ 0xac, 0x85, /* MY[7:0]=x85 */
++ 0xae, 0xE5, /* MSC[7:0]=xE5 */
++ 0xb0, 0x82, /* MSC[15:8]=x82 */
++ 0xb2, 0x52, /* MSC[23:16]=x52 */
++ 0xb4, 0x21, /* MSC[31:24]=x21 */
++ 0xb6, 0x00, /* PHASE_OFF[7:0]=0 */
++ //0xba, 0x21, /* SRESET=0; CHECK_STAT=0; SLAVER=1; DACOFF=0; DACDISC=0; DACDISB=0; DACDISA=1 */
++ 0xc4, 0x01, /* ESTATUS[1:0]=0; ECCF2=0; ECCF1=0; ECCGATE=0; ECBAR=0; DCHROMA=0; EN_OUT=1 */
++ 0xc6, 0x00, /* EN_BLANKO=0; EN_DOT=0; FIELDI=0; VSYNCI=0; HSYNCI=0; IN_MODE[2:0]=0(24bRGB) */
++ 0xc8, 0x40, /* DIS_YFLPF=0; DIS_FFILT=1; F_SELC[2:0]=0; F_SELY[2:0]=0 */
++ 0xca, 0xc0, /* DIS_GMUSHY=1; DIS_GMSHY=1; YCORING[2:0]=0; YATTENUATE[2:0]=0 */
++ 0xcc, 0xc0, /* DIS_GMUSHC=1; DIS_GMSHC=1; CCORING[2:0]=0; CATTENUATE[2:0]=0 */
++ //0xce, 0x24, /* OUT_MUXC=2 [C]; OUT_MUXB=1 [Y]; OUT_MUXA=0 [CVBS, but disabled]*/
++ //0xce, 0x04, /* OUT_MUXC=0 [CVBS]; OUT_MUXB=1 [Y]; OUT_MUXA=0 [CVBS, but disabled]*/
++ 0xd6, 0x00, /* OUT_MODE[1:0]=0; LUMADLY[1:0]=0 */
++ 0, 0
++ };
++
++
++int bt869_id = 0;
++
++static int bt869_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, bt869_detect);
++}
++
++/* This function is called by i2c_detect */
++int bt869_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i, cur;
++ struct i2c_client *new_client;
++ struct bt869_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++
++ printk("bt869.o: probing address %d .\n", address);
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("bt869.o: bt869_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_READ_BYTE |
++ I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access bt869_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct bt869_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &bt869_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. It is lousy. */
++ i2c_smbus_write_byte_data(new_client, 0xC4, 0); /* set status bank 0 */
++ cur = i2c_smbus_read_byte(new_client);
++ printk("bt869.o: address 0x%X testing-->0x%X\n", address, cur);
++ if ((cur & 0xE0) != 0x20)
++ goto ERROR1;
++
++ /* Determine the chip type */
++ kind = ((cur & 0x20) >> 5);
++
++ if (kind) {
++ type_name = "bt869";
++ client_name = "bt869 chip";
++ printk("bt869.o: BT869 detected\n");
++ } else {
++ type_name = "bt868";
++ client_name = "bt868 chip";
++ printk("bt869.o: BT868 detected\n");
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = bt869_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ bt869_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ bt869_init_client((struct i2c_client *) new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int bt869_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct bt869_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("bt869.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++
++/* All registers are byte-sized.
++ bt869 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int bt869_read_value(struct i2c_client *client, u8 reg)
++{
++ return i2c_smbus_read_byte(client);
++}
++
++/* All registers are byte-sized.
++ bt869 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int bt869_write_value(struct i2c_client *client, u8 reg, u16 value)
++{
++#ifdef DEBUG
++ printk("bt869.o: write_value(0x%X, 0x%X)\n", reg, value);
++#endif
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++static void bt869_write_values(struct i2c_client *client, u16 *values)
++{
++ /* writes set of registers from array. 0,0 marks end of table */
++ while (*values) {
++ bt869_write_value(client, values[0], values[1]);
++ values += 2;
++ }
++}
++
++static void bt869_init_client(struct i2c_client *client)
++{
++ struct bt869_data *data = client->data;
++
++ /* Initialize the bt869 chip */
++ bt869_write_value(client, 0x0ba, 0x80);
++ // bt869_write_value(client,0x0D6, 0x00);
++ /* Be a slave to the clock on the Voodoo3 */
++ bt869_write_value(client, 0xa0, 0x80);
++ bt869_write_value(client, 0xba, 0x20);
++ /* depth =16bpp */
++ bt869_write_value(client, 0x0C6, 0x001);
++ bt869_write_value(client, 0xC4, 1);
++ /* Flicker free enable and config */
++ bt869_write_value(client, 0xC8, 0);
++ data->res[0] = 640;
++ data->res[1] = 480;
++ data->ntsc = 1;
++ data->half = 0;
++ data->colorbars = 0;
++ data->svideo = 0;
++ data->depth = 16;
++
++}
++
++static void bt869_update_client(struct i2c_client *client)
++{
++ struct bt869_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++#ifdef DEBUG
++ printk("Starting bt869 update\n");
++#endif
++ if ((data->res[0] == 800) && (data->res[1] == 600)) {
++ /* 800x600 built-in mode */
++ bt869_write_value(client, 0xB8,
++ (2 + (!data->ntsc)));
++ bt869_write_value(client, 0xa0, 0x80 + 0x11);
++ printk("bt869.o: writing into config -->0x%X\n",
++ (2 + (!data->ntsc)));
++ }
++ else if ((data->res[0] == 720) && (data->res[1] == 576)) {
++ /* 720x576 no-overscan-compensation mode suitable for PAL DVD playback */
++ data->ntsc = 0; /* This mode always PAL */
++ bt869_write_values(client, registers_720_576);
++ }
++ else if ((data->res[0] == 720) && (data->res[1] == 480)) {
++ /* 720x480 no-overscan-compensation mode suitable for NTSC DVD playback */
++ data->ntsc = 1; /* This mode always NTSC */
++ bt869_write_values(client, registers_720_480);
++ }
++ else {
++ /* 640x480 built-in mode */
++ bt869_write_value(client, 0xB8, (!data->ntsc));
++ bt869_write_value(client, 0xa0, 0x80 + 0x0C);
++ printk("bt869.o: writing into config -->0x%X\n",
++ (0 + (!data->ntsc)));
++ if ((data->res[0] != 640) || (data->res[1] != 480)) {
++ printk
++ ("bt869.o: Warning: arbitrary resolutions not supported yet. Using 640x480.\n");
++ data->res[0] = 640;
++ data->res[1] = 480;
++ }
++ }
++ /* Set colour depth */
++ if ((data->depth != 24) && (data->depth != 16))
++ data->depth = 16;
++ if (data->depth == 16)
++ bt869_write_value(client, 0x0C6, 0x001);
++ if (data->depth == 24)
++ bt869_write_value(client, 0x0C6, 0x000);
++ /* set "half" resolution mode */
++ bt869_write_value(client, 0xd4, data->half << 6);
++ /* Set composite/svideo mode, also enable the right dacs */
++ switch (data->svideo) {
++ case 2: /* RGB */
++ /* requires hardware mod on Voodoo3 to get all outputs,
++ untested in practice... Feedback to steve@daviesfam.org please */
++ bt869_write_value(client, 0xd6, 0x0c);
++ bt869_write_value(client, 0xce, 0x24);
++ bt869_write_value(client, 0xba, 0x20);
++ break;
++ case 1: /* Svideo*/
++ bt869_write_value(client, 0xce, 0x24);
++ bt869_write_value(client, 0xba, 0x21);
++ break;
++ default: /* Composite */
++ bt869_write_value(client, 0xce, 0x0);
++ bt869_write_value(client, 0xba, 0x21);
++ break;
++ }
++ /* Enable outputs */
++ bt869_write_value(client, 0xC4, 1);
++ /* Issue timing reset */
++ bt869_write_value(client, 0x6c, 0x80);
++
++/* Read back status registers */
++ bt869_write_value(client, 0xC4,
++ 1 | (data->colorbars << 2));
++ data->status[0] = bt869_read_value(client, 1);
++ bt869_write_value(client, 0xC4,
++ 0x41 | (data->colorbars << 2));
++ data->status[1] = bt869_read_value(client, 1);
++ bt869_write_value(client, 0xC4,
++ 0x81 | (data->colorbars << 2));
++ data->status[2] = bt869_read_value(client, 1);
++ bt869_write_value(client, 0xC4,
++ 0x0C1 | (data->colorbars << 2));
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++ up(&data->update_lock);
++}
++
++
++void bt869_status(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct bt869_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ bt869_update_client(client);
++ results[0] = data->status[0];
++ results[1] = data->status[1];
++ results[2] = data->status[2];
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ printk
++ ("bt869.o: Warning: write was requested on read-only proc file: status\n");
++ }
++}
++
++
++void bt869_ntsc(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct bt869_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ bt869_update_client(client);
++ results[0] = data->ntsc;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->ntsc = (results[0] > 0);
++ }
++ bt869_update_client(client);
++ }
++}
++
++
++void bt869_svideo(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct bt869_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ bt869_update_client(client);
++ results[0] = data->svideo;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->svideo = results[0];
++ }
++ bt869_update_client(client);
++ }
++}
++
++
++void bt869_res(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct bt869_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ bt869_update_client(client);
++ results[0] = data->res[0];
++ results[1] = data->res[1];
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->res[0] = results[0];
++ }
++ if (*nrels_mag >= 2) {
++ data->res[1] = results[1];
++ }
++ bt869_update_client(client);
++ }
++}
++
++
++void bt869_half(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct bt869_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ bt869_update_client(client);
++ results[0] = data->half;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->half = (results[0] > 0);
++ bt869_update_client(client);
++ }
++ }
++}
++
++void bt869_colorbars(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct bt869_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ bt869_update_client(client);
++ results[0] = data->colorbars;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->colorbars = (results[0] > 0);
++ bt869_update_client(client);
++ }
++ }
++}
++
++void bt869_depth(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct bt869_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ bt869_update_client(client);
++ results[0] = data->depth;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->depth = results[0];
++ bt869_update_client(client);
++ }
++ }
++}
++
++static int __init sm_bt869_init(void)
++{
++ printk("bt869.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&bt869_driver);
++}
++
++static void __exit sm_bt869_exit(void)
++{
++ i2c_del_driver(&bt869_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl>, Philip Edelbrock <phil@netroedge.com>, Stephen Davies <steve@daviesfam.org>");
++MODULE_DESCRIPTION("bt869 driver");
++
++module_init(sm_bt869_init);
++module_exit(sm_bt869_exit);
+--- linux-old/drivers/sensors/ddcmon.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/ddcmon.c Mon Dec 13 20:18:45 2004
+@@ -0,0 +1,591 @@
++/*
++ ddcmon.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999, 2000 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>,
++ and Mark Studebaker <mdsxyz123@yahoo.com>
++ Copyright (c) 2003 Jean Delvare <khali@linux-fr.org>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { 0x50, SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(ddcmon);
++
++static int checksum = 0;
++MODULE_PARM(checksum, "i");
++MODULE_PARM_DESC(checksum, "Only accept eeproms whose checksum is correct");
++
++/* Many constants specified below */
++
++/* DDCMON registers */
++/* vendor section */
++#define DDCMON_REG_MAN_ID 0x08
++#define DDCMON_REG_PROD_ID 0x0A
++#define DDCMON_REG_SERIAL 0x0C
++#define DDCMON_REG_WEEK 0x10
++#define DDCMON_REG_YEAR 0x11
++/* EDID version */
++#define DDCMON_REG_EDID_VER 0x12
++#define DDCMON_REG_EDID_REV 0x13
++/* display information */
++#define DDCMON_REG_HORSIZE 0x15
++#define DDCMON_REG_VERSIZE 0x16
++#define DDCMON_REG_GAMMA 0x17
++#define DDCMON_REG_DPMS_FLAGS 0x18
++/* supported timings */
++#define DDCMON_REG_ESTABLISHED_TIMINGS 0x23
++#define DDCMON_REG_STANDARD_TIMINGS 0x26
++#define DDCMON_REG_TIMBASE 0x36
++#define DDCMON_REG_TIMINCR 18
++#define DDCMON_REG_TIMNUM 4
++
++#define DDCMON_REG_CHECKSUM 0x7f
++
++/* Size of DDCMON in bytes */
++#define DDCMON_SIZE 128
++
++/* Each client has this additional data */
++struct ddcmon_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 data[DDCMON_SIZE]; /* Register values */
++};
++
++
++static int ddcmon_attach_adapter(struct i2c_adapter *adapter);
++static int ddcmon_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int ddcmon_detach_client(struct i2c_client *client);
++
++static void ddcmon_idcall(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_size(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_sync(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_maxclock(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_timings(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_serial(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_time(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_edid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_gamma(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_dpms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_standard_timing(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ddcmon_update_client(struct i2c_client *client);
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver ddcmon_driver = {
++ .owner = THIS_MODULE,
++ .name = "DDCMON READER",
++ .id = I2C_DRIVERID_DDCMON,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = ddcmon_attach_adapter,
++ .detach_client = ddcmon_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++
++#define DDCMON_SYSCTL_ID 1010
++#define DDCMON_SYSCTL_SIZE 1011
++#define DDCMON_SYSCTL_SYNC 1012
++#define DDCMON_SYSCTL_TIMINGS 1013
++#define DDCMON_SYSCTL_SERIAL 1014
++#define DDCMON_SYSCTL_TIME 1015
++#define DDCMON_SYSCTL_EDID 1016
++#define DDCMON_SYSCTL_GAMMA 1017
++#define DDCMON_SYSCTL_DPMS 1018
++#define DDCMON_SYSCTL_TIMING1 1021
++#define DDCMON_SYSCTL_TIMING2 1022
++#define DDCMON_SYSCTL_TIMING3 1023
++#define DDCMON_SYSCTL_TIMING4 1024
++#define DDCMON_SYSCTL_TIMING5 1025
++#define DDCMON_SYSCTL_TIMING6 1026
++#define DDCMON_SYSCTL_TIMING7 1027
++#define DDCMON_SYSCTL_TIMING8 1028
++#define DDCMON_SYSCTL_MAXCLOCK 1029
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected DDCMON. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table ddcmon_dir_table_template[] = {
++ {DDCMON_SYSCTL_ID, "id", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &ddcmon_idcall},
++ {DDCMON_SYSCTL_SIZE, "size", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &ddcmon_size},
++ {DDCMON_SYSCTL_SYNC, "sync", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_sync},
++ {DDCMON_SYSCTL_TIMINGS, "timings", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_timings},
++ {DDCMON_SYSCTL_SERIAL, "serial", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_serial},
++ {DDCMON_SYSCTL_TIME, "time", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_time},
++ {DDCMON_SYSCTL_EDID, "edid", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_edid},
++ {DDCMON_SYSCTL_GAMMA, "gamma", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_gamma},
++ {DDCMON_SYSCTL_DPMS, "dpms", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_dpms},
++ {DDCMON_SYSCTL_TIMING1, "timing1", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_standard_timing},
++ {DDCMON_SYSCTL_TIMING2, "timing2", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_standard_timing},
++ {DDCMON_SYSCTL_TIMING3, "timing3", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_standard_timing},
++ {DDCMON_SYSCTL_TIMING4, "timing4", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_standard_timing},
++ {DDCMON_SYSCTL_TIMING5, "timing5", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_standard_timing},
++ {DDCMON_SYSCTL_TIMING6, "timing6", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_standard_timing},
++ {DDCMON_SYSCTL_TIMING7, "timing7", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_standard_timing},
++ {DDCMON_SYSCTL_TIMING8, "timing8", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_standard_timing},
++ {DDCMON_SYSCTL_MAXCLOCK, "maxclock", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ddcmon_maxclock},
++ {0}
++};
++
++static int ddcmon_id = 0;
++
++static int ddcmon_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, ddcmon_detect);
++}
++
++/* This function is called by i2c_detect */
++int ddcmon_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i, cs;
++ struct i2c_client *new_client;
++ struct ddcmon_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access ddcmon_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct ddcmon_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ memset(data->data, 0xff, DDCMON_SIZE);
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &ddcmon_driver;
++ new_client->flags = 0;
++
++ /* prevent 24RF08 corruption (just in case) */
++ i2c_smbus_write_quick(new_client, 0);
++
++ /* Now, we do the remaining detection. */
++ if (checksum) {
++ int cs = 0;
++ for (i = 0; i < 0x80; i++)
++ cs += i2c_smbus_read_byte_data(new_client, i);
++ if ((cs & 0xff) != 0)
++ goto ERROR1;
++ }
++
++ /* Verify the first 8 locations 0x00FFFFFFFFFFFF00 */
++ /* Allow force and force_ddcmon arguments */
++ if(kind < 0)
++ {
++ for(i = 0; i < 8; i++) {
++ cs = i2c_smbus_read_byte_data(new_client, i);
++ if(i == 0 || i == 7) {
++ if(cs != 0)
++ goto ERROR1;
++ } else if(cs != 0xff)
++ goto ERROR1;
++ }
++ }
++
++ type_name = "ddcmon";
++ client_name = "DDC Monitor";
++
++ /* Fill in the remaining client fields and put it in the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = ddcmon_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ ddcmon_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ return 0;
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int ddcmon_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct ddcmon_data *) (client->data))->
++ sysctl_id);
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("ddcmon.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++ kfree(client->data);
++ return 0;
++}
++
++static void ddcmon_update_client(struct i2c_client *client)
++{
++ struct ddcmon_data *data = client->data;
++ int i, j;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > 300 * HZ) ||
++ (jiffies < data->last_updated) || !data->valid) {
++ if (i2c_check_functionality(client->adapter,
++ I2C_FUNC_SMBUS_READ_I2C_BLOCK))
++ {
++ for (i=0; i<DDCMON_SIZE; i+=I2C_SMBUS_I2C_BLOCK_MAX)
++ if (i2c_smbus_read_i2c_block_data(client,
++ i, data->data + i)
++ != I2C_SMBUS_I2C_BLOCK_MAX) {
++ printk(KERN_WARNING "ddcmon.o: block read fail at 0x%.2x!\n", i);
++ goto DONE;
++ }
++ } else {
++ if (i2c_smbus_write_byte(client, 0)) {
++ printk(KERN_WARNING "ddcmon.o: read start fail at 0!\n");
++ goto DONE;
++ }
++ for (i = 0; i < DDCMON_SIZE; i++) {
++ j = i2c_smbus_read_byte(client);
++ if (j < 0) {
++ printk(KERN_WARNING "eeprom.o: read fail at 0x%.2x!\n", i);
++ goto DONE;
++ }
++ data->data[i] = (u8) j;
++ }
++ }
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++DONE:
++ up(&data->update_lock);
++}
++
++
++void ddcmon_idcall(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ results[0] = data->data[DDCMON_REG_MAN_ID + 1] |
++ (data->data[DDCMON_REG_MAN_ID] << 8);
++ results[1] = data->data[DDCMON_REG_PROD_ID + 1] |
++ (data->data[DDCMON_REG_PROD_ID] << 8);
++ *nrels_mag = 2;
++ }
++}
++
++void ddcmon_size(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ results[0] = data->data[DDCMON_REG_VERSIZE];
++ results[1] = data->data[DDCMON_REG_HORSIZE];
++ *nrels_mag = 2;
++ }
++}
++
++void ddcmon_sync(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ int i, j;
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ *nrels_mag = 4;
++ /* look for monitor limits entry */
++ for(i = DDCMON_REG_TIMBASE;
++ i < DDCMON_REG_TIMBASE +
++ (DDCMON_REG_TIMNUM * DDCMON_REG_TIMINCR);
++ i += DDCMON_REG_TIMINCR) {
++ if (data->data[i] == 0x00
++ && data->data[i + 1] == 0x00
++ && data->data[i + 2] == 0x00
++ && data->data[i + 3] == 0xfd) {
++ for(j = 0; j < 4; j++)
++ results[j] = data->data[i + j + 5];
++ return;
++ }
++ }
++ for(j = 0; j < 4; j++)
++ results[j] = 0;
++ }
++}
++
++void ddcmon_maxclock(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ int i;
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ *nrels_mag = 1;
++ /* look for monitor limits entry */
++ for(i = DDCMON_REG_TIMBASE;
++ i < DDCMON_REG_TIMBASE +
++ (DDCMON_REG_TIMNUM * DDCMON_REG_TIMINCR);
++ i += DDCMON_REG_TIMINCR) {
++ if (data->data[i] == 0x00
++ && data->data[i + 1] == 0x00
++ && data->data[i + 2] == 0x00
++ && data->data[i + 3] == 0xfd) {
++ results[0] = (data->data[i + 9] == 0xff ?
++ 0 : data->data[i + 9] * 10);
++ return;
++ }
++ }
++ results[0] = 0;
++ }
++}
++
++void ddcmon_timings(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ results[0] = data->data[DDCMON_REG_ESTABLISHED_TIMINGS] |
++ (data->data[DDCMON_REG_ESTABLISHED_TIMINGS + 1] << 8) |
++ (data->data[DDCMON_REG_ESTABLISHED_TIMINGS + 2] << 16);
++ *nrels_mag = 1;
++ }
++}
++
++void ddcmon_serial(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ results[0] = data->data[DDCMON_REG_SERIAL] |
++ (data->data[DDCMON_REG_SERIAL + 1] << 8) |
++ (data->data[DDCMON_REG_SERIAL + 2] << 16) |
++ (data->data[DDCMON_REG_SERIAL + 3] << 24);
++ *nrels_mag = 1;
++ }
++}
++
++void ddcmon_time(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ results[0] = data->data[DDCMON_REG_YEAR] + 1990;
++ results[1] = data->data[DDCMON_REG_WEEK];
++ *nrels_mag = 2;
++ }
++}
++
++void ddcmon_edid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ results[0] = data->data[DDCMON_REG_EDID_VER];
++ results[1] = data->data[DDCMON_REG_EDID_REV];
++ *nrels_mag = 2;
++ }
++}
++
++void ddcmon_gamma(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ results[0] = 100 + data->data[DDCMON_REG_GAMMA];
++ *nrels_mag = 1;
++ }
++}
++
++void ddcmon_dpms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct ddcmon_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ results[0] = data->data[DDCMON_REG_DPMS_FLAGS];
++ *nrels_mag = 1;
++ }
++}
++
++void ddcmon_standard_timing(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct ddcmon_data *data = client->data;
++ int nr = ctl_name - DDCMON_SYSCTL_TIMING1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ddcmon_update_client(client);
++ /* If both bytes of the timing are 0x00 or 0x01, then the timing
++ slot is unused. */
++ if ((data->data[DDCMON_REG_STANDARD_TIMINGS + nr * 2]
++ | data->data[DDCMON_REG_STANDARD_TIMINGS + nr * 2 + 1]) & 0xfe) {
++ results[0] = (data->data[DDCMON_REG_STANDARD_TIMINGS + nr * 2] + 31) * 8;
++ switch (data->data[DDCMON_REG_STANDARD_TIMINGS + nr * 2 + 1] >> 6) {
++ /* We don't care about rounding issues there, it really
++ should be OK without it. */
++ case 0x00:
++ results[1] = results[0]; /* unconfirmed */
++ break;
++ case 0x01:
++ results[1] = results[0] * 3 / 4;
++ break;
++ case 0x02:
++ results[1] = results[0] * 4 / 5;
++ break;
++ case 0x03:
++ results[1] = results[0] * 9 / 16;
++ break;
++ }
++ results[2] = (data->data[DDCMON_REG_STANDARD_TIMINGS + nr * 2 + 1] & 0x3f) + 60;
++ } else {
++ results[0] = 0;
++ results[1] = 0;
++ results[2] = 0;
++ }
++ *nrels_mag = 3;
++ }
++}
++
++static int __init sm_ddcmon_init(void)
++{
++ printk("ddcmon.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&ddcmon_driver);
++}
++
++static void __exit sm_ddcmon_exit(void)
++{
++ i2c_del_driver(&ddcmon_driver);
++}
++
++
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>, "
++ "Philip Edelbrock <phil@netroedge.com>, "
++ "Mark Studebaker <mdsxyz123@yahoo.com> "
++ "and Jean Delvare <khali@linux-fr.org>");
++MODULE_DESCRIPTION("DDCMON driver");
++
++module_init(sm_ddcmon_init);
++module_exit(sm_ddcmon_exit);
+--- linux-old/drivers/sensors/ds1621.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/ds1621.c Mon Dec 13 20:18:45 2004
+@@ -0,0 +1,528 @@
++/*
++ ds1621.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Christian W. Zuckschwerdt <zany@triq.net> 2000-11-23
++ based on lm75.c by Frodo Looijaard <frodol@dds.nl>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* Supports DS1621. See doc/chips/ds1621 for details */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x48, 0x4f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(ds1621);
++
++/* Many DS1621 constants specified below */
++
++/* Config register used for detection */
++/* 7 6 5 4 3 2 1 0 */
++/* |Done|THF |TLF |NVB | 1 | 0 |POL |1SHOT| */
++#define DS1621_REG_CONFIG_MASK 0x0C
++#define DS1621_REG_CONFIG_VAL 0x08
++#define DS1621_REG_CONFIG_POLARITY 0x02
++#define DS1621_REG_CONFIG_1SHOT 0x01
++#define DS1621_REG_CONFIG_DONE 0x80
++
++/* Note: the done bit is always unset if continuous conversion is in progress.
++ We need to stop the continuous conversion or switch to single shot
++ before this bit becomes available!
++ */
++
++/* The DS1621 registers */
++#define DS1621_REG_TEMP 0xAA /* word, RO */
++#define DS1621_REG_TEMP_OVER 0xA1 /* word, RW */
++#define DS1621_REG_TEMP_HYST 0xA2 /* word, RW -- it's a low temp trigger */
++#define DS1621_REG_CONF 0xAC /* byte, RW */
++#define DS1621_REG_TEMP_COUNTER 0xA8 /* byte, RO */
++#define DS1621_REG_TEMP_SLOPE 0xA9 /* byte, RO */
++#define DS1621_COM_START 0xEE /* no data */
++#define DS1621_COM_STOP 0x22 /* no data */
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++#define TEMP_FROM_REG(val) ((((val & 0x7fff) >> 7) * 5) | \
++ ((val & 0x8000)?-256:0))
++#define TEMP_TO_REG(val) (SENSORS_LIMIT((val<0 ? (0x200+((val)/5))<<7 : \
++ (((val) + 2) / 5) << 7),0,0xffff))
++#define ALARMS_FROM_REG(val) ((val) & \
++ (DS1621_ALARM_TEMP_HIGH | DS1621_ALARM_TEMP_LOW))
++#define ITEMP_FROM_REG(val) ((((val & 0x7fff) >> 8)) | \
++ ((val & 0x8000)?-256:0))
++
++/* Each client has this additional data */
++struct ds1621_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u16 temp, temp_over, temp_hyst; /* Register values, word */
++ u8 conf; /* Register encoding, combined */
++
++ char enable; /* !=0 if we're expected to restart the conversion */
++ u8 temp_int, temp_counter, temp_slope; /* Register values, byte */
++};
++
++static int ds1621_attach_adapter(struct i2c_adapter *adapter);
++static int ds1621_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void ds1621_init_client(struct i2c_client *client);
++static int ds1621_detach_client(struct i2c_client *client);
++
++static int ds1621_read_value(struct i2c_client *client, u8 reg);
++static int ds1621_write_value(struct i2c_client *client, u8 reg, u16 value);
++static void ds1621_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ds1621_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ds1621_enable(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ds1621_continuous(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ds1621_polarity(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void ds1621_update_client(struct i2c_client *client);
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver ds1621_driver = {
++ .owner = THIS_MODULE,
++ .name = "DS1621 sensor driver",
++ .id = I2C_DRIVERID_DS1621,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = ds1621_attach_adapter,
++ .detach_client = ds1621_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++#define DS1621_SYSCTL_TEMP 1200 /* Degrees Celcius * 10 */
++#define DS1621_SYSCTL_ALARMS 2001 /* bitvector */
++#define DS1621_ALARM_TEMP_HIGH 0x40
++#define DS1621_ALARM_TEMP_LOW 0x20
++#define DS1621_SYSCTL_ENABLE 2002
++#define DS1621_SYSCTL_CONTINUOUS 2003
++#define DS1621_SYSCTL_POLARITY 2004
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected DS1621. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table ds1621_dir_table_template[] = {
++ {DS1621_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ds1621_temp},
++ {DS1621_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ds1621_alarms},
++ {DS1621_SYSCTL_ENABLE, "enable", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ds1621_enable},
++ {DS1621_SYSCTL_CONTINUOUS, "continuous", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ds1621_continuous},
++ {DS1621_SYSCTL_POLARITY, "polarity", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &ds1621_polarity},
++ {0}
++};
++
++static int ds1621_id = 0;
++
++static int ds1621_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, ds1621_detect);
++}
++
++/* This function is called by i2c_detect */
++int ds1621_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i, conf;
++ struct i2c_client *new_client;
++ struct ds1621_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("ds1621.o: ds1621_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
++ I2C_FUNC_SMBUS_WORD_DATA |
++ I2C_FUNC_SMBUS_WRITE_BYTE))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access ds1621_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct ds1621_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &ds1621_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. It is lousy. */
++ if (kind < 0) {
++ conf = i2c_smbus_read_byte_data(new_client,
++ DS1621_REG_CONF);
++ if ((conf & DS1621_REG_CONFIG_MASK)
++ != DS1621_REG_CONFIG_VAL)
++ goto ERROR1;
++ }
++
++ /* Determine the chip type - only one kind supported! */
++ if (kind <= 0)
++ kind = ds1621;
++
++ if (kind == ds1621) {
++ type_name = "ds1621";
++ client_name = "DS1621 chip";
++ } else {
++#ifdef DEBUG
++ printk("ds1621.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Fill in remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = ds1621_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ ds1621_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ ds1621_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int ds1621_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct ds1621_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("ds1621.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++
++/* All registers are word-sized, except for the configuration register.
++ DS1621 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int ds1621_read_value(struct i2c_client *client, u8 reg)
++{
++ if ((reg == DS1621_REG_CONF) || (reg == DS1621_REG_TEMP_COUNTER)
++ || (reg == DS1621_REG_TEMP_SLOPE))
++ return i2c_smbus_read_byte_data(client, reg);
++ else
++ return swab16(i2c_smbus_read_word_data(client, reg));
++}
++
++/* All registers are word-sized, except for the configuration register.
++ DS1621 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int ds1621_write_value(struct i2c_client *client, u8 reg, u16 value)
++{
++ if ( (reg == DS1621_COM_START) || (reg == DS1621_COM_STOP) )
++ return i2c_smbus_write_byte(client, reg);
++ else
++ if ((reg == DS1621_REG_CONF) || (reg == DS1621_REG_TEMP_COUNTER)
++ || (reg == DS1621_REG_TEMP_SLOPE))
++ return i2c_smbus_write_byte_data(client, reg, value);
++ else
++ return i2c_smbus_write_word_data(client, reg, swab16(value));
++}
++
++static void ds1621_init_client(struct i2c_client *client)
++{
++ int reg;
++
++ reg = ds1621_read_value(client, DS1621_REG_CONF);
++ /* start the continous conversion */
++ if(reg & 0x01)
++ ds1621_write_value(client, DS1621_REG_CONF, reg & 0xfe);
++}
++
++static void ds1621_update_client(struct i2c_client *client)
++{
++ struct ds1621_data *data = client->data;
++ u8 new_conf;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting ds1621 update\n");
++#endif
++
++ data->conf = ds1621_read_value(client, DS1621_REG_CONF);
++
++ data->temp = ds1621_read_value(client,
++ DS1621_REG_TEMP);
++ data->temp_over = ds1621_read_value(client,
++ DS1621_REG_TEMP_OVER);
++ data->temp_hyst = ds1621_read_value(client,
++ DS1621_REG_TEMP_HYST);
++
++ /* wait for the DONE bit before reading extended values */
++
++ if (data->conf & DS1621_REG_CONFIG_DONE) {
++ data->temp_counter = ds1621_read_value(client,
++ DS1621_REG_TEMP_COUNTER);
++ data->temp_slope = ds1621_read_value(client,
++ DS1621_REG_TEMP_SLOPE);
++ data->temp_int = ITEMP_FROM_REG(data->temp);
++ /* restart the conversion */
++ if (data->enable)
++ ds1621_write_value(client, DS1621_COM_START, 0);
++ }
++
++ /* reset alarms if neccessary */
++ new_conf = data->conf;
++ if (data->temp < data->temp_over)
++ new_conf &= ~DS1621_ALARM_TEMP_HIGH;
++ if (data->temp > data->temp_hyst)
++ new_conf &= ~DS1621_ALARM_TEMP_LOW;
++ if (data->conf != new_conf)
++ ds1621_write_value(client, DS1621_REG_CONF,
++ new_conf);
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++void ds1621_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct ds1621_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ if (!(data->conf & DS1621_REG_CONFIG_DONE) ||
++ (data->temp_counter > data->temp_slope) ||
++ (data->temp_slope == 0)) {
++ *nrels_mag = 1;
++ } else {
++ *nrels_mag = 2;
++ }
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ds1621_update_client(client);
++ /* decide wether to calculate more precise temp */
++ if (!(data->conf & DS1621_REG_CONFIG_DONE) ||
++ (data->temp_counter > data->temp_slope) ||
++ (data->temp_slope == 0)) {
++ results[0] = TEMP_FROM_REG(data->temp_over);
++ results[1] = TEMP_FROM_REG(data->temp_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ } else {
++ results[0] = TEMP_FROM_REG(data->temp_over)*10;
++ results[1] = TEMP_FROM_REG(data->temp_hyst)*10;
++ results[2] = data->temp_int * 100 - 25 +
++ ((data->temp_slope - data->temp_counter) *
++ 100 / data->temp_slope);
++ }
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_over = TEMP_TO_REG(results[0]);
++ ds1621_write_value(client, DS1621_REG_TEMP_OVER,
++ data->temp_over);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst = TEMP_TO_REG(results[1]);
++ ds1621_write_value(client, DS1621_REG_TEMP_HYST,
++ data->temp_hyst);
++ }
++ }
++}
++
++void ds1621_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct ds1621_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ds1621_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->conf);
++ *nrels_mag = 1;
++ }
++}
++
++void ds1621_enable(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ /* If you really screw up your chip (like I did) this is */
++ /* sometimes needed to (re)start the continous conversion */
++ /* there is no data to read so this might hang your SMBus! */
++
++ struct ds1621_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ds1621_update_client(client);
++ results[0] = !(data->conf & DS1621_REG_CONFIG_DONE);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (results[0]) {
++ ds1621_write_value(client, DS1621_COM_START, 0);
++ data->enable=1;
++ } else {
++ ds1621_write_value(client, DS1621_COM_STOP, 0);
++ data->enable=0;
++ }
++ } else {
++ ds1621_write_value(client, DS1621_COM_START, 0);
++ data->enable=1;
++ }
++ }
++}
++
++void ds1621_continuous(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct ds1621_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ds1621_update_client(client);
++ results[0] = !(data->conf & DS1621_REG_CONFIG_1SHOT);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ ds1621_update_client(client);
++ if (*nrels_mag >= 1) {
++ if (results[0]) {
++ ds1621_write_value(client, DS1621_REG_CONF,
++ data->conf & ~DS1621_REG_CONFIG_1SHOT);
++ } else {
++ ds1621_write_value(client, DS1621_REG_CONF,
++ data->conf | DS1621_REG_CONFIG_1SHOT);
++ }
++ } else {
++ ds1621_write_value(client, DS1621_REG_CONF,
++ data->conf & ~DS1621_REG_CONFIG_1SHOT);
++ }
++ }
++}
++
++void ds1621_polarity(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct ds1621_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ ds1621_update_client(client);
++ results[0] = !(!(data->conf & DS1621_REG_CONFIG_POLARITY));
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ ds1621_update_client(client);
++ if (*nrels_mag >= 1) {
++ if (results[0]) {
++ ds1621_write_value(client, DS1621_REG_CONF,
++ data->conf | DS1621_REG_CONFIG_POLARITY);
++ } else {
++ ds1621_write_value(client, DS1621_REG_CONF,
++ data->conf & ~DS1621_REG_CONFIG_POLARITY);
++ }
++ }
++ }
++}
++
++static int __init sm_ds1621_init(void)
++{
++ printk("ds1621.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&ds1621_driver);
++}
++
++static void __exit sm_ds1621_exit(void)
++{
++ i2c_del_driver(&ds1621_driver);
++}
++
++
++
++MODULE_AUTHOR("Christian W. Zuckschwerdt <zany@triq.net>");
++MODULE_DESCRIPTION("DS1621 driver");
++
++module_init(sm_ds1621_init);
++module_exit(sm_ds1621_exit);
+--- linux-old/drivers/sensors/eeprom.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/eeprom.c Mon Dec 13 20:18:45 2004
+@@ -0,0 +1,418 @@
++/*
++ eeprom.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> and
++ Philip Edelbrock <phil@netroedge.com>
++
++ 2003-08-18 Jean Delvare <khali@linux-fr.org>
++ Divide the eeprom in 2-row (arbitrary) slices. This significantly
++ speeds sensors up, as well as various scripts using the eeprom
++ module.
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <linux/sched.h> /* for capable() */
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x50, 0x57, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(eeprom);
++
++static int checksum = 0;
++MODULE_PARM(checksum, "i");
++MODULE_PARM_DESC(checksum,
++ "Only accept eeproms whose checksum is correct");
++
++
++/* Many constants specified below */
++
++/* EEPROM registers */
++#define EEPROM_REG_CHECKSUM 0x3f
++
++/* possible natures */
++#define NATURE_UNKNOWN 0
++#define NATURE_VAIO 1
++
++/* Size of EEPROM in bytes */
++#define EEPROM_SIZE 256
++
++/* Each client has this additional data */
++struct eeprom_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ u8 valid; /* bitfield, bit!=0 if slice is valid */
++ unsigned long last_updated[8]; /* In jiffies, 8 slices */
++
++ u8 data[EEPROM_SIZE]; /* Register values */
++ u8 nature;
++};
++
++
++static int eeprom_attach_adapter(struct i2c_adapter *adapter);
++static int eeprom_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int eeprom_detach_client(struct i2c_client *client);
++
++#if 0
++static int eeprom_write_value(struct i2c_client *client, u8 reg,
++ u8 value);
++#endif
++
++static void eeprom_contents(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void eeprom_update_client(struct i2c_client *client, u8 slice);
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver eeprom_driver = {
++ .owner = THIS_MODULE,
++ .name = "EEPROM READER",
++ .id = I2C_DRIVERID_EEPROM,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = eeprom_attach_adapter,
++ .detach_client = eeprom_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++
++#define EEPROM_SYSCTL1 1000
++#define EEPROM_SYSCTL2 1001
++#define EEPROM_SYSCTL3 1002
++#define EEPROM_SYSCTL4 1003
++#define EEPROM_SYSCTL5 1004
++#define EEPROM_SYSCTL6 1005
++#define EEPROM_SYSCTL7 1006
++#define EEPROM_SYSCTL8 1007
++#define EEPROM_SYSCTL9 1008
++#define EEPROM_SYSCTL10 1009
++#define EEPROM_SYSCTL11 1010
++#define EEPROM_SYSCTL12 1011
++#define EEPROM_SYSCTL13 1012
++#define EEPROM_SYSCTL14 1013
++#define EEPROM_SYSCTL15 1014
++#define EEPROM_SYSCTL16 1015
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected EEPROM. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table eeprom_dir_table_template[] = {
++ {EEPROM_SYSCTL1, "00", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL2, "10", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL3, "20", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL4, "30", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL5, "40", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL6, "50", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL7, "60", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL8, "70", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL9, "80", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL10, "90", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL11, "a0", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL12, "b0", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL13, "c0", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL14, "d0", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL15, "e0", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {EEPROM_SYSCTL16, "f0", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &eeprom_contents},
++ {0}
++};
++
++static int eeprom_id = 0;
++
++static int eeprom_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, eeprom_detect);
++}
++
++/* This function is called by i2c_detect */
++int eeprom_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct eeprom_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("eeprom.o: eeprom_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access eeprom_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct eeprom_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ memset(data->data, 0xff, EEPROM_SIZE);
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &eeprom_driver;
++ new_client->flags = 0;
++
++ /* prevent 24RF08 corruption */
++ i2c_smbus_write_quick(new_client, 0);
++
++ /* Now, we do the remaining detection. It is not there, unless you force
++ the checksum to work out. */
++ if (checksum) {
++ int cs = 0;
++ for (i = 0; i <= 0x3e; i++)
++ cs += i2c_smbus_read_byte_data(new_client, i);
++ cs &= 0xff;
++ if (i2c_smbus_read_byte_data
++ (new_client, EEPROM_REG_CHECKSUM) != cs)
++ goto ERROR1;
++ }
++
++ data->nature = NATURE_UNKNOWN;
++ /* Detect the Vaio nature of EEPROMs.
++ We use the "PCG-" prefix as the signature. */
++ if (address == 0x57)
++ {
++ if (i2c_smbus_read_byte_data(new_client, 0x80) == 'P'
++ && i2c_smbus_read_byte_data(new_client, 0x81) == 'C'
++ && i2c_smbus_read_byte_data(new_client, 0x82) == 'G'
++ && i2c_smbus_read_byte_data(new_client, 0x83) == '-')
++ data->nature = NATURE_VAIO;
++ }
++
++ /* Determine the chip type - only one kind supported! */
++ if (kind <= 0)
++ kind = eeprom;
++
++ if (kind == eeprom) {
++ type_name = "eeprom";
++ client_name = "EEPROM chip";
++ } else {
++#ifdef DEBUG
++ printk("eeprom.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = eeprom_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ eeprom_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int eeprom_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct eeprom_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("eeprom.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++
++#if 0
++/* No writes yet (PAE) */
++static int eeprom_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++#endif
++
++static void eeprom_update_client(struct i2c_client *client, u8 slice)
++{
++ struct eeprom_data *data = client->data;
++ int i, j;
++
++ down(&data->update_lock);
++
++ if (!(data->valid & (1 << slice))
++ || (jiffies - data->last_updated[slice] > 300 * HZ)
++ || (jiffies < data->last_updated[slice])) {
++
++#ifdef DEBUG
++ printk("Starting eeprom update, slice %u\n", slice);
++#endif
++
++ if (i2c_check_functionality(client->adapter,
++ I2C_FUNC_SMBUS_READ_I2C_BLOCK))
++ {
++ for (i = slice << 5; i < (slice + 1) << 5;
++ i += I2C_SMBUS_I2C_BLOCK_MAX)
++ if (i2c_smbus_read_i2c_block_data(client,
++ i, data->data + i)
++ != I2C_SMBUS_I2C_BLOCK_MAX) {
++ printk(KERN_WARNING "eeprom.o: block read fail at 0x%.2x!\n", i);
++ goto DONE;
++ }
++ } else {
++ if (i2c_smbus_write_byte(client, slice << 5)) {
++ printk(KERN_WARNING "eeprom.o: read start fail at 0x%.2x!\n", slice << 5);
++ goto DONE;
++ }
++ for (i = slice << 5; i < (slice + 1) << 5; i++) {
++ j = i2c_smbus_read_byte(client);
++ if (j < 0) {
++ printk(KERN_WARNING "eeprom.o: read fail at 0x%.2x!\n", i);
++ goto DONE;
++ }
++ data->data[i] = (u8) j;
++ }
++ }
++ data->last_updated[slice] = jiffies;
++ data->valid |= (1 << slice);
++ }
++DONE:
++ up(&data->update_lock);
++}
++
++
++void eeprom_contents(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ int i;
++ int nr = ctl_name - EEPROM_SYSCTL1;
++ struct eeprom_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ eeprom_update_client(client, nr >> 1);
++ /* Hide Vaio security settings to regular users */
++ if (nr == 0 && data->nature == NATURE_VAIO
++ && !capable(CAP_SYS_ADMIN))
++ for (i = 0; i < 16; i++)
++ results[i] = 0;
++ else
++ for (i = 0; i < 16; i++)
++ results[i] = data->data[i + nr * 16];
++#ifdef DEBUG
++ printk("eeprom.o: 0x%X EEPROM contents (row %d):",
++ client->addr, nr + 1);
++ if (nr == 0 && data->nature == NATURE_VAIO)
++ printk(" <hidden for security reasons>\n");
++ else {
++ for (i = 0; i < 16; i++)
++ printk(" 0x%02X", data->data[i + nr * 16]);
++ printk("\n");
++ }
++#endif
++ *nrels_mag = 16;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++
++/* No writes to the EEPROM (yet, anyway) (PAE) */
++ printk("eeprom.o: No writes to EEPROMs supported!\n");
++ }
++}
++
++static int __init sm_eeprom_init(void)
++{
++ printk("eeprom.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&eeprom_driver);
++}
++
++static void __exit sm_eeprom_exit(void)
++{
++ i2c_del_driver(&eeprom_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("EEPROM driver");
++
++module_init(sm_eeprom_init);
++module_exit(sm_eeprom_exit);
+--- linux-old/drivers/sensors/fscpos.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/fscpos.c Mon Dec 13 20:18:46 2004
+@@ -0,0 +1,690 @@
++/*
++ fscpos.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2001 Hermann Jung <hej@odn.de>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ fujitsu siemens poseidon chip,
++ module based on lm80.c
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
++ and Philip Edelbrock <phil@netroedge.com>
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { 0x73, SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(fscpos);
++
++/* The FSCPOS registers */
++
++/* chip identification */
++#define FSCPOS_REG_IDENT_0 0x00
++#define FSCPOS_REG_IDENT_1 0x01
++#define FSCPOS_REG_IDENT_2 0x02
++#define FSCPOS_REG_REVISION 0x03
++
++/* global control and status */
++#define FSCPOS_REG_EVENT_STATE 0x04
++#define FSCPOS_REG_CONTROL 0x05
++
++/* watchdog */
++#define FSCPOS_REG_WDOG_PRESET 0x28
++#define FSCPOS_REG_WDOG_STATE 0x23
++#define FSCPOS_REG_WDOG_CONTROL 0x21
++
++/* fan 0 */
++#define FSCPOS_REG_FAN0_MIN 0x55
++#define FSCPOS_REG_FAN0_ACT 0x0e
++#define FSCPOS_REG_FAN0_STATE 0x0d
++#define FSCPOS_REG_FAN0_RIPPLE 0x0f
++
++/* fan 1 */
++#define FSCPOS_REG_FAN1_MIN 0x65
++#define FSCPOS_REG_FAN1_ACT 0x6b
++#define FSCPOS_REG_FAN1_STATE 0x62
++#define FSCPOS_REG_FAN1_RIPPLE 0x6f
++
++/* fan 2 */
++/* min speed fan2 not supported */
++#define FSCPOS_REG_FAN2_ACT 0xab
++#define FSCPOS_REG_FAN2_STATE 0xa2
++#define FSCPOS_REG_FAN2_RIPPLE 0x0af
++
++/* voltage supervision */
++#define FSCPOS_REG_VOLT_12 0x45
++#define FSCPOS_REG_VOLT_5 0x42
++#define FSCPOS_REG_VOLT_BATT 0x48
++
++/* temperatures */
++/* sensor 0 */
++#define FSCPOS_REG_TEMP0_ACT 0x64
++#define FSCPOS_REG_TEMP0_STATE 0x71
++
++/* sensor 1 */
++#define FSCPOS_REG_TEMP1_ACT 0x32
++#define FSCPOS_REG_TEMP1_STATE 0x81
++
++/* sensor 2 */
++#define FSCPOS_REG_TEMP2_ACT 0x35
++#define FSCPOS_REG_TEMP2_STATE 0x91
++
++
++
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++
++#define IN_TO_REG(val,nr) (SENSORS_LIMIT((val),0,255))
++#define IN_FROM_REG(val,nr) (val)
++
++/* Initial limits */
++
++/* For each registered FSCPOS, we need to keep some data in memory. That
++ data is pointed to by fscpos_list[NR]->data. The structure itself is
++ dynamically allocated, at the same time when a new fscpos client is
++ allocated. */
++struct fscpos_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 revision; /* revision of chip */
++ u8 global_event; /* global event status */
++ u8 global_control; /* global control register */
++ u8 watchdog[3]; /* watchdog */
++ u8 volt[3]; /* 12, 5, battery current */
++ u8 temp_act[3]; /* temperature */
++ u8 temp_status[3]; /* status of sensor */
++ u8 fan_act[3]; /* fans revolutions per second */
++ u8 fan_status[3]; /* fan status */
++ u8 fan_min[3]; /* fan min value for rps */
++ u8 fan_ripple[3]; /* divider for rps */
++};
++
++
++static int fscpos_attach_adapter(struct i2c_adapter *adapter);
++static int fscpos_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int fscpos_detach_client(struct i2c_client *client);
++
++static int fscpos_read_value(struct i2c_client *client, u8 register);
++static int fscpos_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void fscpos_update_client(struct i2c_client *client);
++static void fscpos_init_client(struct i2c_client *client);
++
++
++static void fscpos_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++static void fscpos_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void fscpos_fan_internal(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results,
++ int nr, int reg_state, int reg_min, int res_ripple);
++static void fscpos_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void fscpos_volt(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void fscpos_wdog(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int fscpos_id = 0;
++
++static struct i2c_driver fscpos_driver = {
++ .owner = THIS_MODULE,
++ .name = "FSCPOS sensor driver",
++ .id = I2C_DRIVERID_FSCPOS,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = fscpos_attach_adapter,
++ .detach_client = fscpos_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++#define FSCPOS_SYSCTL_VOLT0 1000 /* 12 volt supply */
++#define FSCPOS_SYSCTL_VOLT1 1001 /* 5 volt supply */
++#define FSCPOS_SYSCTL_VOLT2 1002 /* batterie voltage*/
++#define FSCPOS_SYSCTL_FAN0 1101 /* state, min, ripple, actual value fan 0 */
++#define FSCPOS_SYSCTL_FAN1 1102 /* state, min, ripple, actual value fan 1 */
++#define FSCPOS_SYSCTL_FAN2 1103 /* state, min, ripple, actual value fan 2 */
++#define FSCPOS_SYSCTL_TEMP0 1201 /* state and value of sensor 0, cpu die */
++#define FSCPOS_SYSCTL_TEMP1 1202 /* state and value of sensor 1, motherboard */
++#define FSCPOS_SYSCTL_TEMP2 1203 /* state and value of sensor 2, chassis */
++#define FSCPOS_SYSCTL_REV 2000 /* Revision */
++#define FSCPOS_SYSCTL_EVENT 2001 /* global event status */
++#define FSCPOS_SYSCTL_CONTROL 2002 /* global control byte */
++#define FSCPOS_SYSCTL_WDOG 2003 /* state, min, ripple, actual value fan 2 */
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected FSCPOS. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table fscpos_dir_table_template[] = {
++ {FSCPOS_SYSCTL_REV, "rev", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_in},
++ {FSCPOS_SYSCTL_EVENT, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_in},
++ {FSCPOS_SYSCTL_CONTROL, "control", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_in},
++ {FSCPOS_SYSCTL_TEMP0, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_temp},
++ {FSCPOS_SYSCTL_TEMP1, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_temp},
++ {FSCPOS_SYSCTL_TEMP2, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_temp},
++ {FSCPOS_SYSCTL_VOLT0, "in0", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_volt},
++ {FSCPOS_SYSCTL_VOLT1, "in1", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_volt},
++ {FSCPOS_SYSCTL_VOLT2, "in2", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_volt},
++ {FSCPOS_SYSCTL_FAN0, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_fan},
++ {FSCPOS_SYSCTL_FAN1, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_fan},
++ {FSCPOS_SYSCTL_FAN2, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_fan},
++ {FSCPOS_SYSCTL_WDOG, "wdog", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscpos_wdog},
++ {0}
++};
++
++static int fscpos_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, fscpos_detect);
++}
++
++int fscpos_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct fscpos_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("fscpos.o: fscpos_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access fscpos_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct fscpos_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &fscpos_driver;
++ new_client->flags = 0;
++
++ /* Do the remaining detection unless force or force_fscpos parameter */
++ if (kind < 0) {
++ if (fscpos_read_value(new_client, FSCPOS_REG_IDENT_0) != 0x50)
++ goto ERROR1;
++ if (fscpos_read_value(new_client, FSCPOS_REG_IDENT_1) != 0x45)
++ goto ERROR1;
++ if (fscpos_read_value(new_client, FSCPOS_REG_IDENT_2) != 0x47)
++ goto ERROR1;
++ }
++
++ kind = fscpos;
++
++ type_name = "fscpos";
++ client_name = "fsc poseidon chip";
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = fscpos_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ fscpos_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ fscpos_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int fscpos_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct fscpos_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("fscpos.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++static int fscpos_read_value(struct i2c_client *client, u8 reg)
++{
++#ifdef DEBUG
++ printk("fscpos: read reg 0x%02x\n",reg);
++#endif
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++static int fscpos_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++#ifdef DEBUG
++ printk("fscpos: write reg 0x%02x, val 0x%02x\n",reg, value);
++#endif
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++/* Called when we have found a new FSCPOS. It should set limits, etc. */
++static void fscpos_init_client(struct i2c_client *client)
++{
++ struct fscpos_data *data = client->data;
++
++ /* read revision from chip */
++ data->revision = fscpos_read_value(client,FSCPOS_REG_REVISION);
++ /* setup missing fan2_min value */
++ data->fan_min[2] = 0xff;
++}
++
++static void fscpos_update_client(struct i2c_client *client)
++{
++ struct fscpos_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > 2 * HZ) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting fscpos update\n");
++#endif
++ data->temp_act[0] = fscpos_read_value(client, FSCPOS_REG_TEMP0_ACT);
++ data->temp_act[1] = fscpos_read_value(client, FSCPOS_REG_TEMP1_ACT);
++ data->temp_act[2] = fscpos_read_value(client, FSCPOS_REG_TEMP2_ACT);
++ data->temp_status[0] = fscpos_read_value(client, FSCPOS_REG_TEMP0_STATE);
++ data->temp_status[1] = fscpos_read_value(client, FSCPOS_REG_TEMP1_STATE);
++ data->temp_status[2] = fscpos_read_value(client, FSCPOS_REG_TEMP2_STATE);
++
++ data->volt[0] = fscpos_read_value(client, FSCPOS_REG_VOLT_12);
++ data->volt[1] = fscpos_read_value(client, FSCPOS_REG_VOLT_5);
++ data->volt[2] = fscpos_read_value(client, FSCPOS_REG_VOLT_BATT);
++
++ data->fan_act[0] = fscpos_read_value(client, FSCPOS_REG_FAN0_ACT);
++ data->fan_act[1] = fscpos_read_value(client, FSCPOS_REG_FAN1_ACT);
++ data->fan_act[2] = fscpos_read_value(client, FSCPOS_REG_FAN2_ACT);
++ data->fan_status[0] = fscpos_read_value(client, FSCPOS_REG_FAN0_STATE);
++ data->fan_status[1] = fscpos_read_value(client, FSCPOS_REG_FAN1_STATE);
++ data->fan_status[2] = fscpos_read_value(client, FSCPOS_REG_FAN2_STATE);
++ data->fan_min[0] = fscpos_read_value(client, FSCPOS_REG_FAN0_MIN);
++ data->fan_min[1] = fscpos_read_value(client, FSCPOS_REG_FAN1_MIN);
++ /* fan2_min is not supported */
++ data->fan_ripple[0] = fscpos_read_value(client, FSCPOS_REG_FAN0_RIPPLE);
++ data->fan_ripple[1] = fscpos_read_value(client, FSCPOS_REG_FAN1_RIPPLE);
++ data->fan_ripple[2] = fscpos_read_value(client, FSCPOS_REG_FAN2_RIPPLE);
++
++ data->watchdog[0] = fscpos_read_value(client, FSCPOS_REG_WDOG_PRESET);
++ data->watchdog[1] = fscpos_read_value(client, FSCPOS_REG_WDOG_STATE);
++ data->watchdog[2] = fscpos_read_value(client, FSCPOS_REG_WDOG_CONTROL);
++
++ data->global_event = fscpos_read_value(client, FSCPOS_REG_EVENT_STATE);
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void fscpos_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscpos_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscpos_update_client(client);
++ switch(ctl_name) {
++ case FSCPOS_SYSCTL_REV:
++ results[0] = data->revision ;
++ break;
++ case FSCPOS_SYSCTL_EVENT:
++ results[0] = data->global_event & 0x1f;
++ break;
++ case FSCPOS_SYSCTL_CONTROL:
++ results[0] = data->global_control & 0x01;
++ break;
++ default:
++ printk("fscpos: ctl_name %d not supported\n",
++ ctl_name);
++ *nrels_mag = 0;
++ return;
++ }
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if((ctl_name == FSCPOS_SYSCTL_CONTROL) && (*nrels_mag >= 1)) {
++ data->global_control = (results[0] & 0x01);
++ printk("fscpos: writing 0x%02x to global_control\n",
++ data->global_control);
++ fscpos_write_value(client,FSCPOS_REG_CONTROL,
++ data->global_control);
++ }
++ else
++ printk("fscpos: writing to chip not supported\n");
++ }
++}
++
++#define TEMP_FROM_REG(val) (val-128)
++
++
++void fscpos_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscpos_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscpos_update_client(client);
++ switch(ctl_name) {
++ case FSCPOS_SYSCTL_TEMP0:
++ results[0] = data->temp_status[0] & 0x03;
++ results[1] = TEMP_FROM_REG(data->temp_act[0]);
++ break;
++ case FSCPOS_SYSCTL_TEMP1:
++ results[0] = data->temp_status[1] & 0x03;
++ results[1] = TEMP_FROM_REG(data->temp_act[1]);
++ break;
++ case FSCPOS_SYSCTL_TEMP2:
++ results[0] = data->temp_status[2] & 0x03;
++ results[1] = TEMP_FROM_REG(data->temp_act[2]);
++ break;
++ default:
++ printk("fscpos: ctl_name %d not supported\n",
++ ctl_name);
++ *nrels_mag = 0;
++ return;
++ }
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if(*nrels_mag >= 1) {
++ switch(ctl_name) {
++ case FSCPOS_SYSCTL_TEMP0:
++ data->temp_status[0] =
++ (data->temp_status[0] & ~0x02)
++ | (results[0] & 0x02);
++ printk("fscpos: writing value 0x%02x "
++ "to temp0_status\n",
++ data->temp_status[0]);
++ fscpos_write_value(client,
++ FSCPOS_REG_TEMP0_STATE,
++ data->temp_status[0] & 0x02);
++ break;
++ case FSCPOS_SYSCTL_TEMP1:
++ data->temp_status[1] = (data->temp_status[1] & ~0x02) | (results[0] & 0x02);
++ printk("fscpos: writing value 0x%02x to temp1_status\n", data->temp_status[1]);
++ fscpos_write_value(client,FSCPOS_REG_TEMP1_STATE,
++ data->temp_status[1] & 0x02);
++ break;
++ case FSCPOS_SYSCTL_TEMP2:
++ data->temp_status[2] = (data->temp_status[2] & ~0x02) | (results[0] & 0x02);
++ printk("fscpos: writing value 0x%02x to temp2_status\n", data->temp_status[2]);
++ fscpos_write_value(client,FSCPOS_REG_TEMP2_STATE,
++ data->temp_status[2] & 0x02);
++ break;
++ default:
++ printk("fscpos: ctl_name %d not supported\n",ctl_name);
++ }
++ }
++ else
++ printk("fscpos: writing to chip not supported\n");
++ }
++}
++
++#define VOLT_FROM_REG(val,mult) (val*mult/255)
++
++void fscpos_volt(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscpos_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscpos_update_client(client);
++ switch(ctl_name) {
++ case FSCPOS_SYSCTL_VOLT0:
++ results[0] = VOLT_FROM_REG(data->volt[0],1420);
++ break;
++ case FSCPOS_SYSCTL_VOLT1:
++ results[0] = VOLT_FROM_REG(data->volt[1],660);
++ break;
++ case FSCPOS_SYSCTL_VOLT2:
++ results[0] = VOLT_FROM_REG(data->volt[2],330);
++ break;
++ default:
++ printk("fscpos: ctl_name %d not supported\n",
++ ctl_name);
++ *nrels_mag = 0;
++ return;
++ }
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ printk("fscpos: writing to chip not supported\n");
++ }
++}
++
++void fscpos_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++
++ switch(ctl_name) {
++ case FSCPOS_SYSCTL_FAN0:
++ fscpos_fan_internal(client,operation,ctl_name,nrels_mag,results,
++ 0,FSCPOS_REG_FAN0_STATE,FSCPOS_REG_FAN0_MIN,
++ FSCPOS_REG_FAN0_RIPPLE);
++ break;
++ case FSCPOS_SYSCTL_FAN1:
++ fscpos_fan_internal(client,operation,ctl_name,nrels_mag,results,
++ 1,FSCPOS_REG_FAN1_STATE,FSCPOS_REG_FAN1_MIN,
++ FSCPOS_REG_FAN1_RIPPLE);
++ break;
++ case FSCPOS_SYSCTL_FAN2:
++ fscpos_fan_internal(client,operation,ctl_name,nrels_mag,results,
++ 2,FSCPOS_REG_FAN2_STATE,0xff,
++ FSCPOS_REG_FAN2_RIPPLE);
++ break;
++ default:
++ printk("fscpos: illegal fan nr %d\n",ctl_name);
++ }
++}
++
++#define RPM_FROM_REG(val) (val*60)
++
++void fscpos_fan_internal(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results, int nr,
++ int reg_state, int reg_min, int reg_ripple )
++{
++ struct fscpos_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscpos_update_client(client);
++ results[0] = data->fan_status[nr] & 0x04;
++ results[1] = data->fan_min[nr];
++ results[2] = data->fan_ripple[nr] & 0x03;
++ results[3] = RPM_FROM_REG(data->fan_act[nr]);
++ *nrels_mag = 4;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if(*nrels_mag >= 1) {
++ data->fan_status[nr] = results[0] & 0x04;
++ printk("fscpos: writing value 0x%02x to fan%d_status\n",
++ data->fan_status[nr],nr);
++ fscpos_write_value(client,reg_state,
++ data->fan_status[nr]);
++ }
++ if((*nrels_mag >= 2) && (nr < 2)) {
++ /* minimal speed for fan2 not supported */
++ data->fan_min[nr] = results[1];
++ printk("fscpos: writing value 0x%02x to fan%d_min\n",
++ data->fan_min[nr],nr);
++ fscpos_write_value(client,reg_min,
++ data->fan_min[nr]);
++ }
++ if(*nrels_mag >= 3) {
++ if((results[2] & 0x03) == 0) {
++ printk("fscpos: fan%d ripple 0 not allowed\n",nr);
++ return;
++ }
++ data->fan_ripple[nr] = results[2] & 0x03;
++ printk("fscpos: writing value 0x%02x to fan%d_ripple\n",
++ data->fan_ripple[nr],nr);
++ fscpos_write_value(client,reg_ripple,
++ data->fan_ripple[nr]);
++ }
++ }
++}
++
++void fscpos_wdog(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscpos_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscpos_update_client(client);
++ results[0] = data->watchdog[0] ;
++ results[1] = data->watchdog[1] & 0x02;
++ results[2] = data->watchdog[2] & 0xb0;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->watchdog[0] = results[0] & 0xff;
++ printk("fscpos: writing value 0x%02x to wdog_preset\n",
++ data->watchdog[0]);
++ fscpos_write_value(client,FSCPOS_REG_WDOG_PRESET,
++ data->watchdog[0]);
++ }
++ if (*nrels_mag >= 2) {
++ data->watchdog[1] = results[1] & 0x02;
++ printk("fscpos: writing value 0x%02x to wdog_state\n",
++ data->watchdog[1]);
++ fscpos_write_value(client,FSCPOS_REG_WDOG_STATE,
++ data->watchdog[1]);
++ }
++ if (*nrels_mag >= 3) {
++ data->watchdog[2] = results[2] & 0xb0;
++ printk("fscpos: writing value 0x%02x to wdog_control\n",
++ data->watchdog[2]);
++ fscpos_write_value(client,FSCPOS_REG_WDOG_CONTROL,
++ data->watchdog[2]);
++ }
++ }
++}
++
++static int __init sm_fscpos_init(void)
++{
++ printk("fscpos.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&fscpos_driver);
++}
++
++static void __exit sm_fscpos_exit(void)
++{
++ i2c_del_driver(&fscpos_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Hermann Jung <hej@odn.de> based on work from Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("fujitsu siemens poseidon chip driver");
++MODULE_LICENSE("GPL");
++
++module_init(sm_fscpos_init);
++module_exit(sm_fscpos_exit);
+--- linux-old/drivers/sensors/fscscy.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/fscscy.c Mon Dec 13 20:18:46 2004
+@@ -0,0 +1,915 @@
++/*
++ fscscy.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ fujitsu siemens scylla chip,
++ module based on lm80.c, fscpos.c
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
++ and Philip Edelbrock <phil@netroedge.com>
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { 0x73, SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(fscscy);
++
++/* The FSCSCY registers */
++
++/* chip identification */
++#define FSCSCY_REG_IDENT_0 0x00
++#define FSCSCY_REG_IDENT_1 0x01
++#define FSCSCY_REG_IDENT_2 0x02
++#define FSCSCY_REG_REVISION 0x03
++
++/* global control and status */
++#define FSCSCY_REG_EVENT_STATE 0x04
++#define FSCSCY_REG_CONTROL 0x05
++
++/* watchdog */
++#define FSCSCY_REG_WDOG_PRESET 0x28
++#define FSCSCY_REG_WDOG_STATE 0x23
++#define FSCSCY_REG_WDOG_CONTROL 0x21
++
++/*
++** Fan definitions
++**
++** _RPMMIN: Minimum speed. Can be set via interface, but only for three of the fans
++** FAN1_RPMMIN is wired to Fan 0 (CPU Fans)
++** FAN4_RPMMIN is wired to Fan 2 (PS Fans ??)
++** FAN5_RPMMIN is wired to Fan 3 (AUX Fans ??)
++** _ACT: Actual Fan Speed
++** _STATE: Fan status register
++** _RIPPLE: Fan speed multiplier
++*/
++
++/* fan 0 */
++#define FSCSCY_REG_FAN0_RPMMIN 0x65
++#define FSCSCY_REG_FAN0_ACT 0x6b
++#define FSCSCY_REG_FAN0_STATE 0x62
++#define FSCSCY_REG_FAN0_RIPPLE 0x6f
++
++/* fan 1 */
++#define FSCSCY_REG_FAN1_RPMMIN FSCSCY_REG_FAN0_RPMMIN
++#define FSCSCY_REG_FAN1_ACT 0x6c
++#define FSCSCY_REG_FAN1_STATE 0x61
++#define FSCSCY_REG_FAN1_RIPPLE 0x6f
++
++/* fan 2 */
++#define FSCSCY_REG_FAN2_RPMMIN 0x55
++#define FSCSCY_REG_FAN2_ACT 0x0e
++#define FSCSCY_REG_FAN2_STATE 0x0d
++#define FSCSCY_REG_FAN2_RIPPLE 0x0f
++
++/* fan 3 */
++#define FSCSCY_REG_FAN3_RPMMIN 0xa5
++#define FSCSCY_REG_FAN3_ACT 0xab
++#define FSCSCY_REG_FAN3_STATE 0xa2
++#define FSCSCY_REG_FAN3_RIPPLE 0xaf
++
++/* fan 4 */
++#define FSCSCY_REG_FAN4_RPMMIN FSCSCY_REG_FAN2_RPMMIN
++#define FSCSCY_REG_FAN4_ACT 0x5c
++#define FSCSCY_REG_FAN4_STATE 0x52
++#define FSCSCY_REG_FAN4_RIPPLE 0x0f
++
++/* fan 5 */
++#define FSCSCY_REG_FAN5_RPMMIN FSCSCY_REG_FAN3_RPMMIN
++#define FSCSCY_REG_FAN5_ACT 0xbb
++#define FSCSCY_REG_FAN5_STATE 0xb2
++#define FSCSCY_REG_FAN5_RIPPLE 0xbf
++
++/* voltage supervision */
++#define FSCSCY_REG_VOLT_12 0x45
++#define FSCSCY_REG_VOLT_5 0x42
++#define FSCSCY_REG_VOLT_BATT 0x48
++
++/* temperatures */
++/* sensor 0 */
++#define FSCSCY_REG_TEMP0_ACT 0x64
++#define FSCSCY_REG_TEMP0_STATE 0x71
++#define FSCSCY_REG_TEMP0_LIM 0x76
++
++/* sensor 1 */
++#define FSCSCY_REG_TEMP1_ACT 0xD0
++#define FSCSCY_REG_TEMP1_STATE 0xD1
++#define FSCSCY_REG_TEMP1_LIM 0xD6
++
++/* sensor 2 */
++#define FSCSCY_REG_TEMP2_ACT 0x32
++#define FSCSCY_REG_TEMP2_STATE 0x81
++#define FSCSCY_REG_TEMP2_LIM 0x86
++
++/* sensor3 */
++#define FSCSCY_REG_TEMP3_ACT 0x35
++#define FSCSCY_REG_TEMP3_STATE 0x91
++#define FSCSCY_REG_TEMP3_LIM 0x96
++
++/* PCI Load */
++#define FSCSCY_REG_PCILOAD 0x1a
++
++/* Intrusion Sensor */
++#define FSCSCY_REG_INTR_STATE 0x13
++#define FSCSCY_REG_INTR_CTRL 0x12
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++
++#define IN_TO_REG(val,nr) (SENSORS_LIMIT((val),0,255))
++#define IN_FROM_REG(val,nr) (val)
++
++/* Initial limits */
++
++/* For each registered FSCSCY, we need to keep some data in memory. That
++ data is pointed to by fscscy_list[NR]->data. The structure itself is
++ dynamically allocated, at the same time when a new fscscy client is
++ allocated. */
++struct fscscy_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 revision; /* revision of chip */
++ u8 global_event; /* global event status */
++ u8 global_control; /* global control register */
++ u8 watchdog[3]; /* watchdog */
++ u8 volt[3]; /* 12, 5, battery current */
++ u8 volt_min[3]; /* minimum voltages over module "lifetime" */
++ u8 volt_max[3]; /* maximum voltages over module "lifetime" */
++ u8 temp_act[4]; /* temperature */
++ u8 temp_status[4]; /* status of temp. sensor */
++ u8 temp_lim[4]; /* limit temperature of temp. sensor */
++ u8 temp_min[4]; /* minimum of temp. sensor, this is just calculated by the module */
++ u8 temp_max[4]; /* maximum of temp. sensor, this is just calculsted by the module */
++ u8 fan_act[6]; /* fans revolutions per second */
++ u8 fan_status[6]; /* fan status */
++ u8 fan_rpmmin[6]; /* fan min value for rps */
++ u8 fan_ripple[6]; /* divider for rps */
++ u8 fan_min[6]; /* minimum RPM over module "lifetime" */
++ u8 fan_max[6]; /* maximum RPM over module "lifetime" */
++ u8 pciload; /* PCILoad value */
++ u8 intr_status; /* Intrusion Status */
++ u8 intr_control; /* Intrusion Control */
++};
++
++
++static int fscscy_attach_adapter(struct i2c_adapter *adapter);
++static int fscscy_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int fscscy_detach_client(struct i2c_client *client);
++
++static int fscscy_read_value(struct i2c_client *client, u8 register);
++static int fscscy_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void fscscy_update_client(struct i2c_client *client);
++static void fscscy_init_client(struct i2c_client *client);
++
++
++static void fscscy_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++static void fscscy_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void fscscy_fan_internal(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results,
++ int nr, int reg_state, int reg_min, int res_ripple);
++static void fscscy_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void fscscy_volt(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void fscscy_wdog(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void fscscy_pciload(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void fscscy_intrusion(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int fscscy_id = 0;
++
++static struct i2c_driver fscscy_driver = {
++ .owner = THIS_MODULE,
++ .name = "FSCSCY sensor driver",
++ .id = I2C_DRIVERID_FSCSCY,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = fscscy_attach_adapter,
++ .detach_client = fscscy_detach_client,
++};
++
++/* The /proc/sys entries */
++
++/* -- SENSORS SYSCTL START -- */
++#define FSCSCY_SYSCTL_VOLT0 1000 /* 12 volt supply */
++#define FSCSCY_SYSCTL_VOLT1 1001 /* 5 volt supply */
++#define FSCSCY_SYSCTL_VOLT2 1002 /* batterie voltage*/
++#define FSCSCY_SYSCTL_FAN0 1101 /* state, min, ripple, actual value fan 0 */
++#define FSCSCY_SYSCTL_FAN1 1102 /* state, min, ripple, actual value fan 1 */
++#define FSCSCY_SYSCTL_FAN2 1103 /* state, min, ripple, actual value fan 2 */
++#define FSCSCY_SYSCTL_FAN3 1104 /* state, min, ripple, actual value fan 3 */
++#define FSCSCY_SYSCTL_FAN4 1105 /* state, min, ripple, actual value fan 4 */
++#define FSCSCY_SYSCTL_FAN5 1106 /* state, min, ripple, actual value fan 5 */
++#define FSCSCY_SYSCTL_TEMP0 1201 /* state and value of sensor 0, cpu die */
++#define FSCSCY_SYSCTL_TEMP1 1202 /* state and value of sensor 1, motherboard */
++#define FSCSCY_SYSCTL_TEMP2 1203 /* state and value of sensor 2, chassis */
++#define FSCSCY_SYSCTL_TEMP3 1204 /* state and value of sensor 3, chassis */
++#define FSCSCY_SYSCTL_REV 2000 /* Revision */
++#define FSCSCY_SYSCTL_EVENT 2001 /* global event status */
++#define FSCSCY_SYSCTL_CONTROL 2002 /* global control byte */
++#define FSCSCY_SYSCTL_WDOG 2003 /* state, min, ripple, actual value fan 2 */
++#define FSCSCY_SYSCTL_PCILOAD 2004 /* PCILoad value */
++#define FSCSCY_SYSCTL_INTRUSION 2005 /* state, control for intrusion sensor */
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected FSCSCY. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table fscscy_dir_table_template[] = {
++ {FSCSCY_SYSCTL_REV, "rev", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_in},
++ {FSCSCY_SYSCTL_EVENT, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_in},
++ {FSCSCY_SYSCTL_CONTROL, "control", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_in},
++ {FSCSCY_SYSCTL_TEMP0, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_temp},
++ {FSCSCY_SYSCTL_TEMP1, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_temp},
++ {FSCSCY_SYSCTL_TEMP2, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_temp},
++ {FSCSCY_SYSCTL_TEMP3, "temp4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_temp},
++ {FSCSCY_SYSCTL_VOLT0, "in0", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_volt},
++ {FSCSCY_SYSCTL_VOLT1, "in1", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_volt},
++ {FSCSCY_SYSCTL_VOLT2, "in2", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_volt},
++ {FSCSCY_SYSCTL_FAN0, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_fan},
++ {FSCSCY_SYSCTL_FAN1, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_fan},
++ {FSCSCY_SYSCTL_FAN2, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_fan},
++ {FSCSCY_SYSCTL_FAN3, "fan4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_fan},
++ {FSCSCY_SYSCTL_FAN4, "fan5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_fan},
++ {FSCSCY_SYSCTL_FAN5, "fan6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_fan},
++ {FSCSCY_SYSCTL_WDOG, "wdog", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_wdog},
++ {FSCSCY_SYSCTL_PCILOAD, "pciload", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_pciload},
++ {FSCSCY_SYSCTL_INTRUSION, "intrusion", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &fscscy_intrusion},
++ {0}
++};
++
++static int fscscy_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, fscscy_detect);
++}
++
++int fscscy_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct fscscy_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("fscscy.o: fscscy_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access fscscy_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct fscscy_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &fscscy_driver;
++ new_client->flags = 0;
++
++ /* Do the remaining detection unless force or force_fscscy parameter */
++ if (kind < 0) {
++ if (fscscy_read_value(new_client, FSCSCY_REG_IDENT_0) != 0x53)
++ goto ERROR1;
++ if (fscscy_read_value(new_client, FSCSCY_REG_IDENT_1) != 0x43)
++ goto ERROR1;
++ if (fscscy_read_value(new_client, FSCSCY_REG_IDENT_2) != 0x59)
++ goto ERROR1;
++ }
++
++ kind = fscscy;
++
++ type_name = "fscscy";
++ client_name = "fsc scylla chip";
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = fscscy_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ fscscy_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ fscscy_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int fscscy_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct fscscy_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("fscscy.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++static int fscscy_read_value(struct i2c_client *client, u8 reg)
++{
++#ifdef DEBUG
++ printk("fscscy: read reg 0x%02x\n",reg);
++#endif
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++static int fscscy_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++#ifdef DEBUG
++ printk("fscscy: write reg 0x%02x, val 0x%02x\n",reg, value);
++#endif
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++/* Called when we have found a new FSCSCY. It should set limits, etc. */
++static void fscscy_init_client(struct i2c_client *client)
++{
++ struct fscscy_data *data = client->data;
++
++ /* read revision from chip */
++ data->revision = fscscy_read_value(client,FSCSCY_REG_REVISION);
++
++ /* Initialize min/max values from chip */
++ data->fan_min[0] = data->fan_max[0] = fscscy_read_value(client, FSCSCY_REG_FAN0_ACT);
++ data->fan_min[1] = data->fan_max[1] = fscscy_read_value(client, FSCSCY_REG_FAN1_ACT);
++ data->fan_min[2] = data->fan_max[2] = fscscy_read_value(client, FSCSCY_REG_FAN2_ACT);
++ data->fan_min[3] = data->fan_max[3] = fscscy_read_value(client, FSCSCY_REG_FAN3_ACT);
++ data->fan_min[4] = data->fan_max[4] = fscscy_read_value(client, FSCSCY_REG_FAN4_ACT);
++ data->fan_min[4] = data->fan_max[5] = fscscy_read_value(client, FSCSCY_REG_FAN5_ACT);
++ data->temp_min[0] = data->temp_max[0] = fscscy_read_value(client, FSCSCY_REG_TEMP0_ACT);
++ data->temp_min[1] = data->temp_max[1] = fscscy_read_value(client, FSCSCY_REG_TEMP1_ACT);
++ data->temp_min[2] = data->temp_max[2] = fscscy_read_value(client, FSCSCY_REG_TEMP2_ACT);
++ data->temp_min[3] = data->temp_max[3] = fscscy_read_value(client, FSCSCY_REG_TEMP3_ACT);
++ data->volt_min[0] = data->volt_max[0] = fscscy_read_value(client, FSCSCY_REG_VOLT_12);
++ data->volt_min[1] = data->volt_max[1] = fscscy_read_value(client, FSCSCY_REG_VOLT_5);
++ data->volt_min[2] = data->volt_max[2] = fscscy_read_value(client, FSCSCY_REG_VOLT_BATT);
++}
++
++static void fscscy_update_client(struct i2c_client *client)
++{
++ struct fscscy_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > 2 * HZ) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting fscscy update\n");
++#endif
++ data->temp_act[0] = fscscy_read_value(client, FSCSCY_REG_TEMP0_ACT);
++ if (data->temp_min[0] > data->temp_act[0]) data->temp_min[0] = data->temp_act[0];
++ if (data->temp_max[0] < data->temp_act[0]) data->temp_max[0] = data->temp_act[0];
++ data->temp_act[1] = fscscy_read_value(client, FSCSCY_REG_TEMP1_ACT);
++ if (data->temp_min[1] > data->temp_act[1]) data->temp_min[1] = data->temp_act[1];
++ if (data->temp_max[1] < data->temp_act[1]) data->temp_max[1] = data->temp_act[1];
++ data->temp_act[2] = fscscy_read_value(client, FSCSCY_REG_TEMP2_ACT);
++ if (data->temp_min[2] > data->temp_act[2]) data->temp_min[2] = data->temp_act[2];
++ if (data->temp_max[2] < data->temp_act[2]) data->temp_max[2] = data->temp_act[2];
++ data->temp_act[3] = fscscy_read_value(client, FSCSCY_REG_TEMP3_ACT);
++ if (data->temp_min[3] > data->temp_act[3]) data->temp_min[3] = data->temp_act[3];
++ if (data->temp_max[3] < data->temp_act[3]) data->temp_max[3] = data->temp_act[3];
++ data->temp_status[0] = fscscy_read_value(client, FSCSCY_REG_TEMP0_STATE);
++ data->temp_status[1] = fscscy_read_value(client, FSCSCY_REG_TEMP1_STATE);
++ data->temp_status[2] = fscscy_read_value(client, FSCSCY_REG_TEMP2_STATE);
++ data->temp_status[3] = fscscy_read_value(client, FSCSCY_REG_TEMP3_STATE);
++ data->temp_lim[0] = fscscy_read_value(client, FSCSCY_REG_TEMP0_LIM);
++ data->temp_lim[1] = fscscy_read_value(client, FSCSCY_REG_TEMP1_LIM);
++ data->temp_lim[2] = fscscy_read_value(client, FSCSCY_REG_TEMP2_LIM);
++ data->temp_lim[3] = fscscy_read_value(client, FSCSCY_REG_TEMP3_LIM);
++
++ data->volt[0] = fscscy_read_value(client, FSCSCY_REG_VOLT_12);
++ if (data->volt_min[0] > data->volt[0]) data->volt_min[0] = data->volt[0];
++ if (data->volt_max[0] < data->volt[0]) data->volt_max[0] = data->volt[0];
++ data->volt[1] = fscscy_read_value(client, FSCSCY_REG_VOLT_5);
++ if (data->volt_min[1] > data->volt[1]) data->volt_min[1] = data->volt[1];
++ if (data->volt_max[1] < data->volt[1]) data->volt_max[1] = data->volt[1];
++ data->volt[2] = fscscy_read_value(client, FSCSCY_REG_VOLT_BATT);
++ if (data->volt_min[2] > data->volt[2]) data->volt_min[2] = data->volt[2];
++ if (data->volt_max[2] < data->volt[2]) data->volt_max[2] = data->volt[2];
++
++ data->fan_act[0] = fscscy_read_value(client, FSCSCY_REG_FAN0_ACT);
++ if (data->fan_min[0] > data->fan_act[0]) data->fan_min[0] = data->fan_act[0];
++ if (data->fan_max[0] < data->fan_act[0]) data->fan_max[0] = data->fan_act[0];
++ data->fan_act[1] = fscscy_read_value(client, FSCSCY_REG_FAN1_ACT);
++ if (data->fan_min[1] > data->fan_act[1]) data->fan_min[1] = data->fan_act[1];
++ if (data->fan_max[1] < data->fan_act[1]) data->fan_max[1] = data->fan_act[1];
++ data->fan_act[2] = fscscy_read_value(client, FSCSCY_REG_FAN2_ACT);
++ if (data->fan_min[2] > data->fan_act[2]) data->fan_min[2] = data->fan_act[2];
++ if (data->fan_max[2] < data->fan_act[2]) data->fan_max[2] = data->fan_act[2];
++ data->fan_act[3] = fscscy_read_value(client, FSCSCY_REG_FAN3_ACT);
++ if (data->fan_min[3] > data->fan_act[3]) data->fan_min[3] = data->fan_act[3];
++ if (data->fan_max[3] < data->fan_act[3]) data->fan_max[3] = data->fan_act[3];
++ data->fan_act[4] = fscscy_read_value(client, FSCSCY_REG_FAN4_ACT);
++ if (data->fan_min[4] > data->fan_act[4]) data->fan_min[4] = data->fan_act[4];
++ if (data->fan_max[4] < data->fan_act[4]) data->fan_max[4] = data->fan_act[4];
++ data->fan_act[5] = fscscy_read_value(client, FSCSCY_REG_FAN5_ACT);
++ if (data->fan_min[5] > data->fan_act[5]) data->fan_min[5] = data->fan_act[5];
++ if (data->fan_max[5] < data->fan_act[5]) data->fan_max[5] = data->fan_act[5];
++ data->fan_status[0] = fscscy_read_value(client, FSCSCY_REG_FAN0_STATE);
++ data->fan_status[1] = fscscy_read_value(client, FSCSCY_REG_FAN1_STATE);
++ data->fan_status[2] = fscscy_read_value(client, FSCSCY_REG_FAN2_STATE);
++ data->fan_status[3] = fscscy_read_value(client, FSCSCY_REG_FAN3_STATE);
++ data->fan_status[4] = fscscy_read_value(client, FSCSCY_REG_FAN4_STATE);
++ data->fan_status[5] = fscscy_read_value(client, FSCSCY_REG_FAN5_STATE);
++ data->fan_rpmmin[0] = fscscy_read_value(client, FSCSCY_REG_FAN0_RPMMIN);
++ data->fan_rpmmin[1] = fscscy_read_value(client, FSCSCY_REG_FAN1_RPMMIN);
++ data->fan_rpmmin[2] = fscscy_read_value(client, FSCSCY_REG_FAN2_RPMMIN);
++ data->fan_rpmmin[3] = fscscy_read_value(client, FSCSCY_REG_FAN3_RPMMIN);
++ data->fan_rpmmin[4] = fscscy_read_value(client, FSCSCY_REG_FAN4_RPMMIN);
++ data->fan_rpmmin[5] = fscscy_read_value(client, FSCSCY_REG_FAN5_RPMMIN);
++ data->fan_ripple[0] = fscscy_read_value(client, FSCSCY_REG_FAN0_RIPPLE);
++ data->fan_ripple[1] = fscscy_read_value(client, FSCSCY_REG_FAN1_RIPPLE);
++ data->fan_ripple[2] = fscscy_read_value(client, FSCSCY_REG_FAN2_RIPPLE);
++ data->fan_ripple[3] = fscscy_read_value(client, FSCSCY_REG_FAN3_RIPPLE);
++ data->fan_ripple[4] = fscscy_read_value(client, FSCSCY_REG_FAN4_RIPPLE);
++ data->fan_ripple[5] = fscscy_read_value(client, FSCSCY_REG_FAN5_RIPPLE);
++
++ data->watchdog[0] = fscscy_read_value(client, FSCSCY_REG_WDOG_PRESET);
++ data->watchdog[1] = fscscy_read_value(client, FSCSCY_REG_WDOG_STATE);
++ data->watchdog[2] = fscscy_read_value(client, FSCSCY_REG_WDOG_CONTROL);
++
++ data->global_event = fscscy_read_value(client, FSCSCY_REG_EVENT_STATE);
++ data->global_control = fscscy_read_value(client, FSCSCY_REG_CONTROL);
++ data->pciload = fscscy_read_value(client, FSCSCY_REG_PCILOAD);
++ data->intr_status = fscscy_read_value(client, FSCSCY_REG_INTR_STATE);
++ data->intr_control = fscscy_read_value(client, FSCSCY_REG_INTR_CTRL);
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void fscscy_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscscy_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscscy_update_client(client);
++ switch(ctl_name) {
++ case FSCSCY_SYSCTL_REV:
++ results[0] = data->revision ;
++ break;
++ case FSCSCY_SYSCTL_EVENT:
++ results[0] = data->global_event & 0x9f; /* MKN */
++ break;
++ case FSCSCY_SYSCTL_CONTROL:
++ results[0] = data->global_control & 0x19; /* MKN */
++ break;
++ default:
++ printk("fscscy: ctl_name %d not supported\n",
++ ctl_name);
++ *nrels_mag = 0;
++ return;
++ }
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if((ctl_name == FSCSCY_SYSCTL_CONTROL) && (*nrels_mag >= 1)) {
++ data->global_control = (data->global_control & 0x18) | (results[0] & 0x01); /* MKN */
++ printk("fscscy: writing 0x%02x to global_control\n",
++ data->global_control);
++ fscscy_write_value(client,FSCSCY_REG_CONTROL,
++ data->global_control);
++ }
++ else
++ printk("fscscy: writing to chip not supported\n");
++ }
++}
++
++#define TEMP_FROM_REG(val) (val-128)
++
++
++void fscscy_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscscy_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscscy_update_client(client);
++ switch(ctl_name) {
++ case FSCSCY_SYSCTL_TEMP0:
++ results[0] = data->temp_status[0] & 0x03;
++ results[1] = TEMP_FROM_REG(data->temp_act[0]);
++ results[2] = TEMP_FROM_REG(data->temp_lim[0]);
++ results[3] = TEMP_FROM_REG(data->temp_min[0]);
++ results[4] = TEMP_FROM_REG(data->temp_max[0]);
++ break;
++ case FSCSCY_SYSCTL_TEMP1:
++ results[0] = data->temp_status[1] & 0x03;
++ results[1] = TEMP_FROM_REG(data->temp_act[1]);
++ results[2] = TEMP_FROM_REG(data->temp_lim[1]);
++ results[3] = TEMP_FROM_REG(data->temp_min[1]);
++ results[4] = TEMP_FROM_REG(data->temp_max[1]);
++ break;
++ case FSCSCY_SYSCTL_TEMP2:
++ results[0] = data->temp_status[2] & 0x03;
++ results[1] = TEMP_FROM_REG(data->temp_act[2]);
++ results[2] = TEMP_FROM_REG(data->temp_lim[2]);
++ results[3] = TEMP_FROM_REG(data->temp_min[2]);
++ results[4] = TEMP_FROM_REG(data->temp_max[2]);
++ break;
++ case FSCSCY_SYSCTL_TEMP3:
++ results[0] = data->temp_status[3] & 0x03;
++ results[1] = TEMP_FROM_REG(data->temp_act[3]);
++ results[2] = TEMP_FROM_REG(data->temp_lim[3]);
++ results[3] = TEMP_FROM_REG(data->temp_min[3]);
++ results[4] = TEMP_FROM_REG(data->temp_max[3]);
++ break;
++ default:
++ printk("fscscy: ctl_name %d not supported\n",
++ ctl_name);
++ *nrels_mag = 0;
++ return;
++ }
++ *nrels_mag = 5;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if(*nrels_mag >= 1) {
++ switch(ctl_name) {
++ case FSCSCY_SYSCTL_TEMP0:
++ data->temp_status[0] =
++ (data->temp_status[0] & ~0x02)
++ | (results[0] & 0x02);
++ printk("fscscy: writing value 0x%02x "
++ "to temp0_status\n",
++ data->temp_status[0]);
++ fscscy_write_value(client,
++ FSCSCY_REG_TEMP0_STATE,
++ data->temp_status[0] & 0x02);
++ break;
++ case FSCSCY_SYSCTL_TEMP1:
++ data->temp_status[1] = (data->temp_status[1] & ~0x02) | (results[0] & 0x02);
++ printk("fscscy: writing value 0x%02x to temp1_status\n", data->temp_status[1]);
++ fscscy_write_value(client,FSCSCY_REG_TEMP1_STATE,
++ data->temp_status[1] & 0x02);
++ break;
++ case FSCSCY_SYSCTL_TEMP2:
++ data->temp_status[2] = (data->temp_status[2] & ~0x02) | (results[0] & 0x02);
++ printk("fscscy: writing value 0x%02x to temp2_status\n", data->temp_status[2]);
++ fscscy_write_value(client,FSCSCY_REG_TEMP2_STATE,
++ data->temp_status[2] & 0x02);
++ break;
++ case FSCSCY_SYSCTL_TEMP3:
++ data->temp_status[3] = (data->temp_status[3] & ~0x02) | (results[0] & 0x02);
++ printk("fscscy: writing value 0x%02x to temp3_status\n", data->temp_status[3]);
++ fscscy_write_value(client,FSCSCY_REG_TEMP3_STATE,
++ data->temp_status[3] & 0x02);
++ break;
++ default:
++ printk("fscscy: ctl_name %d not supported\n",ctl_name);
++ }
++ }
++ else
++ printk("fscscy: writing to chip not supported\n");
++ }
++}
++
++#define VOLT_FROM_REG(val,mult) (val*mult/255)
++
++void fscscy_volt(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscscy_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscscy_update_client(client);
++ switch(ctl_name) {
++ case FSCSCY_SYSCTL_VOLT0:
++ results[0] = VOLT_FROM_REG(data->volt[0],1420);
++ results[1] = VOLT_FROM_REG(data->volt_min[0],1420);
++ results[2] = VOLT_FROM_REG(data->volt_max[0],1420);
++ break;
++ case FSCSCY_SYSCTL_VOLT1:
++ results[0] = VOLT_FROM_REG(data->volt[1],660);
++ results[1] = VOLT_FROM_REG(data->volt_min[1],660);
++ results[2] = VOLT_FROM_REG(data->volt_max[1],660);
++ break;
++ case FSCSCY_SYSCTL_VOLT2:
++ results[0] = VOLT_FROM_REG(data->volt[2],330);
++ results[1] = VOLT_FROM_REG(data->volt_min[2],330);
++ results[2] = VOLT_FROM_REG(data->volt_max[2],330);
++ break;
++ default:
++ printk("fscscy: ctl_name %d not supported\n",
++ ctl_name);
++ *nrels_mag = 0;
++ return;
++ }
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ printk("fscscy: writing to chip not supported\n");
++ }
++}
++
++void fscscy_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++
++ switch(ctl_name) {
++ case FSCSCY_SYSCTL_FAN0:
++ fscscy_fan_internal(client,operation,ctl_name,nrels_mag,results,
++ 0,FSCSCY_REG_FAN0_STATE,FSCSCY_REG_FAN0_RPMMIN,
++ FSCSCY_REG_FAN0_RIPPLE);
++ break;
++ case FSCSCY_SYSCTL_FAN1:
++ fscscy_fan_internal(client,operation,ctl_name,nrels_mag,results,
++ 1,FSCSCY_REG_FAN1_STATE,FSCSCY_REG_FAN1_RPMMIN,
++ FSCSCY_REG_FAN1_RIPPLE);
++ break;
++ case FSCSCY_SYSCTL_FAN2:
++ fscscy_fan_internal(client,operation,ctl_name,nrels_mag,results,
++ 2,FSCSCY_REG_FAN2_STATE,FSCSCY_REG_FAN2_RPMMIN,
++ FSCSCY_REG_FAN2_RIPPLE);
++ break;
++ case FSCSCY_SYSCTL_FAN3:
++ fscscy_fan_internal(client,operation,ctl_name,nrels_mag,results,
++ 3,FSCSCY_REG_FAN3_STATE,FSCSCY_REG_FAN3_RPMMIN,
++ FSCSCY_REG_FAN3_RIPPLE);
++ break;
++ case FSCSCY_SYSCTL_FAN4:
++ fscscy_fan_internal(client,operation,ctl_name,nrels_mag,results,
++ 4,FSCSCY_REG_FAN4_STATE,FSCSCY_REG_FAN4_RPMMIN,
++ FSCSCY_REG_FAN4_RIPPLE);
++ break;
++ case FSCSCY_SYSCTL_FAN5:
++ fscscy_fan_internal(client,operation,ctl_name,nrels_mag,results,
++ 5,FSCSCY_REG_FAN5_STATE,FSCSCY_REG_FAN5_RPMMIN,
++ FSCSCY_REG_FAN5_RIPPLE);
++ break;
++ default:
++ printk("fscscy: illegal fan nr %d\n",ctl_name);
++ }
++}
++
++#define RPM_FROM_REG(val) (val*60)
++
++void fscscy_fan_internal(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results, int nr,
++ int reg_state, int reg_min, int reg_ripple )
++{
++ struct fscscy_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscscy_update_client(client);
++ results[0] = data->fan_status[nr] & 0x0f; /* MKN */
++ results[1] = data->fan_rpmmin[nr];
++ results[2] = data->fan_ripple[nr] & 0x03;
++ results[3] = RPM_FROM_REG(data->fan_act[nr]);
++ results[4] = RPM_FROM_REG(data->fan_min[nr]);
++ results[5] = RPM_FROM_REG(data->fan_max[nr]);
++ *nrels_mag = 6;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if(*nrels_mag >= 1) {
++ data->fan_status[nr] = (data->fan_status[nr] & 0x0b) | (results[0] & 0x04); /* MKN */
++ printk("fscscy: writing value 0x%02x to fan%d_status\n",
++ data->fan_status[nr],nr);
++ fscscy_write_value(client,reg_state,
++ data->fan_status[nr]);
++ }
++ if(*nrels_mag >= 2) {
++ if((results[1] & 0xff) == 0) {
++ printk("fscscy: fan%d rpmmin 0 not allowed for safety reasons\n",nr);
++ return;
++ }
++ data->fan_rpmmin[nr] = results[1];
++ printk("fscscy: writing value 0x%02x to fan%d_min\n",
++ data->fan_rpmmin[nr],nr);
++ fscscy_write_value(client,reg_min,
++ data->fan_rpmmin[nr]);
++ }
++ if(*nrels_mag >= 3) {
++ if((results[2] & 0x03) == 0) {
++ printk("fscscy: fan%d ripple 0 is nonsense/not allowed\n",nr);
++ return;
++ }
++ data->fan_ripple[nr] = results[2] & 0x03;
++ printk("fscscy: writing value 0x%02x to fan%d_ripple\n",
++ data->fan_ripple[nr],nr);
++ fscscy_write_value(client,reg_ripple,
++ data->fan_ripple[nr]);
++ }
++ }
++}
++
++void fscscy_wdog(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscscy_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscscy_update_client(client);
++ results[0] = data->watchdog[0] ;
++ results[1] = data->watchdog[1] & 0x02;
++ results[2] = data->watchdog[2] & 0xb0;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->watchdog[0] = results[0] & 0xff;
++ printk("fscscy: writing value 0x%02x to wdog_preset\n",
++ data->watchdog[0]);
++ fscscy_write_value(client,FSCSCY_REG_WDOG_PRESET,
++ data->watchdog[0]);
++ }
++ if (*nrels_mag >= 2) {
++ data->watchdog[1] = results[1] & 0x02;
++ printk("fscscy: writing value 0x%02x to wdog_state\n",
++ data->watchdog[1]);
++ fscscy_write_value(client,FSCSCY_REG_WDOG_STATE,
++ data->watchdog[1]);
++ }
++ if (*nrels_mag >= 3) {
++ data->watchdog[2] = results[2] & 0xb0;
++ printk("fscscy: writing value 0x%02x to wdog_control\n",
++ data->watchdog[2]);
++ fscscy_write_value(client,FSCSCY_REG_WDOG_CONTROL,
++ data->watchdog[2]);
++ }
++ }
++}
++
++void fscscy_pciload(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscscy_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscscy_update_client(client);
++ results[0] = data->pciload;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ printk("fscscy: writing PCILOAD to chip not supported\n");
++ }
++}
++
++void fscscy_intrusion(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct fscscy_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ fscscy_update_client(client);
++ results[0] = data->intr_control & 0x80;
++ results[1] = data->intr_status & 0xc0;
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->intr_control = results[0] & 0x80;
++ printk("fscscy: writing value 0x%02x to intr_control\n",
++ data->intr_control);
++ fscscy_write_value(client,FSCSCY_REG_INTR_CTRL,
++ data->intr_control);
++ }
++ }
++}
++
++static int __init sm_fscscy_init(void)
++{
++ printk("fscscy.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&fscscy_driver);
++}
++
++static void __exit sm_fscscy_exit(void)
++{
++ i2c_del_driver(&fscscy_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Martin Knoblauch <mkn@teraport.de> based on work (fscpos) from Hermann Jung <hej@odn.de>");
++MODULE_DESCRIPTION("fujitsu siemens scylla chip driver");
++
++module_init(sm_fscscy_init);
++module_exit(sm_fscscy_exit);
+--- linux-old/drivers/sensors/gl518sm.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/gl518sm.c Mon Dec 13 20:18:46 2004
+@@ -0,0 +1,989 @@
++/*
++ gl518sm.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>,
++ Kyösti Mälkki <kmalkki@cc.hut.fi>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#ifdef __SMP__
++#include <linux/smp_lock.h>
++#endif
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { 0x2c, 0x2d, SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_2(gl518sm_r00, gl518sm_r80);
++
++/* Defining this will enable debug messages for the voltage iteration
++ code used with rev 0 ICs */
++#undef DEBUG_VIN
++
++/* Many GL518 constants specified below */
++
++/* The GL518 registers */
++#define GL518_REG_CHIP_ID 0x00
++#define GL518_REG_REVISION 0x01
++#define GL518_REG_VENDOR_ID 0x02
++#define GL518_REG_CONF 0x03
++#define GL518_REG_TEMP 0x04
++#define GL518_REG_TEMP_OVER 0x05
++#define GL518_REG_TEMP_HYST 0x06
++#define GL518_REG_FAN_COUNT 0x07
++#define GL518_REG_FAN_LIMIT 0x08
++#define GL518_REG_VIN1_LIMIT 0x09
++#define GL518_REG_VIN2_LIMIT 0x0a
++#define GL518_REG_VIN3_LIMIT 0x0b
++#define GL518_REG_VDD_LIMIT 0x0c
++#define GL518_REG_VIN3 0x0d
++#define GL518_REG_MISC 0x0f
++#define GL518_REG_ALARM 0x10
++#define GL518_REG_MASK 0x11
++#define GL518_REG_INT 0x12
++#define GL518_REG_VIN2 0x13
++#define GL518_REG_VIN1 0x14
++#define GL518_REG_VDD 0x15
++
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(((((val)<0?(val)-5:(val)+5) / 10)+119),\
++ 0,255))
++#define TEMP_FROM_REG(val) (((val) - 119) * 10)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((960000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) \
++ ( (val)==0 ? 0 : (val)==255 ? 0 : (960000/((val)*(div))) )
++
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val)*10+8)/19),0,255))
++#define IN_FROM_REG(val) (((val)*19)/10)
++
++#define VDD_TO_REG(val) (SENSORS_LIMIT((((val)*10+11)/23),0,255))
++#define VDD_FROM_REG(val) (((val)*23)/10)
++
++#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
++#define DIV_FROM_REG(val) (1 << (val))
++
++#define ALARMS_FROM_REG(val) val
++
++#define BEEP_ENABLE_TO_REG(val) ((val)?0:1)
++#define BEEP_ENABLE_FROM_REG(val) ((val)?0:1)
++
++#define BEEPS_TO_REG(val) ((val) & 0x7f)
++#define BEEPS_FROM_REG(val) ((val) & 0x7f)
++
++/* Each client has this additional data */
++struct gl518_data {
++ struct i2c_client client;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++
++ int iterate_lock;
++ int quit_thread;
++ struct task_struct *thread;
++ wait_queue_head_t wq;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++ unsigned long last_updated_v00;
++ /* In jiffies (used only by rev00 chips) */
++
++ u8 voltage[4]; /* Register values; [0] = VDD */
++ u8 voltage_min[4]; /* Register values; [0] = VDD */
++ u8 voltage_max[4]; /* Register values; [0] = VDD */
++ u8 iter_voltage[4]; /* Register values; [0] = VDD */
++ u8 fan[2];
++ u8 fan_min[2];
++ u8 temp; /* Register values */
++ u8 temp_over; /* Register values */
++ u8 temp_hyst; /* Register values */
++ u8 alarms, beeps; /* Register value */
++ u8 alarm_mask; /* Register value */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ u8 beep_enable; /* Boolean */
++ u8 iterate; /* Voltage iteration mode */
++};
++
++static int gl518_attach_adapter(struct i2c_adapter *adapter);
++static int gl518_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void gl518_init_client(struct i2c_client *client);
++static int gl518_detach_client(struct i2c_client *client);
++
++static int gl518_read_value(struct i2c_client *client, u8 reg);
++static int gl518_write_value(struct i2c_client *client, u8 reg, u16 value);
++static void gl518_update_client(struct i2c_client *client);
++
++static void gl518_update_client_rev00(struct i2c_client *client);
++static void gl518_update_iterate(struct i2c_client *client);
++
++static void gl518_vin(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl518_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl518_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl518_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl518_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl518_beep(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl518_fan1off(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl518_iterate(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++/* This is the driver that will be inserted */
++static struct i2c_driver gl518_driver = {
++ .owner = THIS_MODULE,
++ .name = "GL518SM sensor chip driver",
++ .id = I2C_DRIVERID_GL518,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = gl518_attach_adapter,
++ .detach_client = gl518_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++
++#define GL518_SYSCTL_VDD 1000 /* Volts * 100 */
++#define GL518_SYSCTL_VIN1 1001
++#define GL518_SYSCTL_VIN2 1002
++#define GL518_SYSCTL_VIN3 1003
++#define GL518_SYSCTL_FAN1 1101 /* RPM */
++#define GL518_SYSCTL_FAN2 1102
++#define GL518_SYSCTL_TEMP 1200 /* Degrees Celcius * 10 */
++#define GL518_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define GL518_SYSCTL_ALARMS 2001 /* bitvector */
++#define GL518_SYSCTL_BEEP 2002 /* bitvector */
++#define GL518_SYSCTL_FAN1OFF 2003
++#define GL518_SYSCTL_ITERATE 2004
++
++#define GL518_ALARM_VDD 0x01
++#define GL518_ALARM_VIN1 0x02
++#define GL518_ALARM_VIN2 0x04
++#define GL518_ALARM_VIN3 0x08
++#define GL518_ALARM_TEMP 0x10
++#define GL518_ALARM_FAN1 0x20
++#define GL518_ALARM_FAN2 0x40
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected GL518. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table gl518_dir_table_template[] = {
++ {GL518_SYSCTL_VIN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_vin},
++ {GL518_SYSCTL_VIN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_vin},
++ {GL518_SYSCTL_VIN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_vin},
++ {GL518_SYSCTL_VDD, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_vin},
++ {GL518_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_fan},
++ {GL518_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_fan},
++ {GL518_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_temp},
++ {GL518_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_fan_div},
++ {GL518_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_alarms},
++ {GL518_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_beep},
++ {GL518_SYSCTL_FAN1OFF, "fan1off", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_fan1off},
++ {GL518_SYSCTL_ITERATE, "iterate", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl518_iterate},
++ {0}
++};
++
++/* I choose here for semi-static GL518SM allocation. Complete dynamic
++ allocation could also be used; the code needed for this would probably
++ take more memory than the datastructure takes now. */
++#define MAX_GL518_NR 4
++static struct i2c_client *gl518_list[MAX_GL518_NR];
++
++static int gl518_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, gl518_detect);
++}
++
++static int gl518_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct gl518_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("gl518sm.o: gl518_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
++ I2C_FUNC_SMBUS_WORD_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access gl518_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct gl518_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &gl518_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ if (kind < 0) {
++ if (
++ (gl518_read_value(new_client, GL518_REG_CHIP_ID) !=
++ 0x80)
++ || (gl518_read_value(new_client, GL518_REG_CONF) &
++ 0x80)) goto ERROR1;
++ }
++
++ /* Determine the chip type. */
++ if (kind <= 0) {
++ i = gl518_read_value(new_client, GL518_REG_REVISION);
++ if (i == 0x00)
++ kind = gl518sm_r00;
++ else if (i == 0x80)
++ kind = gl518sm_r80;
++ else {
++ if (kind == 0)
++ printk
++ ("gl518sm.o: Ignoring 'force' parameter for unknown chip at "
++ "adapter %d, address 0x%02x\n",
++ i2c_adapter_id(adapter), address);
++ goto ERROR1;
++ }
++ }
++
++ type_name = "gl518sm";
++ if (kind == gl518sm_r00) {
++ client_name = "GL518SM Revision 0x00 chip";
++ } else if (kind == gl518sm_r80) {
++ client_name = "GL518SM Revision 0x80 chip";
++ } else {
++#ifdef DEBUG
++ printk("gl518sm.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ for (i = 0; i < MAX_GL518_NR; i++)
++ if (!gl518_list[i])
++ break;
++ if (i == MAX_GL518_NR) {
++ printk
++ ("gl518sm.o: No empty slots left, recompile and heighten "
++ "MAX_GL518_NR!\n");
++ err = -ENOMEM;
++ goto ERROR2;
++ }
++ gl518_list[i] = new_client;
++ new_client->id = i;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry((struct i2c_client *) new_client,
++ type_name,
++ gl518_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the GL518SM chip */
++ if (kind == gl518sm_r00)
++ data->iterate = 0;
++ else
++ data->iterate = 3;
++ data->iterate_lock = 0;
++ data->quit_thread = 0;
++ data->thread = NULL;
++ data->alarm_mask = 0xff;
++ data->voltage[0]=data->voltage[1]=data->voltage[2]=0;
++ gl518_init_client((struct i2c_client *) new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ for (i = 0; i < MAX_GL518_NR; i++)
++ if (new_client == gl518_list[i])
++ gl518_list[i] = NULL;
++ ERROR2:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++
++/* Called when we have found a new GL518SM. It should set limits, etc. */
++static void gl518_init_client(struct i2c_client *client)
++{
++ /* Power-on defaults (bit 7=1) */
++ gl518_write_value(client, GL518_REG_CONF, 0x80);
++
++ /* No noisy output (bit 2=1), Comparator mode (bit 3=0), two fans (bit4=0),
++ standby mode (bit6=0) */
++ gl518_write_value(client, GL518_REG_CONF, 0x04);
++
++ /* Never interrupts */
++ gl518_write_value(client, GL518_REG_MASK, 0x00);
++
++ /* Clear status register (bit 5=1), start (bit6=1) */
++ gl518_write_value(client, GL518_REG_CONF, 0x24);
++ gl518_write_value(client, GL518_REG_CONF, 0x44);
++}
++
++static int gl518_detach_client(struct i2c_client *client)
++{
++ int err, i;
++ struct gl518_data *data = client->data;
++
++ i2c_deregister_entry(((struct gl518_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("gl518sm.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ for (i = 0; i < MAX_GL518_NR; i++)
++ if (client == gl518_list[i])
++ break;
++ if ((i == MAX_GL518_NR)) {
++ printk("gl518sm.o: Client to detach not found.\n");
++ return -ENOENT;
++ }
++ gl518_list[i] = NULL;
++
++ if (data->thread) {
++ data->quit_thread = 1;
++ wake_up_interruptible(&data->wq);
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++
++/* Registers 0x07 to 0x0c are word-sized, others are byte-sized
++ GL518 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int gl518_read_value(struct i2c_client *client, u8 reg)
++{
++ if ((reg >= 0x07) && (reg <= 0x0c))
++ return swab16(i2c_smbus_read_word_data(client, reg));
++ else
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++/* Registers 0x07 to 0x0c are word-sized, others are byte-sized
++ GL518 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int gl518_write_value(struct i2c_client *client, u8 reg, u16 value)
++{
++ if ((reg >= 0x07) && (reg <= 0x0c))
++ return i2c_smbus_write_word_data(client, reg, swab16(value));
++ else
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++static void gl518_update_client(struct i2c_client *client)
++{
++ struct gl518_data *data = client->data;
++ int val;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting gl518 update\n");
++#endif
++
++ data->alarms = gl518_read_value(client, GL518_REG_INT);
++ data->beeps = gl518_read_value(client, GL518_REG_ALARM);
++
++ val = gl518_read_value(client, GL518_REG_VDD_LIMIT);
++ data->voltage_min[0] = val & 0xff;
++ data->voltage_max[0] = (val >> 8) & 0xff;
++ val = gl518_read_value(client, GL518_REG_VIN1_LIMIT);
++ data->voltage_min[1] = val & 0xff;
++ data->voltage_max[1] = (val >> 8) & 0xff;
++ val = gl518_read_value(client, GL518_REG_VIN2_LIMIT);
++ data->voltage_min[2] = val & 0xff;
++ data->voltage_max[2] = (val >> 8) & 0xff;
++ val = gl518_read_value(client, GL518_REG_VIN3_LIMIT);
++ data->voltage_min[3] = val & 0xff;
++ data->voltage_max[3] = (val >> 8) & 0xff;
++
++ val = gl518_read_value(client, GL518_REG_FAN_COUNT);
++ data->fan[0] = (val >> 8) & 0xff;
++ data->fan[1] = val & 0xff;
++
++ val = gl518_read_value(client, GL518_REG_FAN_LIMIT);
++ data->fan_min[0] = (val >> 8) & 0xff;
++ data->fan_min[1] = val & 0xff;
++
++ data->temp = gl518_read_value(client, GL518_REG_TEMP);
++ data->temp_over =
++ gl518_read_value(client, GL518_REG_TEMP_OVER);
++ data->temp_hyst =
++ gl518_read_value(client, GL518_REG_TEMP_HYST);
++
++ val = gl518_read_value(client, GL518_REG_MISC);
++ data->fan_div[0] = (val >> 6) & 0x03;
++ data->fan_div[1] = (val >> 4) & 0x03;
++
++ data->alarms &= data->alarm_mask;
++
++ val = gl518_read_value(client, GL518_REG_CONF);
++ data->beep_enable = (val >> 2) & 1;
++
++#ifndef DEBUG_VIN
++ if (data->type != gl518sm_r00) {
++ data->voltage[0] =
++ gl518_read_value(client, GL518_REG_VDD);
++ data->voltage[1] =
++ gl518_read_value(client, GL518_REG_VIN1);
++ data->voltage[2] =
++ gl518_read_value(client, GL518_REG_VIN2);
++ data->voltage[3] =
++ gl518_read_value(client, GL518_REG_VIN3);
++ } else
++ gl518_update_client_rev00(client);
++#else
++ gl518_update_client_rev00(client);
++#endif
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++/* Here we decide how to run the iteration code.
++ When called, we trigger the iteration and report the last
++ measured voltage. No delay for user apps */
++static void gl518_update_client_rev00(struct i2c_client *client)
++{
++ struct gl518_data *data = client->data;
++ int i;
++
++ if (data->iterate == 1) { /* 10 sec delay */
++ /* as that update is slow, we consider the data valid for 30 seconds */
++ if (
++ ((jiffies - data->last_updated_v00 > 30 * HZ)
++ || (data->alarms & 7)
++ || (!data->valid)) && (!data->iterate_lock)) {
++ data->iterate_lock = 1;
++ gl518_update_iterate(client);
++ data->iterate_lock = 0;
++ }
++ for (i = 0; i < 4; i++)
++ data->voltage[i] = data->iter_voltage[i];
++ } else if (data->iterate == 2) { /* show results of last iteration */
++ for (i = 0; i < 4; i++)
++ data->voltage[i] = data->iter_voltage[i];
++ wake_up_interruptible(&data->wq);
++ } else { /* no iteration */
++ data->voltage[3] =
++ gl518_read_value(client, GL518_REG_VIN3);
++ }
++}
++
++static int gl518_update_thread(void *c)
++{
++ struct i2c_client *client = c;
++ struct gl518_data *data = client->data;
++
++#ifdef __SMP__
++ lock_kernel();
++#endif
++ exit_mm(current);
++ current->session = 1;
++ current->pgrp = 1;
++ sigfillset(&current->blocked);
++ current->fs->umask = 0;
++ strcpy(current->comm, "gl518sm");
++
++ init_waitqueue_head(&(data->wq));
++ data->thread = current;
++
++#ifdef __SMP__
++ unlock_kernel();
++#endif
++
++ for (;;) {
++ if (!data->iterate_lock) {
++ data->iterate_lock = 1;
++ gl518_update_iterate(client);
++ data->iterate_lock = 0;
++ }
++
++ if ((data->quit_thread) || signal_pending(current))
++ break;
++ interruptible_sleep_on(&data->wq);
++ }
++
++ data->thread = NULL;
++ data->quit_thread = 0;
++ return 0;
++}
++
++/* This updates vdd, vin1, vin2 values by doing slow and multiple
++ comparisons for the GL518SM rev 00 that lacks support for direct
++ reading of these values. Values are kept in iter_voltage */
++
++static void gl518_update_iterate(struct i2c_client *client)
++{
++ struct gl518_data *data = client->data;
++ int i, j, loop_more = 1, min[3], max[3], delta[3];
++ int alarm, beeps, irqs;
++
++#define VIN_REG(c) c==0?GL518_REG_VDD_LIMIT:\
++ c==1?GL518_REG_VIN1_LIMIT:\
++ GL518_REG_VIN2_LIMIT
++
++ /* disable beeps & irqs for vin0-2 */
++ beeps = gl518_read_value(client, GL518_REG_ALARM);
++ irqs = gl518_read_value(client, GL518_REG_MASK);
++ gl518_write_value(client, GL518_REG_ALARM, beeps & ~0x7);
++ gl518_write_value(client, GL518_REG_MASK, irqs & ~0x7);
++
++ alarm = data->alarms;
++
++ for (i = 0; i < 3; i++) {
++ if (alarm & (1 << i)) {
++ min[i] = 0;
++ max[i] = 127;
++ } else {
++ min[i] = data->voltage_min[i];
++ max[i] =
++ (data->voltage_max[i] +
++ data->voltage_min[i]) / 2;
++ }
++ delta[i] = (max[i] - min[i]) / 2;
++ }
++
++ for (j = 0; (j < 10 && loop_more); j++) {
++
++ for (i = 0; i < 3; i++)
++ gl518_write_value(client, VIN_REG(i),
++ max[i] << 8 | min[i]);
++
++ if ((data->thread) &&
++ ((data->quit_thread) || signal_pending(current)))
++ goto finish;
++
++ /* we wait now 1.5 seconds before comparing */
++ current->state = TASK_INTERRUPTIBLE;
++ schedule_timeout(HZ + HZ / 2);
++
++ alarm = gl518_read_value(client, GL518_REG_INT);
++
++#ifdef DEBUG_VIN
++ printk("gl518sm: iteration %2d: %4d%c %4d%c %4d%c\n", j,
++ max[0], (alarm & 1) ? '!' : ' ',
++ max[1], (alarm & 2) ? '!' : ' ',
++ max[2], (alarm & 4) ? '!' : ' ');
++#endif
++
++ for (loop_more = 0, i = 0; i < 3; i++) {
++ if (alarm & (1 << i))
++ max[i] += delta[i];
++ else
++ max[i] -= delta[i];
++
++ if (delta[i])
++ loop_more++;
++ delta[i] >>= 1;
++ }
++
++ }
++
++ for (i = 0; i < 3; i++)
++ if (alarm & (1 << i))
++ max[i]++;
++
++#ifdef DEBUG_VIN
++ printk("gl518sm: final :%5d %5d %5d\n", max[0], max[1],
++ max[2]);
++ printk("gl518sm: meter :%5d %5d %5d\n", data->voltage[0],
++ data->voltage[1], data->voltage[2]);
++#endif
++
++ /* update values, including vin3 */
++ for (i = 0; i < 3; i++) {
++ data->iter_voltage[i] = max[i];
++ }
++ data->iter_voltage[3] = gl518_read_value(client, GL518_REG_VIN3);
++ data->last_updated_v00 = jiffies;
++
++ finish:
++
++ /* reset values */
++ for (i = 0; i < 3; i++) {
++ gl518_write_value(client, VIN_REG(i),
++ data->voltage_max[i] << 8 | data->
++ voltage_min[i]);
++ }
++
++ gl518_write_value(client, GL518_REG_ALARM, beeps);
++ gl518_write_value(client, GL518_REG_MASK, irqs);
++
++#undef VIN_REG
++}
++
++void gl518_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl518_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl518_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over);
++ results[1] = TEMP_FROM_REG(data->temp_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_over = TEMP_TO_REG(results[0]);
++ gl518_write_value(client, GL518_REG_TEMP_OVER,
++ data->temp_over);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst = TEMP_TO_REG(results[1]);
++ gl518_write_value(client, GL518_REG_TEMP_HYST,
++ data->temp_hyst);
++ }
++ }
++}
++
++void gl518_vin(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl518_data *data = client->data;
++ int nr = ctl_name - GL518_SYSCTL_VDD;
++ int regnr, old = 0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl518_update_client(client);
++ results[0] = nr ? IN_FROM_REG(data->voltage_min[nr]) :
++ VDD_FROM_REG(data->voltage_min[nr]);
++ results[1] = nr ? IN_FROM_REG(data->voltage_max[nr]) :
++ VDD_FROM_REG(data->voltage_max[nr]);
++ results[2] = nr ? IN_FROM_REG(data->voltage[nr]) :
++ VDD_FROM_REG(data->voltage[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ regnr =
++ nr == 0 ? GL518_REG_VDD_LIMIT : nr ==
++ 1 ? GL518_REG_VIN1_LIMIT : nr ==
++ 2 ? GL518_REG_VIN2_LIMIT : GL518_REG_VIN3_LIMIT;
++ if (*nrels_mag == 1)
++ old = gl518_read_value(client, regnr) & 0xff00;
++ if (*nrels_mag >= 2) {
++ data->voltage_max[nr] =
++ nr ? IN_TO_REG(results[1]) :
++ VDD_TO_REG(results[1]);
++ old = data->voltage_max[nr] << 8;
++ }
++ if (*nrels_mag >= 1) {
++ data->voltage_min[nr] =
++ nr ? IN_TO_REG(results[0]) :
++ VDD_TO_REG(results[0]);
++ old |= data->voltage_min[nr];
++ gl518_write_value(client, regnr, old);
++ }
++ }
++}
++
++
++void gl518_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl518_data *data = client->data;
++ int nr = ctl_name - GL518_SYSCTL_FAN1;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl518_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr],
++ DIV_FROM_REG(data->fan_div[nr]));
++ results[1] =
++ FAN_FROM_REG(data->fan[nr],
++ DIV_FROM_REG(data->fan_div[nr]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr] = FAN_TO_REG(results[0],
++ DIV_FROM_REG(data->
++ fan_div
++ [nr]));
++ old =
++ gl518_read_value(client, GL518_REG_FAN_LIMIT);
++
++ if (nr == 0) {
++ old =
++ (old & 0x00ff) | (data->
++ fan_min[0] << 8);
++ if (results[0] == 0)
++ data->alarm_mask &= ~0x20;
++ else
++ data->alarm_mask |= 0x20;
++ } else {
++ old = (old & 0xff00) | data->fan_min[1];
++ if (results[0] == 0)
++ data->alarm_mask &= ~0x40;
++ else
++ data->alarm_mask |= 0x40;
++ }
++ gl518_write_value(client, GL518_REG_FAN_LIMIT,
++ old);
++ }
++ }
++}
++
++
++void gl518_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl518_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl518_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void gl518_beep(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl518_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl518_update_client(client);
++ results[0] = BEEP_ENABLE_FROM_REG(data->beep_enable);
++ results[1] = BEEPS_FROM_REG(data->beeps);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->beep_enable = BEEP_ENABLE_TO_REG(results[0]);
++ gl518_write_value(client, GL518_REG_CONF,
++ (gl518_read_value(client,
++ GL518_REG_CONF)
++ & 0xfb) | (data->
++ beep_enable << 2));
++ }
++ if (*nrels_mag >= 2) {
++ data->beeps =
++ BEEPS_TO_REG(results[1]) & data->alarm_mask;
++ gl518_write_value(client, GL518_REG_ALARM,
++ data->beeps);
++ }
++ }
++}
++
++
++void gl518_fan_div(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl518_data *data = client->data;
++ int old;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl518_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = gl518_read_value(client, GL518_REG_MISC);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0xcf) | (data->fan_div[1] << 4);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0x3f) | (data->fan_div[0] << 6);
++ }
++ gl518_write_value(client, GL518_REG_MISC, old);
++ }
++}
++
++void gl518_fan1off(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ int old;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] =
++ ((gl518_read_value(client, GL518_REG_MISC) & 0x08) !=
++ 0);
++ results[1] =
++ ((gl518_read_value(client, GL518_REG_CONF) & 0x10) !=
++ 0);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ old =
++ gl518_read_value(client,
++ GL518_REG_MISC) & 0xf7;
++ if (results[0])
++ old |= 0x08;
++ gl518_write_value(client, GL518_REG_MISC, old);
++ }
++ if (*nrels_mag >= 2) {
++ old =
++ gl518_read_value(client,
++ GL518_REG_CONF) & 0xef;
++ if (results[1])
++ old |= 0x10;
++ gl518_write_value(client, GL518_REG_CONF, old);
++ }
++ }
++}
++
++void gl518_iterate(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl518_data *data = client->data;
++ int i;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->iterate;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE &&
++ data->type == gl518sm_r00 ) {
++ if ((*nrels_mag >= 1) && (data->iterate != results[0])) {
++ data->iterate = results[0];
++ for (i = 0; i < 4; i++) {
++ data->voltage[i] = 0;
++ data->iter_voltage[i] = 0;
++ }
++ data->valid = 0;
++
++ if ((data->iterate != 2) && (data->thread)) {
++ data->quit_thread = 1;
++ wake_up_interruptible(&data->wq);
++ } else if ((data->iterate == 2) && (!data->thread)) {
++ init_waitqueue_head(&(data->wq));
++ kernel_thread(gl518_update_thread,
++ (void *) client, 0);
++ }
++ }
++ }
++}
++
++static int __init sm_gl518sm_init(void)
++{
++ printk("gl518sm.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&gl518_driver);
++}
++
++static void __exit sm_gl518sm_exit(void)
++{
++ i2c_del_driver(&gl518_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Kyösti Mälkki <kmalkki@cc.hut.fi>");
++MODULE_DESCRIPTION("GL518SM driver");
++
++module_init(sm_gl518sm_init);
++module_exit(sm_gl518sm_exit);
+--- linux-old/drivers/sensors/gl520sm.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/gl520sm.c Mon Dec 13 20:18:47 2004
+@@ -0,0 +1,809 @@
++/*
++ gl520sm.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>,
++ Kyösti Mälkki <kmalkki@cc.hut.fi>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { 0x2c, 0x2d, SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(gl520sm);
++
++/* Many GL520 constants specified below
++One of the inputs can be configured as either temp or voltage.
++That's why _TEMP2 and _VIN4 access the same register
++*/
++
++/* The GL520 registers */
++#define GL520_REG_CHIP_ID 0x00
++#define GL520_REG_REVISION 0x01
++#define GL520_REG_VID 0x02
++#define GL520_REG_CONF 0x03
++#define GL520_REG_TEMP1 0x04
++#define GL520_REG_TEMP1_OVER 0x05
++#define GL520_REG_TEMP1_HYST 0x06
++#define GL520_REG_FAN_COUNT 0x07
++#define GL520_REG_FAN_LIMIT 0x08
++#define GL520_REG_VIN1_LIMIT 0x09
++#define GL520_REG_VIN2_LIMIT 0x0a
++#define GL520_REG_VIN3_LIMIT 0x0b
++#define GL520_REG_VDD_LIMIT 0x0c
++#define GL520_REG_VIN3 0x0d
++#define GL520_REG_VIN4 0x0e
++#define GL520_REG_TEMP2 0x0e
++#define GL520_REG_MISC 0x0f
++#define GL520_REG_ALARM 0x10
++#define GL520_REG_MASK 0x11
++#define GL520_REG_INT 0x12
++#define GL520_REG_VIN2 0x13
++#define GL520_REG_VIN1 0x14
++#define GL520_REG_VDD 0x15
++#define GL520_REG_TEMP2_OVER 0x17
++#define GL520_REG_VIN4_MAX 0x17
++#define GL520_REG_TEMP2_HYST 0x18
++#define GL520_REG_VIN4_MIN 0x18
++
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(((((val)<0?(val)-5:(val)+5) / 10)+130),\
++ 0,255))
++#define TEMP_FROM_REG(val) (((val) - 130) * 10)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((960000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) \
++ ( (val)==0 ? 0 : (val)==255 ? 0 : (960000/((val)*(div))) )
++
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val)*10+8)/19),0,255))
++#define IN_FROM_REG(val) (((val)*19)/10)
++
++#define VDD_TO_REG(val) (SENSORS_LIMIT((((val)*10+11)/23),0,255))
++#define VDD_FROM_REG(val) (((val)*23)/10)
++
++#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
++#define DIV_FROM_REG(val) (1 << (val))
++
++#define ALARMS_FROM_REG(val) val
++
++#define BEEP_ENABLE_TO_REG(val) ((val)?0:1)
++#define BEEP_ENABLE_FROM_REG(val) ((val)?0:1)
++
++#define BEEPS_TO_REG(val) (val)
++#define BEEPS_FROM_REG(val) (val)
++
++#define VID_FROM_REG(val) ((val)==0x1f?0:(val)>=0x10?510-(val)*10:\
++ 205-(val)*5)
++
++/* Each client has this additional data */
++struct gl520_data {
++ struct i2c_client client;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 voltage[5]; /* Register values; [0] = VDD */
++ u8 voltage_min[5]; /* Register values; [0] = VDD */
++ u8 voltage_max[5]; /* Register values; [0] = VDD */
++ u8 fan[2];
++ u8 fan_min[2];
++ u8 temp[2]; /* Register values */
++ u8 temp_over[2]; /* Register values */
++ u8 temp_hyst[2]; /* Register values */
++ u8 alarms, beeps, vid; /* Register value */
++ u8 alarm_mask; /* Register value */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ u8 beep_enable; /* Boolean */
++ u8 two_temps; /* Boolean */
++};
++
++static int gl520_attach_adapter(struct i2c_adapter *adapter);
++static int gl520_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void gl520_init_client(struct i2c_client *client);
++static int gl520_detach_client(struct i2c_client *client);
++
++static int gl520_read_value(struct i2c_client *client, u8 reg);
++static int gl520_write_value(struct i2c_client *client, u8 reg, u16 value);
++static void gl520_update_client(struct i2c_client *client);
++
++static void gl520_vin(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl520_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl520_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl520_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl520_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl520_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl520_beep(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl520_fan1off(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void gl520_config(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++/* This is the driver that will be inserted */
++static struct i2c_driver gl520_driver = {
++ .owner = THIS_MODULE,
++ .name = "GL520SM sensor chip driver",
++ .id = I2C_DRIVERID_GL520,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = gl520_attach_adapter,
++ .detach_client = gl520_detach_client,
++};
++/* -- SENSORS SYSCTL START -- */
++
++#define GL520_SYSCTL_VDD 1000 /* Volts * 100 */
++#define GL520_SYSCTL_VIN1 1001
++#define GL520_SYSCTL_VIN2 1002
++#define GL520_SYSCTL_VIN3 1003
++#define GL520_SYSCTL_VIN4 1004
++#define GL520_SYSCTL_FAN1 1101 /* RPM */
++#define GL520_SYSCTL_FAN2 1102
++#define GL520_SYSCTL_TEMP1 1200 /* Degrees Celcius * 10 */
++#define GL520_SYSCTL_TEMP2 1201 /* Degrees Celcius * 10 */
++#define GL520_SYSCTL_VID 1300
++#define GL520_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define GL520_SYSCTL_ALARMS 2001 /* bitvector */
++#define GL520_SYSCTL_BEEP 2002 /* bitvector */
++#define GL520_SYSCTL_FAN1OFF 2003
++#define GL520_SYSCTL_CONFIG 2004
++
++#define GL520_ALARM_VDD 0x01
++#define GL520_ALARM_VIN1 0x02
++#define GL520_ALARM_VIN2 0x04
++#define GL520_ALARM_VIN3 0x08
++#define GL520_ALARM_TEMP1 0x10
++#define GL520_ALARM_FAN1 0x20
++#define GL520_ALARM_FAN2 0x40
++#define GL520_ALARM_TEMP2 0x80
++#define GL520_ALARM_VIN4 0x80
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected GL520. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table gl520_dir_table_template[] = {
++ {GL520_SYSCTL_VIN1, "vin1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_vin},
++ {GL520_SYSCTL_VIN2, "vin2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_vin},
++ {GL520_SYSCTL_VIN3, "vin3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_vin},
++ {GL520_SYSCTL_VIN4, "vin4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_vin},
++ {GL520_SYSCTL_VDD, "vdd", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_vin},
++ {GL520_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_vid},
++ {GL520_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_fan},
++ {GL520_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_fan},
++ {GL520_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_temp},
++ {GL520_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_temp},
++ {GL520_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_fan_div},
++ {GL520_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_alarms},
++ {GL520_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_beep},
++ {GL520_SYSCTL_FAN1OFF, "fan1off", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_fan1off},
++ {GL520_SYSCTL_CONFIG, "config", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &gl520_config},
++ {0}
++};
++
++static int gl520_id = 0;
++
++static int gl520_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, gl520_detect);
++}
++
++static int gl520_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct gl520_data *data;
++ int err = 0;
++ const char *type_name = "";
++ char client_name[32];
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("gl520sm.o: gl520_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
++ I2C_FUNC_SMBUS_WORD_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access gl520_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct gl520_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &gl520_driver;
++ new_client->flags = 0;
++
++ /* Determine the chip type. */
++
++ if (gl520_read_value(new_client, GL520_REG_CHIP_ID) != 0x20) {
++ printk
++ ("gl520sm.o: Ignoring 'force' parameter for unknown chip at "
++ "adapter %d, address 0x%02x\n",
++ i2c_adapter_id(adapter), address);
++ goto ERROR1;
++ } else {
++ kind = gl520sm;
++ }
++
++ i = gl520_read_value(new_client, GL520_REG_REVISION);
++ if (kind == gl520sm) {
++ type_name = "gl520sm";
++ sprintf(client_name, "GL520SM Revision %02x chip", i);
++ } else {
++#ifdef DEBUG
++ printk("gl520sm.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = gl520_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ gl520_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the GL520SM chip */
++ data->alarm_mask = 0xff;
++ gl520_init_client(new_client);
++ if (data->two_temps)
++ data->voltage_max[4] = data->voltage_min[4] =
++ data->voltage[4] = 0;
++ else
++ data->temp_hyst[1] = data->temp_over[1] =
++ data->temp[1] = 0;
++
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++
++/* Called when we have found a new GL520SM. */
++static void gl520_init_client(struct i2c_client *client)
++{
++ struct gl520_data *data = (struct gl520_data *)(client->data);
++ u8 oldconf, conf;
++
++ conf = oldconf = gl520_read_value(client, GL520_REG_CONF);
++ data->two_temps = !(conf & 0x10);
++
++ /* If IRQ# is disabled, we can safely force comparator mode */
++ if (!(conf & 0x20))
++ conf &= 0xf7;
++
++ /* Enable monitoring if needed */
++ conf |= 0x40;
++
++ if (conf != oldconf)
++ gl520_write_value(client, GL520_REG_CONF, conf);
++}
++
++static int gl520_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct gl520_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("gl520sm.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++
++/* Registers 0x07 to 0x0c are word-sized, others are byte-sized
++ GL520 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int gl520_read_value(struct i2c_client *client, u8 reg)
++{
++ if ((reg >= 0x07) && (reg <= 0x0c))
++ return swab16(i2c_smbus_read_word_data(client, reg));
++ else
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++/* Registers 0x07 to 0x0c are word-sized, others are byte-sized
++ GL520 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int gl520_write_value(struct i2c_client *client, u8 reg, u16 value)
++{
++ if ((reg >= 0x07) && (reg <= 0x0c))
++ return i2c_smbus_write_word_data(client, reg, swab16(value));
++ else
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++static void gl520_update_client(struct i2c_client *client)
++{
++ struct gl520_data *data = client->data;
++ int val;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting gl520 update\n");
++#endif
++
++ data->alarms = gl520_read_value(client, GL520_REG_INT);
++ data->beeps = gl520_read_value(client, GL520_REG_ALARM);
++ data->vid = gl520_read_value(client, GL520_REG_VID) & 0x1f;
++
++ val = gl520_read_value(client, GL520_REG_VDD_LIMIT);
++ data->voltage_min[0] = val & 0xff;
++ data->voltage_max[0] = (val >> 8) & 0xff;
++ val = gl520_read_value(client, GL520_REG_VIN1_LIMIT);
++ data->voltage_min[1] = val & 0xff;
++ data->voltage_max[1] = (val >> 8) & 0xff;
++ val = gl520_read_value(client, GL520_REG_VIN2_LIMIT);
++ data->voltage_min[2] = val & 0xff;
++ data->voltage_max[2] = (val >> 8) & 0xff;
++ val = gl520_read_value(client, GL520_REG_VIN3_LIMIT);
++ data->voltage_min[3] = val & 0xff;
++ data->voltage_max[3] = (val >> 8) & 0xff;
++
++ val = gl520_read_value(client, GL520_REG_FAN_COUNT);
++ data->fan[0] = (val >> 8) & 0xff;
++ data->fan[1] = val & 0xff;
++
++ val = gl520_read_value(client, GL520_REG_FAN_LIMIT);
++ data->fan_min[0] = (val >> 8) & 0xff;
++ data->fan_min[1] = val & 0xff;
++
++ data->temp[0] = gl520_read_value(client, GL520_REG_TEMP1);
++ data->temp_over[0] =
++ gl520_read_value(client, GL520_REG_TEMP1_OVER);
++ data->temp_hyst[0] =
++ gl520_read_value(client, GL520_REG_TEMP1_HYST);
++
++ val = gl520_read_value(client, GL520_REG_MISC);
++ data->fan_div[0] = (val >> 6) & 0x03;
++ data->fan_div[1] = (val >> 4) & 0x03;
++
++ data->alarms &= data->alarm_mask;
++
++ val = gl520_read_value(client, GL520_REG_CONF);
++ data->beep_enable = (val >> 2) & 1;
++
++ data->voltage[0] = gl520_read_value(client, GL520_REG_VDD);
++ data->voltage[1] =
++ gl520_read_value(client, GL520_REG_VIN1);
++ data->voltage[2] =
++ gl520_read_value(client, GL520_REG_VIN2);
++ data->voltage[3] =
++ gl520_read_value(client, GL520_REG_VIN3);
++
++ /* Temp1 and Vin4 are the same input */
++ if (data->two_temps) {
++ data->temp[1] =
++ gl520_read_value(client, GL520_REG_TEMP2);
++ data->temp_over[1] =
++ gl520_read_value(client, GL520_REG_TEMP2_OVER);
++ data->temp_hyst[1] =
++ gl520_read_value(client, GL520_REG_TEMP2_HYST);
++ } else {
++ data->voltage[4] =
++ gl520_read_value(client, GL520_REG_VIN4);
++ data->voltage_min[4] =
++ gl520_read_value(client, GL520_REG_VIN4_MIN);
++ data->voltage_max[4] =
++ gl520_read_value(client, GL520_REG_VIN4_MAX);
++ }
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++void gl520_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl520_data *data = client->data;
++ int nr = ctl_name - GL520_SYSCTL_TEMP1;
++ int regnr;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl520_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over[nr]);
++ results[1] = TEMP_FROM_REG(data->temp_hyst[nr]);
++ results[2] = TEMP_FROM_REG(data->temp[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if ((nr == 1) && (!data->two_temps))
++ return;
++ regnr =
++ nr == 0 ? GL520_REG_TEMP1_OVER : GL520_REG_TEMP2_OVER;
++ if (*nrels_mag >= 1) {
++ data->temp_over[nr] = TEMP_TO_REG(results[0]);
++ gl520_write_value(client, regnr,
++ data->temp_over[nr]);
++ }
++ regnr =
++ nr == 0 ? GL520_REG_TEMP1_HYST : GL520_REG_TEMP2_HYST;
++ if (*nrels_mag >= 2) {
++ data->temp_hyst[nr] = TEMP_TO_REG(results[1]);
++ gl520_write_value(client, regnr,
++ data->temp_hyst[nr]);
++ }
++ }
++}
++
++void gl520_vin(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl520_data *data = client->data;
++ int nr = ctl_name - GL520_SYSCTL_VDD;
++ int regnr, old = 0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl520_update_client(client);
++ results[0] = nr ? IN_FROM_REG(data->voltage_min[nr]) :
++ VDD_FROM_REG(data->voltage_min[nr]);
++ results[1] = nr ? IN_FROM_REG(data->voltage_max[nr]) :
++ VDD_FROM_REG(data->voltage_max[nr]);
++ results[2] = nr ? IN_FROM_REG(data->voltage[nr]) :
++ VDD_FROM_REG(data->voltage[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (nr != 4) {
++ regnr =
++ nr == 0 ? GL520_REG_VDD_LIMIT : nr ==
++ 1 ? GL520_REG_VIN1_LIMIT : nr ==
++ 2 ? GL520_REG_VIN2_LIMIT :
++ GL520_REG_VIN3_LIMIT;
++ if (*nrels_mag == 1)
++ old =
++ gl520_read_value(client,
++ regnr) & 0xff00;
++ if (*nrels_mag >= 2) {
++ data->voltage_max[nr] =
++ nr ? IN_TO_REG(results[1]) :
++ VDD_TO_REG(results[1]);
++ old = data->voltage_max[nr] << 8;
++ }
++ if (*nrels_mag >= 1) {
++ data->voltage_min[nr] =
++ nr ? IN_TO_REG(results[0]) :
++ VDD_TO_REG(results[0]);
++ old |= data->voltage_min[nr];
++ gl520_write_value(client, regnr, old);
++ }
++ } else if (!data->two_temps) {
++ if (*nrels_mag == 1)
++ gl520_write_value(client,
++ GL520_REG_VIN4_MIN,
++ IN_TO_REG(results[0]));
++ if (*nrels_mag >= 2)
++ gl520_write_value(client,
++ GL520_REG_VIN4_MAX,
++ IN_TO_REG(results[1]));
++ }
++ }
++}
++
++
++void gl520_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl520_data *data = client->data;
++ int nr = ctl_name - GL520_SYSCTL_FAN1;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl520_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr],
++ DIV_FROM_REG(data->fan_div[nr]));
++ results[1] =
++ FAN_FROM_REG(data->fan[nr],
++ DIV_FROM_REG(data->fan_div[nr]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr] = FAN_TO_REG(results[0],
++ DIV_FROM_REG(data->
++ fan_div
++ [nr]));
++ old =
++ gl520_read_value(client, GL520_REG_FAN_LIMIT);
++
++ if (nr == 0) {
++ old =
++ (old & 0x00ff) | (data->
++ fan_min[nr] << 8);
++ if (results[0] == 0)
++ data->alarm_mask &= ~0x20;
++ else
++ data->alarm_mask |= 0x20;
++ } else {
++ old = (old & 0xff00) | data->fan_min[nr];
++ if (results[0] == 0)
++ data->alarm_mask &= ~0x40;
++ else
++ data->alarm_mask |= 0x40;
++ }
++ gl520_write_value(client, GL520_REG_FAN_LIMIT,
++ old);
++ }
++ }
++}
++
++
++void gl520_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl520_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl520_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void gl520_beep(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl520_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl520_update_client(client);
++ results[0] = BEEP_ENABLE_FROM_REG(data->beep_enable);
++ results[1] = BEEPS_FROM_REG(data->beeps);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->beep_enable = BEEP_ENABLE_TO_REG(results[0]);
++ gl520_write_value(client, GL520_REG_CONF,
++ (gl520_read_value(client,
++ GL520_REG_CONF)
++ & 0xfb) | (data->
++ beep_enable << 2));
++ }
++ if (*nrels_mag >= 2) {
++ data->beeps =
++ BEEPS_TO_REG(results[1]) & data->alarm_mask;
++ gl520_write_value(client, GL520_REG_ALARM,
++ data->beeps);
++ }
++ }
++}
++
++
++void gl520_fan_div(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl520_data *data = client->data;
++ int old;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl520_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = gl520_read_value(client, GL520_REG_MISC);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0xcf) | (data->fan_div[1] << 4);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0x3f) | (data->fan_div[0] << 6);
++ }
++ gl520_write_value(client, GL520_REG_MISC, old);
++ }
++}
++
++void gl520_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl520_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ gl520_update_client(client);
++ results[0] = VID_FROM_REG(data->vid);
++ *nrels_mag = 1;
++ }
++}
++
++void gl520_fan1off(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ int old;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] =
++ ((gl520_read_value(client, GL520_REG_MISC) & 0x04) !=
++ 0);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ old =
++ gl520_read_value(client,
++ GL520_REG_MISC) & 0xfb;
++ if (results[0])
++ old |= 0x04;
++ gl520_write_value(client, GL520_REG_MISC, old);
++ }
++ }
++}
++
++void gl520_config(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct gl520_data *data = client->data;
++ int old;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] =
++ ((gl520_read_value(client, GL520_REG_CONF) & 0x10) ==
++ 0);
++ data->two_temps = results[0];
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ old =
++ gl520_read_value(client,
++ GL520_REG_CONF) & 0xef;
++ if (!results[1]) {
++ old |= 0x10;
++ data->two_temps = 0;
++ data->temp_hyst[1] = data->temp_over[1] =
++ data->temp[1] = 0;
++ } else {
++ data->two_temps = 1;
++ data->voltage_max[4] = data->voltage_min[4] =
++ data->voltage[4] = 0;
++ }
++ gl520_write_value(client, GL520_REG_CONF, old);
++ }
++ }
++}
++
++static int __init sm_gl520sm_init(void)
++{
++ printk("gl520sm.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&gl520_driver);
++}
++
++static void __exit sm_gl520sm_exit(void)
++{
++ i2c_del_driver(&gl520_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Kyösti Mälkki <kmalkki@cc.hut.fi>");
++MODULE_DESCRIPTION("GL520SM driver");
++
++module_init(sm_gl520sm_init);
++module_exit(sm_gl520sm_exit);
+--- linux-old/drivers/sensors/it87.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/it87.c Mon Dec 13 20:18:47 2004
+@@ -0,0 +1,1128 @@
++/*
++ it87.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring.
++
++ Supports: IT8705F Super I/O chip w/LPC interface
++ IT8712F Super I/O chup w/LPC interface & SMbus
++ Sis950 A clone of the IT8705F
++
++ Copyright (c) 2001 Chris Gauthron <chrisg@0-in.com>
++ Largely inspired by lm78.c of the same package
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ djg@pdp8.net David Gesswein 7/18/01
++ Modified to fix bug with not all alarms enabled.
++ Added ability to read battery voltage and select temperature sensor
++ type at module load time.
++*/
++
++/*
++ michael.hufer@gmx.de Michael Hufer 09/07/03
++ Modified configure (enable/disable) chip reset at module load time.
++ Added ability to read and set fan pwm registers and the smart
++ guardian (sg) features of the chip.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x20, 0x2f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0x0290, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_4(it87, it8705, it8712, sis950);
++
++
++#define REG 0x2e /* The register to read/write */
++#define DEV 0x07 /* Register: Logical device select */
++#define VAL 0x2f /* The value to read/write */
++#define PME 0x04 /* The device with the fan registers in it */
++#define DEVID 0x20 /* Register: Device ID */
++
++static inline void
++superio_outb(int reg, int val)
++{
++ outb(reg, REG);
++ outb(val, VAL);
++}
++
++static inline int
++superio_inb(int reg)
++{
++ outb(reg, REG);
++ return inb(VAL);
++}
++
++static inline void
++superio_select(void)
++{
++ outb(DEV, REG);
++ outb(PME, VAL);
++}
++
++static inline void
++superio_enter(void)
++{
++ outb(0x87, REG);
++ outb(0x01, REG);
++ outb(0x55, REG);
++ outb(0x55, REG);
++}
++
++static inline void
++superio_exit(void)
++{
++ outb(0x02, REG);
++ outb(0x02, VAL);
++}
++
++/* just IT8712F for now - this should be extended to support the other
++ chips as well */
++#define IT87_DEVID_MATCH(id) ((id) == 0x8712)
++
++#define IT87_ACT_REG 0x30
++#define IT87_BASE_REG 0x60
++
++/* Update battery voltage after every reading if true */
++static int update_vbat = 0;
++
++/* Reset the registers on init */
++static int reset = 0;
++
++/* Many IT87 constants specified below */
++
++/* Length of ISA address segment */
++#define IT87_EXTENT 8
++
++/* Where are the ISA address/data registers relative to the base address */
++#define IT87_ADDR_REG_OFFSET 5
++#define IT87_DATA_REG_OFFSET 6
++
++/*----- The IT87 registers -----*/
++
++#define IT87_REG_CONFIG 0x00
++
++#define IT87_REG_ALARM1 0x01
++#define IT87_REG_ALARM2 0x02
++#define IT87_REG_ALARM3 0x03
++
++#define IT87_REG_VID 0x0a
++#define IT87_REG_FAN_DIV 0x0b
++
++#define IT87_REG_FAN(nr) (0x0c + (nr))
++#define IT87_REG_FAN_MIN(nr) (0x0f + (nr))
++#define IT87_REG_FAN_CTRL 0x13
++
++/* pwm and smart guardian registers */
++
++#define IT87_REG_FAN_ONOFF 0x14
++#define IT87_REG_PWM(nr) (0x14 + (nr))
++#define IT87_REG_SG_TL_OFF(nr) (0x58 + (nr)*8)
++#define IT87_REG_SG_TL_LOW(nr) (0x59 + (nr)*8)
++#define IT87_REG_SG_TL_MED(nr) (0x5a + (nr)*8)
++#define IT87_REG_SG_TL_HI(nr) (0x5b + (nr)*8)
++#define IT87_REG_SG_TL_OVR(nr) (0x5c + (nr)*8)
++#define IT87_REG_SG_PWM_LOW(nr) (0x5d + (nr)*8)
++#define IT87_REG_SG_PWM_MED(nr) (0x5e + (nr)*8)
++#define IT87_REG_SG_PWM_HI(nr) (0x5f + (nr)*8)
++
++/* Monitors: 9 voltage (0 to 7, battery), 3 temp (1 to 3), 3 fan (1 to 3) */
++
++#define IT87_REG_VIN(nr) (0x20 + (nr))
++#define IT87_REG_TEMP(nr) (0x28 + (nr))
++
++#define IT87_REG_VIN_MAX(nr) (0x30 + (nr) * 2)
++#define IT87_REG_VIN_MIN(nr) (0x31 + (nr) * 2)
++#define IT87_REG_TEMP_HIGH(nr) (0x3e + (nr) * 2)
++#define IT87_REG_TEMP_LOW(nr) (0x3f + (nr) * 2)
++
++#define IT87_REG_I2C_ADDR 0x48
++
++#define IT87_REG_VIN_ENABLE 0x50
++#define IT87_REG_TEMP_ENABLE 0x51
++
++#define IT87_REG_CHIPID 0x58
++
++/* sensor pin types */
++#define UNUSED 0
++#define THERMISTOR 2
++#define PIIDIODE 3
++
++/* Conversions. Limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val) * 10 + 8)/16),0,255))
++#define IN_FROM_REG(val) (((val) * 16 + 5) / 10)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==255?0:1350000/((val)*(div)))
++
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)<0?(((val)-5)/10):\
++ ((val)+5)/10),-127,127))
++#define TEMP_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*10)
++
++#define VID_FROM_REG(val) ((val)==0x1f?0:(val)>=0x10?510-(val)*10:\
++ 205-(val)*5)
++#define ALARMS_FROM_REG(val) (val)
++
++extern inline u8 DIV_TO_REG(long val)
++{
++ u8 i;
++ for( i = 0; i <= 7; i++ )
++ {
++ if( val>>i == 1 )
++ return i;
++ }
++ return 1;
++}
++#define DIV_FROM_REG(val) (1 << (val))
++
++/* For each registered IT87, we need to keep some data in memory. That
++ data is pointed to by it87_list[NR]->data. The structure itself is
++ dynamically allocated, at the same time when a new it87 client is
++ allocated. */
++struct it87_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[9]; /* Register value */
++ u8 in_max[9]; /* Register value */
++ u8 in_min[9]; /* Register value */
++ u8 fan[3]; /* Register value */
++ u8 fan_min[3]; /* Register value */
++ u8 temp[3]; /* Register value */
++ u8 temp_high[3]; /* Register value */
++ u8 temp_low[3]; /* Register value */
++ u8 fan_div[3]; /* Register encoding, shifted right */
++ u8 vid; /* Register encoding, combined */
++ u32 alarms; /* Register encoding, combined */
++ u8 pwm[3]; /* Register value */
++ u8 fan_ctl[2]; /* Register encoding */
++ u8 sg_tl[3][5]; /* Register value */
++ u8 sg_pwm[3][3]; /* Register value */
++ u8 sens[3]; /* 2 = Thermistor,
++ 3 = PII/Celeron diode */
++};
++
++
++static int it87_attach_adapter(struct i2c_adapter *adapter);
++static int it87_find(int *address);
++static int it87_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int it87_detach_client(struct i2c_client *client);
++
++static int it87_read_value(struct i2c_client *client, u8 register);
++static int it87_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void it87_update_client(struct i2c_client *client);
++static void it87_init_client(struct i2c_client *client);
++
++
++static void it87_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++static void it87_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void it87_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void it87_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void it87_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void it87_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void it87_fan_ctl(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void it87_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void it87_sgpwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void it87_sgtl(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void it87_sens(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static struct i2c_driver it87_driver = {
++ .owner = THIS_MODULE,
++ .name = "IT87xx sensor driver",
++ .id = I2C_DRIVERID_IT87,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = it87_attach_adapter,
++ .detach_client = it87_detach_client,
++};
++
++static int it87_id = 0;
++
++/* The /proc/sys entries */
++
++/* -- SENSORS SYSCTL START -- */
++#define IT87_SYSCTL_IN0 1000 /* Volts * 100 */
++#define IT87_SYSCTL_IN1 1001
++#define IT87_SYSCTL_IN2 1002
++#define IT87_SYSCTL_IN3 1003
++#define IT87_SYSCTL_IN4 1004
++#define IT87_SYSCTL_IN5 1005
++#define IT87_SYSCTL_IN6 1006
++#define IT87_SYSCTL_IN7 1007
++#define IT87_SYSCTL_IN8 1008
++#define IT87_SYSCTL_FAN1 1101 /* Rotations/min */
++#define IT87_SYSCTL_FAN2 1102
++#define IT87_SYSCTL_FAN3 1103
++#define IT87_SYSCTL_TEMP1 1200 /* Degrees Celcius * 10 */
++#define IT87_SYSCTL_TEMP2 1201 /* Degrees Celcius * 10 */
++#define IT87_SYSCTL_TEMP3 1202 /* Degrees Celcius * 10 */
++#define IT87_SYSCTL_VID 1300 /* Volts * 100 */
++#define IT87_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define IT87_SYSCTL_ALARMS 2004 /* bitvector */
++
++#define IT87_SYSCTL_PWM1 1401
++#define IT87_SYSCTL_PWM2 1402
++#define IT87_SYSCTL_PWM3 1403
++#define IT87_SYSCTL_FAN_CTL 1501
++#define IT87_SYSCTL_FAN_ON_OFF 1502
++#define IT87_SYSCTL_SENS1 1601 /* 1, 2, or Beta (3000-5000) */
++#define IT87_SYSCTL_SENS2 1602
++#define IT87_SYSCTL_SENS3 1603
++
++#define IT87_ALARM_IN0 0x000100
++#define IT87_ALARM_IN1 0x000200
++#define IT87_ALARM_IN2 0x000400
++#define IT87_ALARM_IN3 0x000800
++#define IT87_ALARM_IN4 0x001000
++#define IT87_ALARM_IN5 0x002000
++#define IT87_ALARM_IN6 0x004000
++#define IT87_ALARM_IN7 0x008000
++#define IT87_ALARM_FAN1 0x0001
++#define IT87_ALARM_FAN2 0x0002
++#define IT87_ALARM_FAN3 0x0004
++#define IT87_ALARM_TEMP1 0x00010000
++#define IT87_ALARM_TEMP2 0x00020000
++#define IT87_ALARM_TEMP3 0x00040000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected IT87. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table it87_dir_table_template[] = {
++ {IT87_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_in},
++ {IT87_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_in},
++ {IT87_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_in},
++ {IT87_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_in},
++ {IT87_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_in},
++ {IT87_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_in},
++ {IT87_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_in},
++ {IT87_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_in},
++ {IT87_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_in},
++ {IT87_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_fan},
++ {IT87_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_fan},
++ {IT87_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_fan},
++ {IT87_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_temp},
++ {IT87_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_temp},
++ {IT87_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_temp},
++ {IT87_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_vid},
++ {IT87_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_fan_div},
++ {IT87_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_alarms},
++ {IT87_SYSCTL_FAN_CTL, "fan_ctl", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_fan_ctl},
++ {IT87_SYSCTL_FAN_ON_OFF, "fan_on_off", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_fan_ctl},
++ {IT87_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_pwm},
++ {IT87_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_pwm},
++ {IT87_SYSCTL_PWM3, "pwm3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_pwm},
++ {IT87_SYSCTL_PWM1, "sg_pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_sgpwm},
++ {IT87_SYSCTL_PWM2, "sg_pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_sgpwm},
++ {IT87_SYSCTL_PWM3, "sg_pwm3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_sgpwm},
++ {IT87_SYSCTL_PWM1, "sg_tl1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_sgtl},
++ {IT87_SYSCTL_PWM2, "sg_tl2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_sgtl},
++ {IT87_SYSCTL_PWM3, "sg_tl3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_sgtl},
++ {IT87_SYSCTL_SENS1, "sensor1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_sens},
++ {IT87_SYSCTL_SENS2, "sensor2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_sens},
++ {IT87_SYSCTL_SENS3, "sensor3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &it87_sens},
++ {0}
++};
++
++
++/* This function is called when:
++ * it87_driver is inserted (when this module is loaded), for each
++ available adapter
++ * when a new adapter is inserted (and it87_driver is still present) */
++static int it87_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, it87_detect);
++}
++
++static int it87_find(int *address)
++{
++ u16 val;
++
++ superio_enter();
++ val = (superio_inb(DEVID) << 8) |
++ superio_inb(DEVID + 1);
++ if (!IT87_DEVID_MATCH(val)) {
++ superio_exit();
++ return -ENODEV;
++ }
++
++ superio_select();
++ val = (superio_inb(IT87_BASE_REG) << 8) |
++ superio_inb(IT87_BASE_REG + 1);
++ superio_exit();
++ *address = val & ~(IT87_EXTENT - 1);
++ if (*address == 0) {
++ return -ENODEV;
++ }
++ return 0;
++}
++
++/* This function is called by i2c_detect */
++int it87_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct it87_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++ int is_isa = i2c_is_isa_adapter(adapter);
++
++ if (!is_isa
++ && !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ return 0;
++
++ if (is_isa
++ && check_region(address, IT87_EXTENT))
++ return 0;
++
++ /* Probe whether there is anything available on this address. Already
++ done for SMBus clients */
++ if (is_isa && kind < 0) {
++#define REALLY_SLOW_IO
++ /* We need the timeouts for at least some IT87-like chips.
++ But only if we read 'undefined' registers. */
++ i = inb_p(address + 1);
++ if (inb_p(address + 2) != i
++ || inb_p(address + 3) != i
++ || inb_p(address + 7) != i)
++ return -ENODEV;
++#undef REALLY_SLOW_IO
++
++ /* Let's just hope nothing breaks here */
++ i = inb_p(address + 5) & 0x7f;
++ outb_p(~i & 0x7f, address + 5);
++ if ((inb_p(address + 5) & 0x7f) != (~i & 0x7f)) {
++ outb_p(i, address + 5);
++ return -ENODEV;
++ }
++ }
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access it87_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct it87_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ if (is_isa)
++ init_MUTEX(&data->lock);
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &it87_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ if (kind < 0) {
++ if ((it87_read_value(new_client, IT87_REG_CONFIG) & 0x80)
++ || (!is_isa
++ && it87_read_value(new_client, IT87_REG_I2C_ADDR) != address)) {
++ err = -ENODEV;
++ goto ERROR1;
++ }
++ }
++
++ /* Determine the chip type. */
++ if (kind <= 0) {
++ i = it87_read_value(new_client, IT87_REG_CHIPID);
++ if (i == 0x90) {
++ kind = it87;
++ }
++ else {
++ if (kind == 0)
++ printk
++ ("it87.o: Ignoring 'force' parameter for unknown chip at "
++ "adapter %d, address 0x%02x\n",
++ i2c_adapter_id(adapter), address);
++ err = -ENODEV;
++ goto ERROR1;
++ }
++ }
++
++ if (kind == it87) {
++ type_name = "it87";
++ client_name = "IT87 chip";
++ } /* else if (kind == it8712) {
++ type_name = "it8712";
++ client_name = "IT87-J chip";
++ } */ else {
++#ifdef DEBUG
++ printk("it87.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Reserve the ISA region */
++ if (is_isa)
++ request_region(address, IT87_EXTENT, type_name);
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = it87_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ it87_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the IT87 chip */
++ it87_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ if (is_isa)
++ release_region(address, IT87_EXTENT);
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int it87_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct it87_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("it87.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ if(i2c_is_isa_client(client))
++ release_region(client->addr, IT87_EXTENT);
++ kfree(client->data);
++
++ return 0;
++}
++
++/* The SMBus locks itself, but ISA access must be locked explicitely!
++ We don't want to lock the whole ISA bus, so we lock each client
++ separately.
++ We ignore the IT87 BUSY flag at this moment - it could lead to deadlocks,
++ would slow down the IT87 access and should not be necessary.
++ There are some ugly typecasts here, but the good new is - they should
++ nowhere else be necessary! */
++static int it87_read_value(struct i2c_client *client, u8 reg)
++{
++ int res;
++ if (i2c_is_isa_client(client)) {
++ down(&(((struct it87_data *) (client->data))->lock));
++ outb_p(reg, client->addr + IT87_ADDR_REG_OFFSET);
++ res = inb_p(client->addr + IT87_DATA_REG_OFFSET);
++ up(&(((struct it87_data *) (client->data))->lock));
++ return res;
++ } else
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++/* The SMBus locks itself, but ISA access muse be locked explicitely!
++ We don't want to lock the whole ISA bus, so we lock each client
++ separately.
++ We ignore the IT87 BUSY flag at this moment - it could lead to deadlocks,
++ would slow down the IT87 access and should not be necessary.
++ There are some ugly typecasts here, but the good new is - they should
++ nowhere else be necessary! */
++static int it87_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ if (i2c_is_isa_client(client)) {
++ down(&(((struct it87_data *) (client->data))->lock));
++ outb_p(reg, client->addr + IT87_ADDR_REG_OFFSET);
++ outb_p(value, client->addr + IT87_DATA_REG_OFFSET);
++ up(&(((struct it87_data *) (client->data))->lock));
++ return 0;
++ } else
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++/* Called when we have found a new IT87. */
++static void it87_init_client(struct i2c_client *client)
++{
++ int tmp;
++
++ if (reset) {
++ /* Reset all except Watchdog values and last conversion values
++ This sets fan-divs to 2, among others */
++ it87_write_value(client, IT87_REG_CONFIG, 0x80);
++ }
++
++ /* Check if temperature channnels are reset manually or by some reason */
++ tmp = it87_read_value(client, IT87_REG_TEMP_ENABLE);
++ if ((tmp & 0x3f) == 0) {
++ /* Temp1,Temp3=thermistor; Temp2=thermal diode */
++ tmp = (tmp & 0xc0) | 0x2a;
++ it87_write_value(client, IT87_REG_TEMP_ENABLE, tmp);
++ }
++
++ /* Check if voltage monitors are reset manually or by some reason */
++ tmp = it87_read_value(client, IT87_REG_VIN_ENABLE);
++ if ((tmp & 0xff) == 0) {
++ /* Enable all voltage monitors */
++ it87_write_value(client, IT87_REG_VIN_ENABLE, 0xff);
++ }
++
++ /* Check if tachometers are reset manually or by some reason */
++ tmp = it87_read_value(client, IT87_REG_FAN_CTRL);
++ if ((tmp & 0x70) == 0) {
++ /* Enable all fan tachometers */
++ tmp = (tmp & 0x8f) | 0x70;
++ it87_write_value(client, IT87_REG_FAN_CTRL, tmp);
++ }
++
++ /* Start monitoring */
++ it87_write_value(client, IT87_REG_CONFIG,
++ (it87_read_value(client, IT87_REG_CONFIG) & 0x36)
++ | (update_vbat ? 0x41 : 0x01));
++}
++
++static void it87_update_client(struct i2c_client *client)
++{
++ struct it87_data *data = client->data;
++ int i, tmp, tmp2;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++ if (update_vbat) {
++ /* Cleared after each update, so reenable. Value
++ returned by this read will be previous value */
++ it87_write_value(client, IT87_REG_CONFIG,
++ it87_read_value(client, IT87_REG_CONFIG) | 0x40);
++ }
++ for (i = 0; i <= 7; i++) {
++ data->in[i] =
++ it87_read_value(client, IT87_REG_VIN(i));
++ data->in_min[i] =
++ it87_read_value(client, IT87_REG_VIN_MIN(i));
++ data->in_max[i] =
++ it87_read_value(client, IT87_REG_VIN_MAX(i));
++ }
++ data->in[8] =
++ it87_read_value(client, IT87_REG_VIN(8));
++ /* VBAT sensor doesn't have limit registers, set
++ to min and max value */
++ data->in_min[8] = 0;
++ data->in_max[8] = 255;
++
++ for (i = 1; i <= 3; i++) {
++ data->fan[i - 1] =
++ it87_read_value(client, IT87_REG_FAN(i));
++ data->fan_min[i - 1] =
++ it87_read_value(client, IT87_REG_FAN_MIN(i));
++ }
++ for (i = 1; i <= 3; i++) {
++ data->temp[i - 1] =
++ it87_read_value(client, IT87_REG_TEMP(i));
++ data->temp_high[i - 1] =
++ it87_read_value(client, IT87_REG_TEMP_HIGH(i));
++ data->temp_low[i - 1] =
++ it87_read_value(client, IT87_REG_TEMP_LOW(i));
++ }
++
++ /* The 8705 does not have VID capability */
++ /*if (data->type == it8712) {
++ data->vid = it87_read_value(client, IT87_REG_VID);
++ data->vid &= 0x1f;
++ }
++ else */ {
++ data->vid = 0x1f;
++ }
++
++ i = it87_read_value(client, IT87_REG_FAN_DIV);
++ data->fan_div[0] = i & 0x07;
++ data->fan_div[1] = (i >> 3) & 0x07;
++ data->fan_div[2] = ( (i&0x40)==0x40 ? 3 : 1 );
++
++ for( i = 1; i <= 3; i++ ) {
++ data->pwm[i-1] = it87_read_value(client, IT87_REG_PWM(i));
++ data->sg_tl[i-1][0] = it87_read_value(client, IT87_REG_SG_TL_OFF(i));
++ data->sg_tl[i-1][1] = it87_read_value(client, IT87_REG_SG_TL_LOW(i));
++ data->sg_tl[i-1][2] = it87_read_value(client, IT87_REG_SG_TL_MED(i));
++ data->sg_tl[i-1][3] = it87_read_value(client, IT87_REG_SG_TL_HI(i));
++ data->sg_tl[i-1][4] = it87_read_value(client, IT87_REG_SG_TL_OVR(i));
++ data->sg_pwm[i-1][0] = it87_read_value(client, IT87_REG_SG_PWM_LOW(i));
++ data->sg_pwm[i-1][1] = it87_read_value(client, IT87_REG_SG_PWM_MED(i));
++ data->sg_pwm[i-1][2] = it87_read_value(client, IT87_REG_SG_PWM_HI(i));
++ }
++ data->alarms =
++ it87_read_value(client, IT87_REG_ALARM1) |
++ (it87_read_value(client, IT87_REG_ALARM2) << 8) |
++ (it87_read_value(client, IT87_REG_ALARM3) << 16);
++ data->fan_ctl[0] = it87_read_value(client, IT87_REG_FAN_CTRL);
++ data->fan_ctl[1] = it87_read_value(client, IT87_REG_FAN_ONOFF);
++
++ tmp = it87_read_value(client, IT87_REG_TEMP_ENABLE);
++ for(i = 0; i < 3; i++) {
++ tmp2 = (tmp >> i) & 0x09;
++ if(tmp2 == 0x01)
++ data->sens[i] = PIIDIODE;
++ else if(tmp2 == 0x08)
++ data->sens[i] = THERMISTOR;
++ else
++ data->sens[i] = UNUSED;
++ }
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ - Each function must return the magnitude (power of 10 to divide the
++ data with) if it is called with operation==SENSORS_PROC_REAL_INFO.
++ - It must put a maximum of *nrels elements in results reflecting the
++ data of this file, and set *nrels to the number it actually put
++ in it, if operation==SENSORS_PROC_REAL_READ.
++ - Finally, it must get upto *nrels elements from results and write them
++ to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void it87_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ int nr = ctl_name - IT87_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0]);
++ it87_write_value(client, IT87_REG_VIN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1]);
++ it87_write_value(client, IT87_REG_VIN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void it87_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ int nr = ctl_name - IT87_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ results[1] = FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = FAN_TO_REG(results[0],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ it87_write_value(client, IT87_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++
++void it87_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ int nr = ctl_name - IT87_SYSCTL_TEMP1 + 1;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_high[nr - 1]);
++ results[1] = TEMP_FROM_REG(data->temp_low[nr - 1]);
++ results[2] = TEMP_FROM_REG(data->temp[nr - 1]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_high[nr - 1] = TEMP_TO_REG(results[0]);
++ it87_write_value(client, IT87_REG_TEMP_HIGH(nr),
++ data->temp_high[nr - 1]);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_low[nr - 1] = TEMP_TO_REG(results[1]);
++ it87_write_value(client, IT87_REG_TEMP_LOW(nr),
++ data->temp_low[nr - 1]);
++ }
++ }
++}
++
++void it87_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ int nr = ctl_name - IT87_SYSCTL_PWM1 + 1;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = data->pwm[nr - 1];
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->pwm[nr - 1] = results[0];
++ it87_write_value(client, IT87_REG_PWM(nr), data->pwm[nr - 1]);
++ }
++ }
++}
++
++void it87_sgpwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ int nr = ctl_name - IT87_SYSCTL_PWM1 + 1;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = data->sg_pwm[nr - 1][0];
++ results[1] = data->sg_pwm[nr - 1][1];
++ results[2] = data->sg_pwm[nr - 1][2];
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->sg_pwm[nr - 1][0] = results[0];
++ it87_write_value(client, IT87_REG_SG_PWM_LOW(nr), data->sg_pwm[nr - 1][0]);
++ }
++ if (*nrels_mag >= 2) {
++ data->sg_pwm[nr - 1][1] = results[1];
++ it87_write_value(client, IT87_REG_SG_PWM_MED(nr), data->sg_pwm[nr - 1][1]);
++ }
++ if (*nrels_mag >= 3) {
++ data->sg_pwm[nr - 1][2] = results[2];
++ it87_write_value(client, IT87_REG_SG_PWM_HI(nr), data->sg_pwm[nr - 1][2]);
++ }
++ }
++}
++
++void it87_sgtl(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ int nr = ctl_name - IT87_SYSCTL_PWM1 + 1;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = TEMP_FROM_REG(data->sg_tl[nr - 1][0]);
++ results[1] = TEMP_FROM_REG(data->sg_tl[nr - 1][1]);
++ results[2] = TEMP_FROM_REG(data->sg_tl[nr - 1][2]);
++ results[3] = TEMP_FROM_REG(data->sg_tl[nr - 1][3]);
++ results[4] = TEMP_FROM_REG(data->sg_tl[nr - 1][4]);
++ *nrels_mag = 5;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->sg_tl[nr - 1][0] = TEMP_TO_REG(results[0]);
++ it87_write_value(client, IT87_REG_SG_TL_OFF(nr), data->sg_tl[nr - 1][0]);
++ }
++ if (*nrels_mag >= 2) {
++ data->sg_tl[nr - 1][1] = TEMP_TO_REG(results[1]);
++ it87_write_value(client, IT87_REG_SG_TL_LOW(nr), data->sg_tl[nr - 1][1]);
++ }
++ if (*nrels_mag >= 3) {
++ data->sg_tl[nr - 1][2] = TEMP_TO_REG(results[2]);
++ it87_write_value(client, IT87_REG_SG_TL_MED(nr), data->sg_tl[nr - 1][2]);
++ }
++ if (*nrels_mag >= 4) {
++ data->sg_tl[nr - 1][3] = TEMP_TO_REG(results[3]);
++ it87_write_value(client, IT87_REG_SG_TL_HI(nr), data->sg_tl[nr - 1][3]);
++ }
++ if (*nrels_mag >= 5) {
++ data->sg_tl[nr - 1][4] = TEMP_TO_REG(results[4]);
++ it87_write_value(client, IT87_REG_SG_TL_OVR(nr), data->sg_tl[nr - 1][4]);
++ }
++ }
++}
++
++void it87_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = VID_FROM_REG(data->vid);
++ *nrels_mag = 1;
++ }
++}
++
++void it87_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void it87_fan_div(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ results[2] = DIV_FROM_REG(data->fan_div[2]);;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = it87_read_value(client, IT87_REG_FAN_DIV);
++ if (*nrels_mag >= 3) {
++ data->fan_div[2] = DIV_TO_REG(results[2]);
++ if( data->fan[2]!=3 ) {
++ data->fan_div[2] = 1;
++ old = (old & 0xbf);
++ } else {
++ old = (old | 0x40);
++ }
++ }
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0xc3) | (data->fan_div[1] << 3);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xf8) | data->fan_div[0];
++ it87_write_value(client, IT87_REG_FAN_DIV, old);
++ }
++ }
++}
++
++void it87_fan_ctl(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ int index = ctl_name - IT87_SYSCTL_FAN_CTL;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ it87_update_client(client);
++ results[0] = data->fan_ctl[index];
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_ctl[index] = results[0];
++ if( index == 0 )
++ it87_write_value(client, IT87_REG_FAN_CTRL, data->fan_ctl[index] );
++ else
++ it87_write_value(client, IT87_REG_FAN_ONOFF, data->fan_ctl[index] );
++ }
++ }
++}
++
++void it87_sens(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct it87_data *data = client->data;
++ int nr = 1 + ctl_name - IT87_SYSCTL_SENS1;
++ u8 tmp, val1, val2;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->sens[nr - 1];
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ val1 = 0x01 << (nr - 1);
++ val2 = 0x08 << (nr - 1);
++ tmp = it87_read_value(client, IT87_REG_TEMP_ENABLE);
++ switch (results[0]) {
++ case PIIDIODE:
++ tmp &= ~ val2;
++ tmp |= val1;
++ break;
++ case THERMISTOR:
++ tmp &= ~ val1;
++ tmp |= val2;
++ break;
++ case UNUSED:
++ tmp &= ~ val1;
++ tmp &= ~ val2;
++ break;
++ default:
++ printk(KERN_ERR "it87.o: Invalid sensor type %ld; "
++ "must be 0 (unused), 2 (thermistor) "
++ "or 3 (diode)\n", results[0]);
++ return;
++ }
++ it87_write_value(client,
++ IT87_REG_TEMP_ENABLE, tmp);
++ data->sens[nr - 1] = results[0];
++ }
++ }
++}
++
++static int __init sm_it87_init(void)
++{
++ int addr;
++
++ printk("it87.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ if (!it87_find(&addr)) {
++ normal_isa[0] = addr;
++ }
++ return i2c_add_driver(&it87_driver);
++}
++
++static void __exit sm_it87_exit(void)
++{
++ i2c_del_driver(&it87_driver);
++}
++
++
++
++MODULE_AUTHOR("Chris Gauthron <chrisg@0-in.com>");
++MODULE_DESCRIPTION("IT8705F, IT8712F, Sis950 driver");
++MODULE_PARM(update_vbat, "i");
++MODULE_PARM_DESC(update_vbat, "Update vbat if set else return powerup value");
++MODULE_PARM(reset, "i");
++MODULE_PARM_DESC(reset, "Reset the chip's registers, default no");
++
++module_init(sm_it87_init);
++module_exit(sm_it87_exit);
+--- linux-old/drivers/sensors/lm75.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/lm75.c Mon Dec 13 20:18:47 2004
+@@ -0,0 +1,331 @@
++/*
++ lm75.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include "lm75.h"
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x48, 0x4f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(lm75);
++
++/* Many LM75 constants specified below */
++
++/* The LM75 registers */
++#define LM75_REG_TEMP 0x00
++#define LM75_REG_CONF 0x01
++#define LM75_REG_TEMP_HYST 0x02
++#define LM75_REG_TEMP_OS 0x03
++
++/* Each client has this additional data */
++struct lm75_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u16 temp, temp_os, temp_hyst; /* Register values */
++};
++
++static int lm75_attach_adapter(struct i2c_adapter *adapter);
++static int lm75_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void lm75_init_client(struct i2c_client *client);
++static int lm75_detach_client(struct i2c_client *client);
++
++static int lm75_read_value(struct i2c_client *client, u8 reg);
++static int lm75_write_value(struct i2c_client *client, u8 reg, u16 value);
++static void lm75_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm75_update_client(struct i2c_client *client);
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver lm75_driver = {
++ .owner = THIS_MODULE,
++ .name = "LM75 sensor chip driver",
++ .id = I2C_DRIVERID_LM75,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = lm75_attach_adapter,
++ .detach_client = lm75_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++
++#define LM75_SYSCTL_TEMP 1200 /* Degrees Celcius * 10 */
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected LM75. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table lm75_dir_table_template[] = {
++ {LM75_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm75_temp},
++ {0}
++};
++
++static int lm75_id = 0;
++
++static int lm75_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, lm75_detect);
++}
++
++/* This function is called by i2c_detect */
++int lm75_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct lm75_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("lm75.o: lm75_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
++ I2C_FUNC_SMBUS_WORD_DATA))
++ goto error0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access lm75_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct lm75_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto error0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &lm75_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. There is no identification-
++ dedicated register so we have to rely on several tricks:
++ unused bits, registers cycling over 8-address boundaries,
++ addresses 0x04-0x07 returning the last read value.
++ The cycling+unused addresses combination is not tested,
++ since it would significantly slow the detection down and would
++ hardly add any value. */
++ if (kind < 0) {
++ int cur, conf, hyst, os;
++
++ /* Unused addresses */
++ cur = i2c_smbus_read_word_data(new_client, 0);
++ conf = i2c_smbus_read_byte_data(new_client, 1);
++ hyst = i2c_smbus_read_word_data(new_client, 2);
++ if (i2c_smbus_read_word_data(new_client, 4) != hyst
++ || i2c_smbus_read_word_data(new_client, 5) != hyst
++ || i2c_smbus_read_word_data(new_client, 6) != hyst
++ || i2c_smbus_read_word_data(new_client, 7) != hyst)
++ goto error1;
++ os = i2c_smbus_read_word_data(new_client, 3);
++ if (i2c_smbus_read_word_data(new_client, 4) != os
++ || i2c_smbus_read_word_data(new_client, 5) != os
++ || i2c_smbus_read_word_data(new_client, 6) != os
++ || i2c_smbus_read_word_data(new_client, 7) != os)
++ goto error1;
++
++ /* Unused bits */
++ if (conf & 0xe0)
++ goto error1;
++
++ /* Addresses cycling */
++ for (i = 8; i < 0xff; i += 8)
++ if (i2c_smbus_read_byte_data(new_client, i + 1) != conf
++ || i2c_smbus_read_word_data(new_client, i + 2) != hyst
++ || i2c_smbus_read_word_data(new_client, i + 3) != os)
++ goto error1;
++ }
++
++ /* Determine the chip type - only one kind supported! */
++ if (kind <= 0)
++ kind = lm75;
++
++ if (kind == lm75) {
++ type_name = "lm75";
++ client_name = "LM75 chip";
++ } else {
++ pr_debug("lm75.o: Internal error: unknown kind (%d)?!?", kind);
++ goto error1;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = lm75_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto error3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ lm75_dir_table_template)) < 0) {
++ err = i;
++ goto error4;
++ }
++ data->sysctl_id = i;
++
++ lm75_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ error4:
++ i2c_detach_client(new_client);
++ error3:
++ error1:
++ kfree(data);
++ error0:
++ return err;
++}
++
++static int lm75_detach_client(struct i2c_client *client)
++{
++ struct lm75_data *data = client->data;
++
++ i2c_deregister_entry(data->sysctl_id);
++ i2c_detach_client(client);
++ kfree(client->data);
++ return 0;
++}
++
++/* All registers are word-sized, except for the configuration register.
++ LM75 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int lm75_read_value(struct i2c_client *client, u8 reg)
++{
++ if (reg == LM75_REG_CONF)
++ return i2c_smbus_read_byte_data(client, reg);
++ else
++ return swab16(i2c_smbus_read_word_data(client, reg));
++}
++
++/* All registers are word-sized, except for the configuration register.
++ LM75 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int lm75_write_value(struct i2c_client *client, u8 reg, u16 value)
++{
++ if (reg == LM75_REG_CONF)
++ return i2c_smbus_write_byte_data(client, reg, value);
++ else
++ return i2c_smbus_write_word_data(client, reg, swab16(value));
++}
++
++static void lm75_init_client(struct i2c_client *client)
++{
++ /* Initialize the LM75 chip */
++ lm75_write_value(client, LM75_REG_CONF, 0);
++}
++
++static void lm75_update_client(struct i2c_client *client)
++{
++ struct lm75_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++ pr_debug("Starting lm75 update\n");
++
++ data->temp = lm75_read_value(client, LM75_REG_TEMP);
++ data->temp_os = lm75_read_value(client, LM75_REG_TEMP_OS);
++ data->temp_hyst =
++ lm75_read_value(client, LM75_REG_TEMP_HYST);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++void lm75_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm75_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm75_update_client(client);
++ results[0] = LM75_TEMP_FROM_REG(data->temp_os);
++ results[1] = LM75_TEMP_FROM_REG(data->temp_hyst);
++ results[2] = LM75_TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_os = LM75_TEMP_TO_REG(results[0]);
++ lm75_write_value(client, LM75_REG_TEMP_OS,
++ data->temp_os);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst = LM75_TEMP_TO_REG(results[1]);
++ lm75_write_value(client, LM75_REG_TEMP_HYST,
++ data->temp_hyst);
++ }
++ }
++}
++
++static int __init sm_lm75_init(void)
++{
++ printk(KERN_INFO "lm75.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&lm75_driver);
++}
++
++static void __exit sm_lm75_exit(void)
++{
++ i2c_del_driver(&lm75_driver);
++}
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>");
++MODULE_DESCRIPTION("LM75 driver");
++MODULE_LICENSE("GPL");
++
++module_init(sm_lm75_init);
++module_exit(sm_lm75_exit);
+--- linux-old/drivers/sensors/lm75.h Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/lm75.h Mon Dec 13 20:18:47 2004
+@@ -0,0 +1,49 @@
++/*
++ lm75.h - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2003 Mark M. Hoffman <mhoffman@lightlink.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ This file contains common code for encoding/decoding LM75 type
++ temperature readings, which are emulated by many of the chips
++ we support. As the user is unlikely to load more than one driver
++ which contains this code, we don't worry about the wasted space.
++*/
++
++#include <linux/i2c-proc.h>
++
++/* straight from the datasheet */
++#define LM75_TEMP_MIN (-550)
++#define LM75_TEMP_MAX 1250
++
++/* TEMP: 0.1C/bit (-55C to +125C)
++ REG: (0.5C/bit, two's complement) << 7 */
++static inline u16 LM75_TEMP_TO_REG(int temp)
++{
++ int ntemp = SENSORS_LIMIT(temp, LM75_TEMP_MIN, LM75_TEMP_MAX);
++ ntemp += (ntemp<0 ? -2 : 2);
++ return (u16)((ntemp / 5) << 7);
++}
++
++static inline int LM75_TEMP_FROM_REG(u16 reg)
++{
++ /* use integer division instead of equivalent right shift to
++ guarantee arithmetic shift and preserve the sign */
++ return ((s16)reg / 128) * 5;
++}
++
+--- linux-old/drivers/sensors/lm78.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/lm78.c Mon Dec 13 20:18:47 2004
+@@ -0,0 +1,729 @@
++/*
++ lm78.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x20, 0x2f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0x0290, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_3(lm78, lm78j, lm79);
++
++/* Many LM78 constants specified below */
++
++/* Length of ISA address segment */
++#define LM78_EXTENT 8
++
++/* Where are the ISA address/data registers relative to the base address */
++#define LM78_ADDR_REG_OFFSET 5
++#define LM78_DATA_REG_OFFSET 6
++
++/* The LM78 registers */
++#define LM78_REG_IN_MAX(nr) (0x2b + (nr) * 2)
++#define LM78_REG_IN_MIN(nr) (0x2c + (nr) * 2)
++#define LM78_REG_IN(nr) (0x20 + (nr))
++
++#define LM78_REG_FAN_MIN(nr) (0x3a + (nr))
++#define LM78_REG_FAN(nr) (0x27 + (nr))
++
++#define LM78_REG_TEMP 0x27
++#define LM78_REG_TEMP_OVER 0x39
++#define LM78_REG_TEMP_HYST 0x3a
++
++#define LM78_REG_ALARM1 0x41
++#define LM78_REG_ALARM2 0x42
++
++#define LM78_REG_VID_FANDIV 0x47
++
++#define LM78_REG_CONFIG 0x40
++#define LM78_REG_CHIPID 0x49
++#define LM78_REG_I2C_ADDR 0x48
++
++
++/* Conversions. Limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val) * 10 + 8)/16),0,255))
++#define IN_FROM_REG(val) (((val) * 16 + 5) / 10)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==255?0:1350000/((val)*(div)))
++
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)<0?(((val)-5)/10):\
++ ((val)+5)/10),0,255))
++#define TEMP_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*10)
++
++#define VID_FROM_REG(val) ((val)==0x1f?0:(val)>=0x10?510-(val)*10:\
++ 205-(val)*5)
++#define ALARMS_FROM_REG(val) (val)
++
++#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
++#define DIV_FROM_REG(val) (1 << (val))
++
++/* There are some complications in a module like this. First off, LM78 chips
++ may be both present on the SMBus and the ISA bus, and we have to handle
++ those cases separately at some places. Second, there might be several
++ LM78 chips available (well, actually, that is probably never done; but
++ it is a clean illustration of how to handle a case like that). Finally,
++ a specific chip may be attached to *both* ISA and SMBus, and we would
++ not like to detect it double. Fortunately, in the case of the LM78 at
++ least, a register tells us what SMBus address we are on, so that helps
++ a bit - except if there could be more than one SMBus. Groan. No solution
++ for this yet. */
++
++/* This module may seem overly long and complicated. In fact, it is not so
++ bad. Quite a lot of bookkeeping is done. A real driver can often cut
++ some corners. */
++
++/* For each registered LM78, we need to keep some data in memory. That
++ data is pointed to by lm78_list[NR]->data. The structure itself is
++ dynamically allocated, at the same time when a new lm78 client is
++ allocated. */
++struct lm78_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[7]; /* Register value */
++ u8 in_max[7]; /* Register value */
++ u8 in_min[7]; /* Register value */
++ u8 fan[3]; /* Register value */
++ u8 fan_min[3]; /* Register value */
++ u8 temp; /* Register value */
++ u8 temp_over; /* Register value */
++ u8 temp_hyst; /* Register value */
++ u8 fan_div[3]; /* Register encoding, shifted right */
++ u8 vid; /* Register encoding, combined */
++ u16 alarms; /* Register encoding, combined */
++};
++
++
++static int lm78_attach_adapter(struct i2c_adapter *adapter);
++static int lm78_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int lm78_detach_client(struct i2c_client *client);
++
++static int lm78_read_value(struct i2c_client *client, u8 register);
++static int lm78_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void lm78_update_client(struct i2c_client *client);
++static void lm78_init_client(struct i2c_client *client);
++
++
++static void lm78_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++static void lm78_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm78_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm78_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm78_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm78_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static struct i2c_driver lm78_driver = {
++ .owner = THIS_MODULE,
++ .name = "LM78(-J) and LM79 sensor driver",
++ .id = I2C_DRIVERID_LM78,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = lm78_attach_adapter,
++ .detach_client = lm78_detach_client,
++};
++
++static int lm78_id = 0;
++
++/* The /proc/sys entries */
++
++/* -- SENSORS SYSCTL START -- */
++#define LM78_SYSCTL_IN0 1000 /* Volts * 100 */
++#define LM78_SYSCTL_IN1 1001
++#define LM78_SYSCTL_IN2 1002
++#define LM78_SYSCTL_IN3 1003
++#define LM78_SYSCTL_IN4 1004
++#define LM78_SYSCTL_IN5 1005
++#define LM78_SYSCTL_IN6 1006
++#define LM78_SYSCTL_FAN1 1101 /* Rotations/min */
++#define LM78_SYSCTL_FAN2 1102
++#define LM78_SYSCTL_FAN3 1103
++#define LM78_SYSCTL_TEMP 1200 /* Degrees Celcius * 10 */
++#define LM78_SYSCTL_VID 1300 /* Volts * 100 */
++#define LM78_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define LM78_SYSCTL_ALARMS 2001 /* bitvector */
++
++#define LM78_ALARM_IN0 0x0001
++#define LM78_ALARM_IN1 0x0002
++#define LM78_ALARM_IN2 0x0004
++#define LM78_ALARM_IN3 0x0008
++#define LM78_ALARM_IN4 0x0100
++#define LM78_ALARM_IN5 0x0200
++#define LM78_ALARM_IN6 0x0400
++#define LM78_ALARM_FAN1 0x0040
++#define LM78_ALARM_FAN2 0x0080
++#define LM78_ALARM_FAN3 0x0800
++#define LM78_ALARM_TEMP 0x0010
++#define LM78_ALARM_BTI 0x0020
++#define LM78_ALARM_CHAS 0x1000
++#define LM78_ALARM_FIFO 0x2000
++#define LM78_ALARM_SMI_IN 0x4000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected LM78. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table lm78_dir_table_template[] = {
++ {LM78_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_in},
++ {LM78_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_in},
++ {LM78_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_in},
++ {LM78_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_in},
++ {LM78_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_in},
++ {LM78_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_in},
++ {LM78_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_in},
++ {LM78_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_fan},
++ {LM78_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_fan},
++ {LM78_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_fan},
++ {LM78_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_temp},
++ {LM78_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_vid},
++ {LM78_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_fan_div},
++ {LM78_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm78_alarms},
++ {0}
++};
++
++
++/* This function is called when:
++ * lm78_driver is inserted (when this module is loaded), for each
++ available adapter
++ * when a new adapter is inserted (and lm78_driver is still present) */
++static int lm78_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, lm78_detect);
++}
++
++/* This function is called by i2c_detect */
++int lm78_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct lm78_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++ int is_isa = i2c_is_isa_adapter(adapter);
++
++ if (!is_isa
++ && !i2c_check_functionality(adapter,
++ I2C_FUNC_SMBUS_BYTE_DATA)) goto
++ ERROR0;
++
++ if (is_isa) {
++ if (check_region(address, LM78_EXTENT))
++ goto ERROR0;
++ }
++
++ /* Probe whether there is anything available on this address. Already
++ done for SMBus clients */
++ if (kind < 0) {
++ if (is_isa) {
++
++#define REALLY_SLOW_IO
++ /* We need the timeouts for at least some LM78-like chips. But only
++ if we read 'undefined' registers. */
++ i = inb_p(address + 1);
++ if (inb_p(address + 2) != i)
++ goto ERROR0;
++ if (inb_p(address + 3) != i)
++ goto ERROR0;
++ if (inb_p(address + 7) != i)
++ goto ERROR0;
++#undef REALLY_SLOW_IO
++
++ /* Let's just hope nothing breaks here */
++ i = inb_p(address + 5) & 0x7f;
++ outb_p(~i & 0x7f, address + 5);
++ if ((inb_p(address + 5) & 0x7f) != (~i & 0x7f)) {
++ outb_p(i, address + 5);
++ return 0;
++ }
++ }
++ }
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access lm78_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct lm78_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ if (is_isa)
++ init_MUTEX(&data->lock);
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &lm78_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ if (kind < 0) {
++ if (lm78_read_value(new_client, LM78_REG_CONFIG) & 0x80)
++ goto ERROR1;
++ if (!is_isa
++ && (lm78_read_value(new_client, LM78_REG_I2C_ADDR) !=
++ address)) goto ERROR1;
++ }
++
++ /* Determine the chip type. */
++ if (kind <= 0) {
++ i = lm78_read_value(new_client, LM78_REG_CHIPID);
++ if (i == 0x00 || i == 0x20)
++ kind = lm78;
++ else if (i == 0x40)
++ kind = lm78j;
++ else if ((i & 0xfe) == 0xc0)
++ kind = lm79;
++ else {
++ if (kind == 0)
++ printk
++ ("lm78.o: Ignoring 'force' parameter for unknown chip at "
++ "adapter %d, address 0x%02x\n",
++ i2c_adapter_id(adapter), address);
++ goto ERROR1;
++ }
++ }
++
++ if (kind == lm78) {
++ type_name = "lm78";
++ client_name = "LM78 chip";
++ } else if (kind == lm78j) {
++ type_name = "lm78-j";
++ client_name = "LM78-J chip";
++ } else if (kind == lm79) {
++ type_name = "lm79";
++ client_name = "LM79 chip";
++ } else {
++#ifdef DEBUG
++ printk("lm78.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Reserve the ISA region */
++ if (is_isa)
++ request_region(address, LM78_EXTENT, type_name);
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = lm78_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ lm78_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the LM78 chip */
++ lm78_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ if (is_isa)
++ release_region(address, LM78_EXTENT);
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int lm78_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct lm78_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("lm78.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ if(i2c_is_isa_client(client))
++ release_region(client->addr, LM78_EXTENT);
++ kfree(client->data);
++
++ return 0;
++}
++
++/* The SMBus locks itself, but ISA access must be locked explicitely!
++ We don't want to lock the whole ISA bus, so we lock each client
++ separately.
++ We ignore the LM78 BUSY flag at this moment - it could lead to deadlocks,
++ would slow down the LM78 access and should not be necessary.
++ There are some ugly typecasts here, but the good new is - they should
++ nowhere else be necessary! */
++static int lm78_read_value(struct i2c_client *client, u8 reg)
++{
++ int res;
++ if (i2c_is_isa_client(client)) {
++ down(&(((struct lm78_data *) (client->data))->lock));
++ outb_p(reg, client->addr + LM78_ADDR_REG_OFFSET);
++ res = inb_p(client->addr + LM78_DATA_REG_OFFSET);
++ up(&(((struct lm78_data *) (client->data))->lock));
++ return res;
++ } else
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++/* The SMBus locks itself, but ISA access muse be locked explicitely!
++ We don't want to lock the whole ISA bus, so we lock each client
++ separately.
++ We ignore the LM78 BUSY flag at this moment - it could lead to deadlocks,
++ would slow down the LM78 access and should not be necessary.
++ There are some ugly typecasts here, but the good new is - they should
++ nowhere else be necessary! */
++static int lm78_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ if (i2c_is_isa_client(client)) {
++ down(&(((struct lm78_data *) (client->data))->lock));
++ outb_p(reg, client->addr + LM78_ADDR_REG_OFFSET);
++ outb_p(value, client->addr + LM78_DATA_REG_OFFSET);
++ up(&(((struct lm78_data *) (client->data))->lock));
++ return 0;
++ } else
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++/* Called when we have found a new LM78. */
++static void lm78_init_client(struct i2c_client *client)
++{
++ u8 config = lm78_read_value(client, LM78_REG_CONFIG);
++
++ /* Start monitoring */
++ if (!(config & 0x01))
++ lm78_write_value(client, LM78_REG_CONFIG,
++ (config & 0xf7) | 0x01);
++}
++
++static void lm78_update_client(struct i2c_client *client)
++{
++ struct lm78_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting lm78 update\n");
++#endif
++ for (i = 0; i <= 6; i++) {
++ data->in[i] =
++ lm78_read_value(client, LM78_REG_IN(i));
++ data->in_min[i] =
++ lm78_read_value(client, LM78_REG_IN_MIN(i));
++ data->in_max[i] =
++ lm78_read_value(client, LM78_REG_IN_MAX(i));
++ }
++ for (i = 1; i <= 3; i++) {
++ data->fan[i - 1] =
++ lm78_read_value(client, LM78_REG_FAN(i));
++ data->fan_min[i - 1] =
++ lm78_read_value(client, LM78_REG_FAN_MIN(i));
++ }
++ data->temp = lm78_read_value(client, LM78_REG_TEMP);
++ data->temp_over =
++ lm78_read_value(client, LM78_REG_TEMP_OVER);
++ data->temp_hyst =
++ lm78_read_value(client, LM78_REG_TEMP_HYST);
++ i = lm78_read_value(client, LM78_REG_VID_FANDIV);
++ data->vid = i & 0x0f;
++ if (data->type == lm79)
++ data->vid |=
++ (lm78_read_value(client, LM78_REG_CHIPID) &
++ 0x01) << 4;
++ else
++ data->vid |= 0x10;
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = i >> 6;
++ data->alarms = lm78_read_value(client, LM78_REG_ALARM1) +
++ (lm78_read_value(client, LM78_REG_ALARM2) << 8);
++ data->last_updated = jiffies;
++ data->valid = 1;
++
++ data->fan_div[2] = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void lm78_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm78_data *data = client->data;
++ int nr = ctl_name - LM78_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm78_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0]);
++ lm78_write_value(client, LM78_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1]);
++ lm78_write_value(client, LM78_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void lm78_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm78_data *data = client->data;
++ int nr = ctl_name - LM78_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm78_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->
++ fan_div[nr - 1]));
++ results[1] =
++ FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = FAN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->
++ fan_div[nr -
++ 1]));
++ lm78_write_value(client, LM78_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++
++void lm78_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm78_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm78_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over);
++ results[1] = TEMP_FROM_REG(data->temp_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_over = TEMP_TO_REG(results[0]);
++ lm78_write_value(client, LM78_REG_TEMP_OVER,
++ data->temp_over);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst = TEMP_TO_REG(results[1]);
++ lm78_write_value(client, LM78_REG_TEMP_HYST,
++ data->temp_hyst);
++ }
++ }
++}
++
++void lm78_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm78_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm78_update_client(client);
++ results[0] = VID_FROM_REG(data->vid);
++ *nrels_mag = 1;
++ }
++}
++
++void lm78_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm78_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm78_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++/* Note: we save and restore the fan minimum here, because its value is
++ determined in part by the fan divisor. This follows the principle of
++ least surprise: the user doesn't expect the fan minimum to change just
++ because the divisor changed. */
++void lm78_fan_div(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm78_data *data = client->data;
++ int old, min;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm78_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ results[2] = 2;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = lm78_read_value(client, LM78_REG_VID_FANDIV);
++ if (*nrels_mag >= 2) {
++ min = FAN_FROM_REG(data->fan_min[1],
++ DIV_FROM_REG(data->fan_div[1]));
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | (data->fan_div[1] << 6);
++ data->fan_min[1] = FAN_TO_REG(min,
++ DIV_FROM_REG(data->fan_div[1]));
++ lm78_write_value(client, LM78_REG_FAN_MIN(2),
++ data->fan_min[1]);
++ }
++ if (*nrels_mag >= 1) {
++ min = FAN_FROM_REG(data->fan_min[0],
++ DIV_FROM_REG(data->fan_div[0]));
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan_div[0] << 4);
++ data->fan_min[0] = FAN_TO_REG(min,
++ DIV_FROM_REG(data->fan_div[0]));
++ lm78_write_value(client, LM78_REG_FAN_MIN(1),
++ data->fan_min[0]);
++ lm78_write_value(client, LM78_REG_VID_FANDIV, old);
++ }
++ }
++}
++
++static int __init sm_lm78_init(void)
++{
++ printk("lm78.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&lm78_driver);
++}
++
++static void __exit sm_lm78_exit(void)
++{
++ i2c_del_driver(&lm78_driver);
++}
++
++
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>");
++MODULE_DESCRIPTION("LM78, LM78-J and LM79 driver");
++
++module_init(sm_lm78_init);
++module_exit(sm_lm78_exit);
+--- linux-old/drivers/sensors/lm80.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/lm80.c Mon Dec 13 20:18:48 2004
+@@ -0,0 +1,606 @@
++/*
++ lm80.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
++ and Philip Edelbrock <phil@netroedge.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x20, 0x2f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(lm80);
++
++/* Many LM80 constants specified below */
++
++/* The LM80 registers */
++#define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
++#define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
++#define LM80_REG_IN(nr) (0x20 + (nr))
++
++#define LM80_REG_FAN1_MIN 0x3c
++#define LM80_REG_FAN2_MIN 0x3d
++#define LM80_REG_FAN1 0x28
++#define LM80_REG_FAN2 0x29
++
++#define LM80_REG_TEMP 0x27
++#define LM80_REG_TEMP_HOT_MAX 0x38
++#define LM80_REG_TEMP_HOT_HYST 0x39
++#define LM80_REG_TEMP_OS_MAX 0x3a
++#define LM80_REG_TEMP_OS_HYST 0x3b
++
++#define LM80_REG_CONFIG 0x00
++#define LM80_REG_ALARM1 0x01
++#define LM80_REG_ALARM2 0x02
++#define LM80_REG_MASK1 0x03
++#define LM80_REG_MASK2 0x04
++#define LM80_REG_FANDIV 0x05
++#define LM80_REG_RES 0x06
++
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++
++#define IN_TO_REG(val) (SENSORS_LIMIT((val),0,255))
++#define IN_FROM_REG(val) (val)
++
++static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?-1:\
++ (val)==255?0:1350000/((div)*(val)))
++
++static inline long TEMP_FROM_REG(u16 temp)
++{
++ long res;
++
++ temp >>= 4;
++ if (temp < 0x0800)
++ res = 625 * (long) temp;
++ else
++ res = ((long) temp - 0x01000) * 625;
++
++ return res / 100;
++}
++
++#define TEMP_LIMIT_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*100)
++
++#define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT(((val)<0?(((val)-50)/100):\
++ ((val)+50)/100), \
++ 0,255)
++
++#define ALARMS_FROM_REG(val) (val)
++
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
++
++struct lm80_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[7]; /* Register value */
++ u8 in_max[7]; /* Register value */
++ u8 in_min[7]; /* Register value */
++ u8 fan[2]; /* Register value */
++ u8 fan_min[2]; /* Register value */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ u16 temp; /* Register values, shifted right */
++ u8 temp_hot_max; /* Register value */
++ u8 temp_hot_hyst; /* Register value */
++ u8 temp_os_max; /* Register value */
++ u8 temp_os_hyst; /* Register value */
++ u16 alarms; /* Register encoding, combined */
++};
++
++
++
++static int lm80_attach_adapter(struct i2c_adapter *adapter);
++static int lm80_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int lm80_detach_client(struct i2c_client *client);
++
++static int lm80_read_value(struct i2c_client *client, u8 reg);
++static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value);
++static void lm80_update_client(struct i2c_client *client);
++static void lm80_init_client(struct i2c_client *client);
++
++
++static void lm80_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++static void lm80_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm80_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm80_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm80_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int lm80_id = 0;
++
++static struct i2c_driver lm80_driver = {
++ .owner = THIS_MODULE,
++ .name = "LM80 sensor driver",
++ .id = I2C_DRIVERID_LM80,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = lm80_attach_adapter,
++ .detach_client = lm80_detach_client,
++};
++
++/* The /proc/sys entries */
++
++/* -- SENSORS SYSCTL START -- */
++
++#define LM80_SYSCTL_IN0 1000 /* Volts * 100 */
++#define LM80_SYSCTL_IN1 1001
++#define LM80_SYSCTL_IN2 1002
++#define LM80_SYSCTL_IN3 1003
++#define LM80_SYSCTL_IN4 1004
++#define LM80_SYSCTL_IN5 1005
++#define LM80_SYSCTL_IN6 1006
++#define LM80_SYSCTL_FAN1 1101 /* Rotations/min */
++#define LM80_SYSCTL_FAN2 1102
++#define LM80_SYSCTL_TEMP 1250 /* Degrees Celcius * 100 */
++#define LM80_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define LM80_SYSCTL_ALARMS 2001 /* bitvector */
++
++#define LM80_ALARM_IN0 0x0001
++#define LM80_ALARM_IN1 0x0002
++#define LM80_ALARM_IN2 0x0004
++#define LM80_ALARM_IN3 0x0008
++#define LM80_ALARM_IN4 0x0010
++#define LM80_ALARM_IN5 0x0020
++#define LM80_ALARM_IN6 0x0040
++#define LM80_ALARM_FAN1 0x0400
++#define LM80_ALARM_FAN2 0x0800
++#define LM80_ALARM_TEMP_HOT 0x0100
++#define LM80_ALARM_TEMP_OS 0x2000
++#define LM80_ALARM_CHAS 0x1000
++#define LM80_ALARM_BTI 0x0200
++#define LM80_ALARM_INT_IN 0x0080
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected LM80. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table lm80_dir_table_template[] = {
++ {LM80_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_in},
++ {LM80_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_in},
++ {LM80_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_in},
++ {LM80_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_in},
++ {LM80_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_in},
++ {LM80_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_in},
++ {LM80_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_in},
++ {LM80_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_fan},
++ {LM80_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_fan},
++ {LM80_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_temp},
++ {LM80_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_fan_div},
++ {LM80_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm80_alarms},
++ {0}
++};
++
++static int lm80_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, lm80_detect);
++}
++
++int lm80_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i, cur;
++ struct i2c_client *new_client;
++ struct lm80_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("lm80.o: lm80_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access lm80_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct lm80_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &lm80_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. It is lousy. */
++ if (lm80_read_value(new_client, LM80_REG_ALARM2) & 0xc0)
++ goto ERROR1;
++ for (i = 0x2a; i <= 0x3d; i++) {
++ cur = i2c_smbus_read_byte_data(new_client, i);
++ if ((i2c_smbus_read_byte_data(new_client, i + 0x40) != cur)
++ || (i2c_smbus_read_byte_data(new_client, i + 0x80) !=
++ cur)
++ || (i2c_smbus_read_byte_data(new_client, i + 0xc0) !=
++ cur)) goto ERROR1;
++ }
++
++ /* Determine the chip type - only one kind supported! */
++ if (kind <= 0)
++ kind = lm80;
++
++ if (kind == lm80) {
++ type_name = "lm80";
++ client_name = "LM80 chip";
++ } else {
++#ifdef DEBUG
++ printk("lm80.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = lm80_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ lm80_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ lm80_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int lm80_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct lm80_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("lm80.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++static int lm80_read_value(struct i2c_client *client, u8 reg)
++{
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++/* Called when we have found a new LM80. */
++static void lm80_init_client(struct i2c_client *client)
++{
++ /* Reset all except Watchdog values and last conversion values
++ This sets fan-divs to 2, among others. This makes most other
++ initializations unnecessary */
++ lm80_write_value(client, LM80_REG_CONFIG, 0x80);
++ /* Set 11-bit temperature resolution */
++ lm80_write_value(client, LM80_REG_RES, 0x08);
++
++ /* Start monitoring */
++ lm80_write_value(client, LM80_REG_CONFIG, 0x01);
++}
++
++static void lm80_update_client(struct i2c_client *client)
++{
++ struct lm80_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > 2 * HZ) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting lm80 update\n");
++#endif
++ for (i = 0; i <= 6; i++) {
++ data->in[i] =
++ lm80_read_value(client, LM80_REG_IN(i));
++ data->in_min[i] =
++ lm80_read_value(client, LM80_REG_IN_MIN(i));
++ data->in_max[i] =
++ lm80_read_value(client, LM80_REG_IN_MAX(i));
++ }
++ data->fan[0] = lm80_read_value(client, LM80_REG_FAN1);
++ data->fan_min[0] =
++ lm80_read_value(client, LM80_REG_FAN1_MIN);
++ data->fan[1] = lm80_read_value(client, LM80_REG_FAN2);
++ data->fan_min[1] =
++ lm80_read_value(client, LM80_REG_FAN2_MIN);
++
++ data->temp =
++ (lm80_read_value(client, LM80_REG_TEMP) << 8) |
++ (lm80_read_value(client, LM80_REG_RES) & 0xf0);
++ data->temp_os_max =
++ lm80_read_value(client, LM80_REG_TEMP_OS_MAX);
++ data->temp_os_hyst =
++ lm80_read_value(client, LM80_REG_TEMP_OS_HYST);
++ data->temp_hot_max =
++ lm80_read_value(client, LM80_REG_TEMP_HOT_MAX);
++ data->temp_hot_hyst =
++ lm80_read_value(client, LM80_REG_TEMP_HOT_HYST);
++
++ i = lm80_read_value(client, LM80_REG_FANDIV);
++ data->fan_div[0] = (i >> 2) & 0x03;
++ data->fan_div[1] = (i >> 4) & 0x03;
++ data->alarms = lm80_read_value(client, LM80_REG_ALARM1) +
++ (lm80_read_value(client, LM80_REG_ALARM2) << 8);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void lm80_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm80_data *data = client->data;
++ int nr = ctl_name - LM80_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm80_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0]);
++ lm80_write_value(client, LM80_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1]);
++ lm80_write_value(client, LM80_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void lm80_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm80_data *data = client->data;
++ int nr = ctl_name - LM80_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm80_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->
++ fan_div[nr - 1]));
++ results[1] =
++ FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = FAN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->
++ fan_div[nr -
++ 1]));
++ lm80_write_value(client,
++ nr ==
++ 1 ? LM80_REG_FAN1_MIN :
++ LM80_REG_FAN2_MIN,
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++
++void lm80_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm80_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm80_update_client(client);
++ results[0] = TEMP_LIMIT_FROM_REG(data->temp_hot_max);
++ results[1] = TEMP_LIMIT_FROM_REG(data->temp_hot_hyst);
++ results[2] = TEMP_LIMIT_FROM_REG(data->temp_os_max);
++ results[3] = TEMP_LIMIT_FROM_REG(data->temp_os_hyst);
++ results[4] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 5;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_hot_max = TEMP_LIMIT_TO_REG(results[0]);
++ lm80_write_value(client, LM80_REG_TEMP_HOT_MAX,
++ data->temp_hot_max);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hot_hyst =
++ TEMP_LIMIT_TO_REG(results[1]);
++ lm80_write_value(client, LM80_REG_TEMP_HOT_HYST,
++ data->temp_hot_hyst);
++ }
++ if (*nrels_mag >= 3) {
++ data->temp_os_max = TEMP_LIMIT_TO_REG(results[2]);
++ lm80_write_value(client, LM80_REG_TEMP_OS_MAX,
++ data->temp_os_max);
++ }
++ if (*nrels_mag >= 4) {
++ data->temp_os_hyst = TEMP_LIMIT_TO_REG(results[3]);
++ lm80_write_value(client, LM80_REG_TEMP_OS_HYST,
++ data->temp_os_hyst);
++ }
++ }
++}
++
++void lm80_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm80_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm80_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void lm80_fan_div(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm80_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm80_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ results[2] = 2;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = lm80_read_value(client, LM80_REG_FANDIV);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0xcf) | (data->fan_div[1] << 4);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xf3) | (data->fan_div[0] << 2);
++ lm80_write_value(client, LM80_REG_FANDIV, old);
++ }
++ }
++}
++
++static int __init sm_lm80_init(void)
++{
++ printk("lm80.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&lm80_driver);
++}
++
++static void __exit sm_lm80_exit(void)
++{
++ i2c_del_driver(&lm80_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("LM80 driver");
++
++module_init(sm_lm80_init);
++module_exit(sm_lm80_exit);
+--- linux-old/drivers/sensors/lm83.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/lm83.c Mon Dec 13 20:18:48 2004
+@@ -0,0 +1,513 @@
++/*
++ * lm83.c - Part of lm_sensors, Linux kernel modules for hardware
++ * monitoring
++ * Copyright (C) 2003 Jean Delvare <khali@linux-fr.org>
++ *
++ * Heavily inspired from the lm78, lm75 and adm1021 drivers. The LM83 is
++ * a sensor chip made by National Semiconductor. It reports up to four
++ * temperatures (its own plus up to three external ones) with a 1 deg
++ * resolution and a 3-4 deg accuracy. Complete datasheet can be obtained
++ * from National's website at:
++ * http://www.national.com/pf/LM/LM83.html
++ * Since the datasheet omits to give the chip stepping code, I give it
++ * here: 0x03 (at register 0xff).
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++ */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/*
++ * Addresses to scan
++ * Address is selected using 2 three-level pins, resulting in 9 possible
++ * addresses.
++ */
++
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x18, 0x1a, 0x29, 0x2b,
++ 0x4c, 0x4e, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/*
++ * Insmod parameters
++ */
++
++SENSORS_INSMOD_1(lm83);
++
++/*
++ * The LM83 registers
++ * Manufacturer ID is 0x01 for National Semiconductor.
++ */
++
++#define LM83_REG_R_MAN_ID 0xFE
++#define LM83_REG_R_CHIP_ID 0xFF
++#define LM83_REG_R_CONFIG 0x03
++#define LM83_REG_W_CONFIG 0x09
++#define LM83_REG_R_STATUS1 0x02
++#define LM83_REG_R_STATUS2 0x35
++#define LM83_REG_R_LOCAL_TEMP 0x00
++#define LM83_REG_R_LOCAL_HIGH 0x05
++#define LM83_REG_W_LOCAL_HIGH 0x0B
++#define LM83_REG_R_REMOTE1_TEMP 0x30
++#define LM83_REG_R_REMOTE1_HIGH 0x38
++#define LM83_REG_W_REMOTE1_HIGH 0x50
++#define LM83_REG_R_REMOTE2_TEMP 0x01
++#define LM83_REG_R_REMOTE2_HIGH 0x07
++#define LM83_REG_W_REMOTE2_HIGH 0x0D
++#define LM83_REG_R_REMOTE3_TEMP 0x31
++#define LM83_REG_R_REMOTE3_HIGH 0x3A
++#define LM83_REG_W_REMOTE3_HIGH 0x52
++#define LM83_REG_R_TCRIT 0x42
++#define LM83_REG_W_TCRIT 0x5A
++
++/*
++ * Conversions and various macros
++ * The LM83 uses signed 8-bit values.
++ */
++
++#define TEMP_FROM_REG(val) ((val) > 127 ? (val) - 0x100 : (val))
++#define TEMP_TO_REG(val) ((val) <= -50 ? -50 + 0x100 : \
++ (val) >= 127 ? 127 : \
++ (val) >= 0 ? (val) : \
++ (val) + 0x100)
++
++static const u8 LM83_REG_R_TEMP[] = {
++ LM83_REG_R_LOCAL_TEMP,
++ LM83_REG_R_REMOTE1_TEMP,
++ LM83_REG_R_REMOTE2_TEMP,
++ LM83_REG_R_REMOTE3_TEMP
++};
++
++static const u8 LM83_REG_R_HIGH[] = {
++ LM83_REG_R_LOCAL_HIGH,
++ LM83_REG_R_REMOTE1_HIGH,
++ LM83_REG_R_REMOTE2_HIGH,
++ LM83_REG_R_REMOTE3_HIGH
++};
++
++static const u8 LM83_REG_W_HIGH[] = {
++ LM83_REG_W_LOCAL_HIGH,
++ LM83_REG_W_REMOTE1_HIGH,
++ LM83_REG_W_REMOTE2_HIGH,
++ LM83_REG_W_REMOTE3_HIGH
++};
++
++/*
++ * Functions declaration
++ */
++
++static int lm83_attach_adapter(struct i2c_adapter *adapter);
++static int lm83_detect(struct i2c_adapter *adapter, int address, unsigned
++ short flags, int kind);
++static int lm83_detach_client(struct i2c_client *client);
++static void lm83_update_client(struct i2c_client *client);
++static void lm83_temp(struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results);
++static void lm83_tcrit(struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results);
++static void lm83_alarms(struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results);
++
++/*
++ * Driver data (common to all clients)
++ */
++
++static struct i2c_driver lm83_driver = {
++ .owner = THIS_MODULE,
++ .name = "LM83 sensor driver",
++ .id = I2C_DRIVERID_LM83,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = lm83_attach_adapter,
++ .detach_client = lm83_detach_client,
++};
++
++/*
++ * Client data (each client gets its own)
++ */
++
++struct lm83_data
++{
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* zero until following fields are valid */
++ unsigned long last_updated; /* in jiffies */
++
++ /* registers values */
++ u8 temp[4], temp_high[4], tcrit;
++ u16 alarms; /* bitvector, combined */
++};
++
++/*
++ * Proc entries
++ * These files are created for each detected LM83.
++ */
++
++/* -- SENSORS SYSCTL START -- */
++
++#define LM83_SYSCTL_LOCAL_TEMP 1200
++#define LM83_SYSCTL_REMOTE1_TEMP 1201
++#define LM83_SYSCTL_REMOTE2_TEMP 1202
++#define LM83_SYSCTL_REMOTE3_TEMP 1203
++#define LM83_SYSCTL_TCRIT 1208
++#define LM83_SYSCTL_ALARMS 1210
++
++#define LM83_ALARM_LOCAL_HIGH 0x0040
++#define LM83_ALARM_LOCAL_CRIT 0x0001
++#define LM83_ALARM_REMOTE1_HIGH 0x8000
++#define LM83_ALARM_REMOTE1_CRIT 0x0100
++#define LM83_ALARM_REMOTE1_OPEN 0x2000
++#define LM83_ALARM_REMOTE2_HIGH 0x0010
++#define LM83_ALARM_REMOTE2_CRIT 0x0002
++#define LM83_ALARM_REMOTE2_OPEN 0x0004
++#define LM83_ALARM_REMOTE3_HIGH 0x1000
++#define LM83_ALARM_REMOTE3_CRIT 0x0200
++#define LM83_ALARM_REMOTE3_OPEN 0x0400
++
++/* -- SENSORS SYSCTL END -- */
++
++
++static ctl_table lm83_dir_table_template[] =
++{
++ {LM83_SYSCTL_LOCAL_TEMP, "temp1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm83_temp},
++ {LM83_SYSCTL_REMOTE1_TEMP, "temp2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm83_temp},
++ {LM83_SYSCTL_REMOTE2_TEMP, "temp3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm83_temp},
++ {LM83_SYSCTL_REMOTE3_TEMP, "temp4", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm83_temp},
++ {LM83_SYSCTL_TCRIT, "tcrit", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm83_tcrit},
++ {LM83_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm83_alarms},
++ {0}
++};
++
++/*
++ * Internal variables
++ */
++
++static int lm83_id = 0;
++
++/*
++ * Real code
++ */
++
++static int lm83_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, lm83_detect);
++}
++
++/*
++ * The following function does more than just detection. If detection
++ * succeeds, it also registers the new chip.
++ */
++static int lm83_detect(struct i2c_adapter *adapter, int address, unsigned
++ short flags, int kind)
++{
++ struct i2c_client *new_client;
++ struct lm83_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter))
++ {
++ printk("lm83.o: Called for an ISA bus adapter, aborting.\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ {
++#ifdef DEBUG
++ printk("lm83.o: I2C bus doesn't support byte read mode, "
++ "skipping.\n");
++#endif
++ return 0;
++ }
++
++ if (!(data = kmalloc(sizeof(struct lm83_data), GFP_KERNEL)))
++ {
++ printk("lm83.o: Out of memory in lm83_detect (new_client).\n");
++ return -ENOMEM;
++ }
++
++ /*
++ * The common I2C client data is placed right before the
++ * LM83-specific data. The LM83-specific data is pointed to by the
++ * data field from the I2C client data.
++ */
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &lm83_driver;
++ new_client->flags = 0;
++
++ /*
++ * Now we do the remaining detection. A negative kind means that
++ * the driver was loaded with no force parameter (default), so we
++ * must both detect and identify the chip (actually there is only
++ * one possible kind of chip for now, LM83). A zero kind means that
++ * the driver was loaded with the force parameter, the detection
++ * step shall be skipped. A positive kind means that the driver
++ * was loaded with the force parameter and a given kind of chip is
++ * requested, so both the detection and the identification steps
++ * are skipped.
++ */
++
++ /* Default to an LM83 if forced */
++ if (kind == 0)
++ kind = lm83;
++
++ if (kind < 0) /* detection */
++ {
++ if (((i2c_smbus_read_byte_data(new_client, LM83_REG_R_STATUS1)
++ & 0xA8) != 0x00)
++ || ((i2c_smbus_read_byte_data(new_client, LM83_REG_R_STATUS2)
++ & 0x48) != 0x00)
++ || ((i2c_smbus_read_byte_data(new_client, LM83_REG_R_CONFIG)
++ & 0x41) != 0x00))
++ {
++#ifdef DEBUG
++ printk(KERN_DEBUG "lm83.o: Detection failed at 0x%02x.\n",
++ address);
++#endif
++ goto ERROR1;
++ }
++ }
++
++ if (kind <= 0) /* identification */
++ {
++ u8 man_id, chip_id;
++
++ man_id = i2c_smbus_read_byte_data(new_client, LM83_REG_R_MAN_ID);
++ chip_id = i2c_smbus_read_byte_data(new_client, LM83_REG_R_CHIP_ID);
++ if (man_id == 0x01) /* National Semiconductor */
++ {
++ if (chip_id == 0x03)
++ kind = lm83;
++ }
++ }
++
++ if (kind <= 0) /* identification failed */
++ {
++ printk("lm83.o: Unsupported chip.\n");
++ goto ERROR1;
++ }
++
++ if (kind == lm83)
++ {
++ type_name = "lm83";
++ client_name = "LM83 chip";
++ }
++ else
++ {
++ printk("lm83.o: Unknown kind %d.\n", kind);
++ goto ERROR1;
++ }
++
++ /*
++ * OK, we got a valid chip so we can fill in the remaining client
++ * fields.
++ */
++
++ strcpy(new_client->name, client_name);
++ new_client->id = lm83_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /*
++ * Tell the I2C layer a new client has arrived.
++ */
++
++ if ((err = i2c_attach_client(new_client)))
++ {
++#ifdef DEBUG
++ printk("lm83.o: Failed attaching client.\n");
++#endif
++ goto ERROR1;
++ }
++
++ /*
++ * Register a new directory entry.
++ */
++
++ if ((err = i2c_register_entry(new_client, type_name,
++ lm83_dir_table_template)) < 0)
++ {
++#ifdef DEBUG
++ printk("lm83.o: Failed registering directory entry.\n");
++#endif
++ goto ERROR2;
++ }
++ data->sysctl_id = err;
++
++ /*
++ * Initialize the LM83 chip
++ * (Nothing to do for this one.)
++ */
++
++ return 0;
++
++ ERROR2:
++ i2c_detach_client(new_client);
++ ERROR1:
++ kfree(data);
++ return err;
++}
++
++static int lm83_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct lm83_data *) (client->data))->sysctl_id);
++ if ((err = i2c_detach_client(client)))
++ {
++ printk("lm83.o: Client deregistration failed, client not "
++ "detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++ return 0;
++}
++
++static void lm83_update_client(struct i2c_client *client)
++{
++ struct lm83_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ * 2) ||
++ (jiffies < data->last_updated) || !data->valid)
++ {
++ int nr;
++#ifdef DEBUG
++ printk("lm83.o: Updating LM83 data.\n");
++#endif
++ for (nr = 0; nr < 4 ; nr++)
++ {
++ data->temp[nr] =
++ i2c_smbus_read_byte_data(client, LM83_REG_R_TEMP[nr]);
++ data->temp_high[nr] =
++ i2c_smbus_read_byte_data(client, LM83_REG_R_HIGH[nr]);
++ }
++ data->tcrit = i2c_smbus_read_byte_data(client, LM83_REG_R_TCRIT);
++ data->alarms =
++ i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS1) +
++ (i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS2) << 8);
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++static void lm83_temp(struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results)
++{
++ struct lm83_data *data = client->data;
++ int nr = ctl_name - LM83_SYSCTL_LOCAL_TEMP;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm83_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_high[nr]);
++ results[1] = TEMP_FROM_REG(data->temp[nr]);
++ *nrels_mag = 2;
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE)
++ {
++ if (*nrels_mag >= 1)
++ {
++ data->temp_high[nr] = TEMP_TO_REG(results[0]);
++ i2c_smbus_write_byte_data(client, LM83_REG_W_HIGH[nr],
++ data->temp_high[nr]);
++ }
++ }
++}
++
++static void lm83_tcrit(struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results)
++{
++ struct lm83_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm83_update_client(client);
++ results[0] = TEMP_FROM_REG(data->tcrit);
++ *nrels_mag = 1;
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE)
++ {
++ if (*nrels_mag >= 1)
++ {
++ data->tcrit = TEMP_TO_REG(results[0]);
++ i2c_smbus_write_byte_data(client, LM83_REG_W_TCRIT,
++ data->tcrit);
++ }
++ }
++}
++
++static void lm83_alarms(struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results)
++{
++ struct lm83_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm83_update_client(client);
++ results[0] = data->alarms;
++ *nrels_mag = 1;
++ }
++}
++
++static int __init sm_lm83_init(void)
++{
++ printk(KERN_INFO "lm83.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&lm83_driver);
++}
++
++static void __exit sm_lm83_exit(void)
++{
++ i2c_del_driver(&lm83_driver);
++}
++
++MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
++MODULE_DESCRIPTION("LM83 sensor driver");
++MODULE_LICENSE("GPL");
++
++module_init(sm_lm83_init);
++module_exit(sm_lm83_exit);
+--- linux-old/drivers/sensors/lm85.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/lm85.c Mon Dec 13 20:18:49 2004
+@@ -0,0 +1,2043 @@
++/*
++ lm85.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
++ Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
++ Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++
++ CHANGELOG
++
++ 2002-11-13 First patch for LM85 functionality
++ 2002-11-18 LM85 functionality mostly done
++ 2002-12-02 Adding ADM1027 functionality
++ 2002-12-06 Adding ADT7463 functionality
++ 2003-01-09 Code cleanup.
++ Save reserved bits in case they are implemented
++ in a future chip. (Solve problem with lockups
++ on ADM1027 due to chip initialization)
++ Added chip initialization bypass option
++ 2003-02-12 Add THERM asserted counts for ADT7463
++ Added #ifdef so we can compile against 2.6.5
++ without updating i2c-ids.h
++ 2003-02-17 Prepare for switch to 2.7.0 development
++ Implement tmin_control for ADT7463
++ Expose THERM asserted counts to /proc
++ Code cleanup
++ 2003-02-19 Working with Margit and LM_SENSORS developers
++ 2003-02-23 Removed chip initialization entirely
++ Scale voltages in driver at Margit's request
++ Change PWM from 0-100% to 0-255 per LM sensors standard
++ 2003-02-27 Documentation and code cleanups
++ Added this CHANGELOG
++ Print additional precision for temperatures and voltages
++ Many thanks to Margit Schubert-While and Brandt xxxxxx
++ for help testing this version
++ 2003-02-28 More diagnostic messages regarding BIOS setup
++ 2003-03-01 Added Interrupt mask register support.
++ 2003-03-08 Fixed problem with pseudo 16-bit registers
++ Cleaned up some compiler warnings.
++ Fixed problem with Operating Point and THERM counting
++ 2003-03-21 Initial support for EMC6D100 and EMC6D101 chips
++ 2003-06-30 Add support for EMC6D100 extra voltage inputs.
++*/
++
++#include <linux/version.h>
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++
++#ifndef I2C_DRIVERID_LM85
++#define I2C_DRIVERID_LM85 1039
++#endif
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_5(lm85b, lm85c, adm1027, adt7463, emc6d100);
++
++/* Many LM85 constants specified below */
++
++/* The LM85 registers */
++#define LM85_REG_IN(nr) (0x20 + (nr))
++#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
++#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
++
++#define LM85_REG_TEMP(nr) (0x25 + (nr))
++#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
++#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
++
++/* Fan speeds are LSB, MSB (2 bytes) */
++#define LM85_REG_FAN(nr) (0x28 + (nr) *2)
++#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) *2)
++
++#define LM85_REG_PWM(nr) (0x30 + (nr))
++
++#define ADT7463_REG_OPPOINT(nr) (0x33 + (nr))
++
++#define ADT7463_REG_TMIN_CTL1 0x36
++#define ADT7463_REG_TMIN_CTL2 0x37
++#define ADT7463_REG_TMIN_CTL 0x0136
++
++#define LM85_REG_DEVICE 0x3d
++#define LM85_REG_COMPANY 0x3e
++#define LM85_REG_VERSTEP 0x3f
++/* These are the recognized values for the above regs */
++#define LM85_DEVICE_ADX 0x27
++#define LM85_COMPANY_NATIONAL 0x01
++#define LM85_COMPANY_ANALOG_DEV 0x41
++#define LM85_COMPANY_SMSC 0x5c
++#define LM85_VERSTEP_VMASK 0xf0
++#define LM85_VERSTEP_SMASK 0x0f
++#define LM85_VERSTEP_GENERIC 0x60
++#define LM85_VERSTEP_LM85C 0x60
++#define LM85_VERSTEP_LM85B 0x62
++#define LM85_VERSTEP_ADM1027 0x60
++#define LM85_VERSTEP_ADT7463 0x62
++#define LM85_VERSTEP_EMC6D100_A0 0x60
++#define LM85_VERSTEP_EMC6D100_A1 0x61
++
++#define LM85_REG_CONFIG 0x40
++
++#define LM85_REG_ALARM1 0x41
++#define LM85_REG_ALARM2 0x42
++#define LM85_REG_ALARM 0x0141
++
++#define LM85_REG_VID 0x43
++
++/* Automated FAN control */
++#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
++#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
++#define LM85_REG_AFAN_SPIKE1 0x62
++#define LM85_REG_AFAN_SPIKE2 0x63
++#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
++#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
++#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
++#define LM85_REG_AFAN_HYST1 0x6d
++#define LM85_REG_AFAN_HYST2 0x6e
++
++#define LM85_REG_TACH_MODE 0x74
++#define LM85_REG_SPINUP_CTL 0x75
++
++#define ADM1027_REG_TEMP_OFFSET(nr) (0x70 + (nr))
++#define ADM1027_REG_CONFIG2 0x73
++#define ADM1027_REG_INTMASK1 0x74
++#define ADM1027_REG_INTMASK2 0x75
++#define ADM1027_REG_INTMASK 0x0174
++#define ADM1027_REG_EXTEND_ADC1 0x76
++#define ADM1027_REG_EXTEND_ADC2 0x77
++#define ADM1027_REG_EXTEND_ADC 0x0176
++#define ADM1027_REG_CONFIG3 0x78
++#define ADM1027_REG_FAN_PPR 0x7b
++
++#define ADT7463_REG_THERM 0x79
++#define ADT7463_REG_THERM_LIMIT 0x7A
++#define ADT7463_REG_CONFIG4 0x7D
++
++#define EMC6D100_REG_SFR 0x7c
++#define EMC6D100_REG_ALARM3 0x7d
++#define EMC6D100_REG_CONF 0x7f
++#define EMC6D100_REG_INT_EN 0x80
++/* IN5, IN6 and IN7 */
++#define EMC6D100_REG_IN(nr) (0x70 + ((nr)-5))
++#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr)-5) * 2)
++#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr)-5) * 2)
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ */
++
++/* IN are scaled 1.000 == 0xc0, mag = 3 */
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val)*0xc0+500)/1000),0,255))
++#define INEXT_FROM_REG(val,ext) (((val)*1000 + (ext)*250 + 96)/0xc0)
++#define IN_FROM_REG(val) (INEXT_FROM_REG(val,0))
++
++/* IN are scaled acording to built-in resistors */
++static int lm85_scaling[] = { /* .001 Volts */
++ 2500, 2250, 3300, 5000, 12000,
++ 3300, 1500, 1800, /* EMC6D100 */
++ };
++#define SCALE(val,from,to) (((val)*(to) + ((from)/2))/(from))
++#define INS_TO_REG(n,val) (SENSORS_LIMIT(SCALE(val,lm85_scaling[n],192),0,255))
++#define INSEXT_FROM_REG(n,val,ext) (SCALE((val)*4 + (ext),192*4,lm85_scaling[n]))
++#define INS_FROM_REG(n,val) (INSEXT_FROM_REG(n,val,0))
++
++/* FAN speed is measured using 90kHz clock */
++#define FAN_TO_REG(val) (SENSORS_LIMIT( (val)<=0?0: 5400000/(val),0,65534))
++#define FAN_FROM_REG(val) ((val)==0?-1:(val)==0xffff?0:5400000/(val))
++
++/* Temperature is reported in .01 degC increments */
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)+50)/100,-127,127))
++#define TEMPEXT_FROM_REG(val,ext) ((val)*100 + (ext)*25)
++#define TEMP_FROM_REG(val) (TEMPEXT_FROM_REG(val,0))
++#define EXTTEMP_TO_REG(val) (SENSORS_LIMIT((val)/25,-127,127))
++#define OPPOINT_TO_REG(val) (SENSORS_LIMIT(val,-127,127))
++#define OPPOINT_FROM_REG(val) (val)
++
++#define PWM_TO_REG(val) (SENSORS_LIMIT(val,0,255))
++#define PWM_FROM_REG(val) (val)
++
++#define EXT_FROM_REG(val,sensor) (((val)>>(sensor * 2))&0x03)
++
++/* ZONEs have the following parameters:
++ * Limit (low) temp, 1. degC
++ * Hysteresis (below limit), 1. degC (0-15)
++ * Range of speed control, .1 degC (2-80)
++ * Critical (high) temp, 1. degC
++ *
++ * FAN PWMs have the following parameters:
++ * Reference Zone, 1, 2, 3, etc.
++ * Spinup time, .05 sec
++ * PWM value at limit/low temp, 1 count
++ * PWM Frequency, 1. Hz
++ * PWM is Min or OFF below limit, flag
++ * Invert PWM output, flag
++ *
++ * Some chips filter the temp, others the fan.
++ * Filter constant (or disabled) .1 seconds
++ */
++
++/* These are the zone temperature range encodings */
++static int lm85_range_map[] = { /* .1 degC */
++ 20, 25, 33, 40, 50, 66,
++ 80, 100, 133, 160, 200, 266,
++ 320, 400, 533, 800
++ };
++static int RANGE_TO_REG( int range )
++{
++ int i;
++
++ if( range >= lm85_range_map[15] ) { return 15 ; }
++ for( i = 0 ; i < 15 ; ++i )
++ if( range <= lm85_range_map[i] )
++ break ;
++ return( i & 0x0f );
++}
++#define RANGE_FROM_REG(val) (lm85_range_map[(val)&0x0f])
++
++/* These are the Acoustic Enhancement, or Temperature smoothing encodings
++ * NOTE: The enable/disable bit is INCLUDED in these encodings as the
++ * MSB (bit 3, value 8). If the enable bit is 0, the encoded value
++ * is ignored, or set to 0.
++ */
++static int lm85_smooth_map[] = { /* .1 sec */
++ 350, 176, 118, 70, 44, 30, 16, 8
++/* 35.4 * 1/1, 1/2, 1/3, 1/5, 1/8, 1/12, 1/24, 1/48 */
++ };
++static int SMOOTH_TO_REG( int smooth )
++{
++ int i;
++
++ if( smooth <= 0 ) { return 0 ; } /* Disabled */
++ for( i = 0 ; i < 7 ; ++i )
++ if( smooth >= lm85_smooth_map[i] )
++ break ;
++ return( (i & 0x07) | 0x08 );
++}
++#define SMOOTH_FROM_REG(val) ((val)&0x08?lm85_smooth_map[(val)&0x07]:0)
++
++/* These are the fan spinup delay time encodings */
++static int lm85_spinup_map[] = { /* .1 sec */
++ 0, 1, 2, 4, 7, 10, 20, 40
++ };
++static int SPINUP_TO_REG( int spinup )
++{
++ int i;
++
++ if( spinup >= lm85_spinup_map[7] ) { return 7 ; }
++ for( i = 0 ; i < 7 ; ++i )
++ if( spinup <= lm85_spinup_map[i] )
++ break ;
++ return( i & 0x07 );
++}
++#define SPINUP_FROM_REG(val) (lm85_spinup_map[(val)&0x07])
++
++/* These are the PWM frequency encodings */
++static int lm85_freq_map[] = { /* .1 Hz */
++ 100, 150, 230, 300, 380, 470, 620, 980
++ };
++static int FREQ_TO_REG( int freq )
++{
++ int i;
++
++ if( freq >= lm85_freq_map[7] ) { return 7 ; }
++ for( i = 0 ; i < 7 ; ++i )
++ if( freq <= lm85_freq_map[i] )
++ break ;
++ return( i & 0x07 );
++}
++#define FREQ_FROM_REG(val) (lm85_freq_map[(val)&0x07])
++
++/* Since we can't use strings, I'm abusing these numbers
++ * to stand in for the following meanings:
++ * 1 -- PWM responds to Zone 1
++ * 2 -- PWM responds to Zone 2
++ * 3 -- PWM responds to Zone 3
++ * 23 -- PWM responds to the higher temp of Zone 2 or 3
++ * 123 -- PWM responds to highest of Zone 1, 2, or 3
++ * 0 -- PWM is always at 0% (ie, off)
++ * -1 -- PWM is always at 100%
++ * -2 -- PWM responds to manual control
++ */
++static int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
++static int ZONE_TO_REG( int zone )
++{
++ int i;
++
++ for( i = 0 ; i <= 7 ; ++i )
++ if( zone == lm85_zone_map[i] )
++ break ;
++ if( i > 7 ) /* Not found. */
++ i = 3; /* Always 100% */
++ return( (i & 0x07)<<5 );
++}
++#define ZONE_FROM_REG(val) (lm85_zone_map[((val)>>5)&0x07])
++
++#define HYST_TO_REG(val) (SENSORS_LIMIT((-(val)+5)/10,0,15))
++#define HYST_FROM_REG(val) (-(val)*10)
++
++#define OFFSET_TO_REG(val) (SENSORS_LIMIT((val)/25,-127,127))
++#define OFFSET_FROM_REG(val) ((val)*25)
++
++#define PPR_MASK(fan) (0x03<<(fan *2))
++#define PPR_TO_REG(val,fan) (SENSORS_LIMIT((val)-1,0,3)<<(fan *2))
++#define PPR_FROM_REG(val,fan) ((((val)>>(fan * 2))&0x03)+1)
++
++/* sensors_vid.h defines vid_from_reg() */
++#define VID_FROM_REG(val,vrm) (vid_from_reg((val),(vrm)))
++
++#define ALARMS_FROM_REG(val) (val)
++
++/* When converting to REG, we need to fixup the carry-over bit */
++#define INTMASK_FROM_REG(val) (val)
++#define INTMASK_TO_REG(val) (SENSORS_LIMIT((val)|((val)&0xff00?0x80:0),0,65535))
++
++/* Unlike some other drivers we DO NOT set initial limits. Use
++ * the config file to set limits. Some users have reported
++ * motherboards shutting down when we set limits in a previous
++ * version of this driver. This may be caused by APM/ACPI
++ * detecting an out-of-limit condition when we had the wrong
++ * limits set.
++ */
++
++/* Typically used with Pentium 4 systems v9.1 VRM spec */
++#define LM85_INIT_VRM 91
++
++/* Chip sampling rates
++ *
++ * Some sensors are not updated more frequently than once per second
++ * so it doesn't make sense to read them more often than that.
++ * We cache the results and return the saved data if the driver
++ * is called again before a second has elapsed.
++ *
++ * Also, there is significant configuration data for this chip
++ * given the automatic PWM fan control that is possible. There
++ * are about 47 bytes of config data to only 22 bytes of actual
++ * readings. So, we keep the config data up to date in the cache
++ * when it is written and only sample it once every 5 *minutes*
++ */
++#define LM85_DATA_INTERVAL (1 * HZ)
++#define LM85_CONFIG_INTERVAL (5 * 60 * HZ)
++
++/* For each registered LM85, we need to keep some data in memory. That
++ data is pointed to by client->data. The structure itself is
++ dynamically allocated, when a new lm85 client is allocated. */
++
++/* LM85 can automatically adjust fan speeds based on temperature
++ * This structure encapsulates an entire Zone config. There are
++ * three zones (one for each temperature input) on the lm85
++ */
++struct lm85_zone {
++ s8 limit; /* Low temp limit */
++ u8 hyst; /* Low limit hysteresis. (0-15) */
++ u8 range; /* Temp range, encoded */
++ s8 critical; /* "All fans ON" temp limit */
++};
++
++struct lm85_autofan {
++ u8 config; /* Register value */
++ u8 freq; /* PWM frequency, encoded */
++ u8 min_pwm; /* Minimum PWM value, encoded */
++ u8 min_off; /* Min PWM or OFF below "limit", flag */
++};
++
++struct lm85_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ int valid; /* !=0 if following fields are valid */
++ unsigned long last_reading; /* In jiffies */
++ unsigned long last_config; /* In jiffies */
++
++ u8 in[8]; /* Register value */
++ u8 in_max[8]; /* Register value */
++ u8 in_min[8]; /* Register value */
++ s8 temp[3]; /* Register value */
++ s8 temp_min[3]; /* Register value */
++ s8 temp_max[3]; /* Register value */
++ s8 temp_offset[3]; /* Register value */
++ u16 fan[4]; /* Register value */
++ u16 fan_min[4]; /* Register value */
++ u8 pwm[3]; /* Register value */
++ u8 spinup_ctl; /* Register encoding, combined */
++ u8 tach_mode; /* Register encoding, combined */
++ u16 extend_adc; /* Register value */
++ u8 fan_ppr; /* Register value */
++ u8 smooth[3]; /* Register encoding */
++ u8 vid; /* Register value */
++ u8 vrm; /* VRM version */
++ u8 syncpwm3; /* Saved PWM3 for TACH 2,3,4 config */
++ s8 oppoint[3]; /* Register value */
++ u16 tmin_ctl; /* Register value */
++ long therm_total; /* Cummulative therm count */
++ long therm_ovfl; /* Count of therm overflows */
++ u8 therm_limit; /* Register value */
++ u32 alarms; /* Register encoding, combined */
++ u32 alarm_mask; /* Register encoding, combined */
++ struct lm85_autofan autofan[3];
++ struct lm85_zone zone[3];
++};
++
++static int lm85_attach_adapter(struct i2c_adapter *adapter);
++static int lm85_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int lm85_detach_client(struct i2c_client *client);
++static int lm85_read_value(struct i2c_client *client, u16 register);
++static int lm85_write_value(struct i2c_client *client, u16 register, int value);
++static void lm85_update_client(struct i2c_client *client);
++static void lm85_init_client(struct i2c_client *client);
++
++
++static void lm85_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++static void lm85_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_vrm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_zone(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_pwm_config(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_pwm_zone(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_smooth(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static void lm85_spinup_ctl(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm85_tach_mode(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static void adm1027_tach_mode(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1027_temp_offset(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1027_fan_ppr(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adm1027_alarm_mask(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static void adt7463_tmin_ctl(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void adt7463_therm_signal(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static void emc6d100_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static struct i2c_driver lm85_driver = {
++ .owner = THIS_MODULE,
++ .name = "LM85 compatible sensor driver",
++ .id = I2C_DRIVERID_LM85,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = &lm85_attach_adapter,
++ .detach_client = &lm85_detach_client,
++};
++
++/* Unique ID assigned to each LM85 detected */
++static int lm85_id = 0;
++
++/* -- SENSORS SYSCTL START -- */
++/* Common parameters */
++#define LM85_SYSCTL_IN0 1000
++#define LM85_SYSCTL_IN1 1001
++#define LM85_SYSCTL_IN2 1002
++#define LM85_SYSCTL_IN3 1003
++#define LM85_SYSCTL_IN4 1004
++#define LM85_SYSCTL_FAN1 1005
++#define LM85_SYSCTL_FAN2 1006
++#define LM85_SYSCTL_FAN3 1007
++#define LM85_SYSCTL_FAN4 1008
++#define LM85_SYSCTL_TEMP1 1009
++#define LM85_SYSCTL_TEMP2 1010
++#define LM85_SYSCTL_TEMP3 1011
++#define LM85_SYSCTL_VID 1012
++#define LM85_SYSCTL_ALARMS 1013
++#define LM85_SYSCTL_PWM1 1014
++#define LM85_SYSCTL_PWM2 1015
++#define LM85_SYSCTL_PWM3 1016
++#define LM85_SYSCTL_VRM 1017
++#define LM85_SYSCTL_PWM_CFG1 1019
++#define LM85_SYSCTL_PWM_CFG2 1020
++#define LM85_SYSCTL_PWM_CFG3 1021
++#define LM85_SYSCTL_PWM_ZONE1 1022
++#define LM85_SYSCTL_PWM_ZONE2 1023
++#define LM85_SYSCTL_PWM_ZONE3 1024
++#define LM85_SYSCTL_ZONE1 1025
++#define LM85_SYSCTL_ZONE2 1026
++#define LM85_SYSCTL_ZONE3 1027
++#define LM85_SYSCTL_SMOOTH1 1028
++#define LM85_SYSCTL_SMOOTH2 1029
++#define LM85_SYSCTL_SMOOTH3 1030
++
++/* Vendor specific values */
++#define LM85_SYSCTL_SPINUP_CTL 1100
++#define LM85_SYSCTL_TACH_MODE 1101
++
++/* Analog Devices variant of the LM85 */
++#define ADM1027_SYSCTL_TACH_MODE 1200
++#define ADM1027_SYSCTL_TEMP_OFFSET1 1201
++#define ADM1027_SYSCTL_TEMP_OFFSET2 1202
++#define ADM1027_SYSCTL_TEMP_OFFSET3 1203
++#define ADM1027_SYSCTL_FAN_PPR 1204
++#define ADM1027_SYSCTL_ALARM_MASK 1205
++
++/* Analog Devices variant of the LM85/ADM1027 */
++#define ADT7463_SYSCTL_TMIN_CTL1 1300
++#define ADT7463_SYSCTL_TMIN_CTL2 1301
++#define ADT7463_SYSCTL_TMIN_CTL3 1302
++#define ADT7463_SYSCTL_THERM_SIGNAL 1303
++
++/* SMSC variant of the LM85 */
++#define EMC6D100_SYSCTL_IN5 1400
++#define EMC6D100_SYSCTL_IN6 1401
++#define EMC6D100_SYSCTL_IN7 1402
++
++#define LM85_ALARM_IN0 0x0001
++#define LM85_ALARM_IN1 0x0002
++#define LM85_ALARM_IN2 0x0004
++#define LM85_ALARM_IN3 0x0008
++#define LM85_ALARM_TEMP1 0x0010
++#define LM85_ALARM_TEMP2 0x0020
++#define LM85_ALARM_TEMP3 0x0040
++#define LM85_ALARM_ALARM2 0x0080
++#define LM85_ALARM_IN4 0x0100
++#define LM85_ALARM_RESERVED 0x0200
++#define LM85_ALARM_FAN1 0x0400
++#define LM85_ALARM_FAN2 0x0800
++#define LM85_ALARM_FAN3 0x1000
++#define LM85_ALARM_FAN4 0x2000
++#define LM85_ALARM_TEMP1_FAULT 0x4000
++#define LM85_ALARM_TEMP3_FAULT 0x08000
++#define LM85_ALARM_IN6 0x10000
++#define LM85_ALARM_IN7 0x20000
++#define LM85_ALARM_IN5 0x40000
++/* -- SENSORS SYSCTL END -- */
++
++/* The /proc/sys entries */
++/* These files are created for each detected LM85. This is just a template;
++ * The actual list is built from this and additional per-chip
++ * custom lists below. Note the XXX_LEN macros. These must be
++ * compile time constants because they will be used to allocate
++ * space for the final template passed to i2c_register_entry.
++ * We depend on the ability of GCC to evaluate expressions at
++ * compile time to turn these expressions into compile time
++ * constants, but this can generate a warning.
++ */
++static ctl_table lm85_common[] = {
++ {LM85_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_in},
++ {LM85_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_in},
++ {LM85_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_in},
++ {LM85_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_in},
++ {LM85_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_in},
++ {LM85_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_fan},
++ {LM85_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_fan},
++ {LM85_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_fan},
++ {LM85_SYSCTL_FAN4, "fan4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_fan},
++ {LM85_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_temp},
++ {LM85_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_temp},
++ {LM85_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_temp},
++ {LM85_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_vid},
++ {LM85_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_vrm},
++ {LM85_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_alarms},
++ {LM85_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_pwm},
++ {LM85_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_pwm},
++ {LM85_SYSCTL_PWM3, "pwm3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_pwm},
++ {LM85_SYSCTL_PWM_CFG1, "pwm1_cfg", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_pwm_config},
++ {LM85_SYSCTL_PWM_CFG2, "pwm2_cfg", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_pwm_config},
++ {LM85_SYSCTL_PWM_CFG3, "pwm3_cfg", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_pwm_config},
++ {LM85_SYSCTL_PWM_ZONE1, "pwm1_zone", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm85_pwm_zone},
++ {LM85_SYSCTL_PWM_ZONE2, "pwm2_zone", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm85_pwm_zone},
++ {LM85_SYSCTL_PWM_ZONE3, "pwm3_zone", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm85_pwm_zone},
++ {LM85_SYSCTL_ZONE1, "zone1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_zone},
++ {LM85_SYSCTL_ZONE2, "zone2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_zone},
++ {LM85_SYSCTL_ZONE3, "zone3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_zone},
++ {LM85_SYSCTL_SMOOTH1, "smooth1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_smooth},
++ {LM85_SYSCTL_SMOOTH2, "smooth2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_smooth},
++ {LM85_SYSCTL_SMOOTH3, "smooth3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm85_smooth},
++ {0}
++};
++#define CTLTBL_COMMON (sizeof(lm85_common)/sizeof(lm85_common[0]))
++
++/* NOTE: tach_mode is a shared name, but implemented with
++ * different functions
++ */
++static ctl_table lm85_specific[] = {
++ {LM85_SYSCTL_SPINUP_CTL, "spinup_ctl", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm85_spinup_ctl},
++ {LM85_SYSCTL_TACH_MODE, "tach_mode", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm85_tach_mode},
++/* {0} The doc generator needs this. */
++};
++#define CTLTBL_LM85 (sizeof(lm85_specific)/sizeof(lm85_specific[0]))
++
++static ctl_table adm1027_specific[] = {
++ {ADM1027_SYSCTL_TACH_MODE, "tach_mode", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1027_tach_mode},
++ {ADM1027_SYSCTL_TEMP_OFFSET1, "temp1_offset", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1027_temp_offset},
++ {ADM1027_SYSCTL_TEMP_OFFSET2, "temp2_offset", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1027_temp_offset},
++ {ADM1027_SYSCTL_TEMP_OFFSET3, "temp3_offset", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1027_temp_offset},
++ {ADM1027_SYSCTL_FAN_PPR, "fan_ppr", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1027_fan_ppr},
++ {ADM1027_SYSCTL_ALARM_MASK, "alarm_mask", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adm1027_alarm_mask},
++/* {0} The doc generator needs this. */
++};
++#define CTLTBL_ADM1027 (sizeof(adm1027_specific)/sizeof(adm1027_specific[0]))
++
++static ctl_table adt7463_specific[] = {
++ {ADT7463_SYSCTL_TMIN_CTL1, "tmin_ctl1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adt7463_tmin_ctl},
++ {ADT7463_SYSCTL_TMIN_CTL2, "tmin_ctl2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adt7463_tmin_ctl},
++ {ADT7463_SYSCTL_TMIN_CTL3, "tmin_ctl3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adt7463_tmin_ctl},
++ {ADT7463_SYSCTL_THERM_SIGNAL, "therm_signal", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &adt7463_therm_signal},
++/* {0} The doc generator needs this. */
++};
++#define CTLTBL_ADT7463 (sizeof(adt7463_specific)/sizeof(adt7463_specific[0]))
++
++static ctl_table emc6d100_specific[] = {
++ {EMC6D100_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &emc6d100_in},
++ {EMC6D100_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &emc6d100_in},
++ {EMC6D100_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &emc6d100_in},
++/* {0} The doc generator needs this. */
++};
++#define CTLTBL_EMC6D100 (sizeof(emc6d100_specific)/sizeof(emc6d100_specific[0]))
++
++
++#define MAX2(a,b) ((a)>(b)?(a):(b))
++#define MAX3(a,b,c) ((a)>(b)?MAX2((a),(c)):MAX2((b),(c)))
++#define MAX4(a,b,c,d) ((a)>(b)?MAX3((a),(c),(d)):MAX3((b),(c),(d)))
++
++#define CTLTBL_MAX (CTLTBL_COMMON + MAX3(CTLTBL_LM85, CTLTBL_ADM1027+CTLTBL_ADT7463, CTLTBL_EMC6D100))
++
++/* This function is called when:
++ * lm85_driver is inserted (when this module is loaded), for each
++ available adapter
++ * when a new adapter is inserted (and lm85_driver is still present) */
++int lm85_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, lm85_detect);
++}
++
++/* This function is called by i2c_detect */
++int lm85_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ int company, verstep ;
++ struct i2c_client *new_client;
++ struct lm85_data *data;
++ int err = 0;
++ const char *type_name = "";
++ struct ctl_table template[CTLTBL_MAX] ;
++ int template_used ;
++
++ if (i2c_is_isa_adapter(adapter)) {
++ /* This chip has no ISA interface */
++ goto ERROR0 ;
++ };
++
++ if (!i2c_check_functionality(adapter,
++ I2C_FUNC_SMBUS_BYTE_DATA)) {
++ /* We need to be able to do byte I/O */
++ goto ERROR0 ;
++ };
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access lm85_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct lm85_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &lm85_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ company = lm85_read_value(new_client, LM85_REG_COMPANY);
++ verstep = lm85_read_value(new_client, LM85_REG_VERSTEP);
++
++#ifdef DEBUG
++ printk("lm85: Detecting device at %d,0x%02x with"
++ " COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
++ i2c_adapter_id(new_client->adapter), new_client->addr,
++ company, verstep
++ );
++#endif
++
++ /* If auto-detecting, Determine the chip type. */
++ if (kind <= 0) {
++#ifdef DEBUG
++ printk("lm85: Autodetecting device at %d,0x%02x ...\n",
++ i2c_adapter_id(adapter), address );
++#endif
++ if( company == LM85_COMPANY_NATIONAL
++ && verstep == LM85_VERSTEP_LM85C ) {
++ kind = lm85c ;
++ } else if( company == LM85_COMPANY_NATIONAL
++ && verstep == LM85_VERSTEP_LM85B ) {
++ kind = lm85b ;
++ } else if( company == LM85_COMPANY_NATIONAL
++ && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
++ printk("lm85: Detected National Semiconductor chip\n");
++ printk("lm85: Unrecgonized version/stepping 0x%02x"
++ " Defaulting to Generic LM85.\n", verstep );
++ kind = any_chip ;
++ } else if( company == LM85_COMPANY_ANALOG_DEV
++ && verstep == LM85_VERSTEP_ADM1027 ) {
++ kind = adm1027 ;
++ } else if( company == LM85_COMPANY_ANALOG_DEV
++ && verstep == LM85_VERSTEP_ADT7463 ) {
++ kind = adt7463 ;
++ } else if( company == LM85_COMPANY_ANALOG_DEV
++ && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
++ printk("lm85: Detected Analog Devices chip\n");
++ printk("lm85: Unrecgonized version/stepping 0x%02x"
++ " Defaulting to Generic LM85.\n", verstep );
++ kind = any_chip ;
++ } else if( company == LM85_COMPANY_SMSC
++ && (verstep == LM85_VERSTEP_EMC6D100_A0
++ || verstep == LM85_VERSTEP_EMC6D100_A1) ) {
++ /* Unfortunately, we can't tell a '100 from a '101
++ * from the registers. Since a '101 is a '100
++ * in a package with fewer pins and therefore no
++ * 3.3V, 1.5V or 1.8V inputs, perhaps if those
++ * inputs read 0, then it's a '101.
++ */
++ kind = emc6d100 ;
++ } else if( company == LM85_COMPANY_SMSC
++ && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
++ printk("lm85: Detected SMSC chip\n");
++ printk("lm85: Unrecognized version/stepping 0x%02x"
++ " Defaulting to Generic LM85.\n", verstep );
++ kind = any_chip ;
++ } else if( kind == any_chip
++ && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
++ printk("lm85: Generic LM85 Version 6 detected\n");
++ /* Leave kind as "any_chip" */
++ } else {
++#ifdef DEBUG
++ printk("lm85: Autodetection failed\n");
++#endif
++ /* Not an LM85 ... */
++ if( kind == any_chip ) { /* User used force=x,y */
++ printk("lm85: Generic LM85 Version 6 not"
++ " found at %d,0x%02x. Try force_lm85c.\n",
++ i2c_adapter_id(adapter), address );
++ }
++ err = 0 ;
++ goto ERROR1;
++ }
++ }
++
++ /* Fill in the chip specific driver values */
++ switch (kind) {
++ case any_chip :
++ type_name = "lm85";
++ strcpy(new_client->name, "Generic LM85");
++ template_used = 0 ;
++ break ;
++ case lm85b :
++ type_name = "lm85b";
++ strcpy(new_client->name, "National LM85-B");
++ memcpy( template, lm85_specific, sizeof(lm85_specific) );
++ template_used = CTLTBL_LM85 ;
++ break ;
++ case lm85c :
++ type_name = "lm85c";
++ strcpy(new_client->name, "National LM85-C");
++ memcpy( template, lm85_specific, sizeof(lm85_specific) );
++ template_used = CTLTBL_LM85 ;
++ break ;
++ case adm1027 :
++ type_name = "adm1027";
++ strcpy(new_client->name, "Analog Devices ADM1027");
++ memcpy( template, adm1027_specific, sizeof(adm1027_specific) );
++ template_used = CTLTBL_ADM1027 ;
++ break ;
++ case adt7463 :
++ type_name = "adt7463";
++ strcpy(new_client->name, "Analog Devices ADT7463");
++ memcpy( template, adt7463_specific, sizeof(adt7463_specific) );
++ template_used = CTLTBL_ADT7463 ;
++ memcpy( template+template_used, adm1027_specific, sizeof(adm1027_specific) );
++ template_used += CTLTBL_ADM1027 ;
++ break ;
++ case emc6d100 :
++ type_name = "emc6d100";
++ strcpy(new_client->name, "SMSC EMC6D100");
++ memcpy(template, emc6d100_specific, sizeof(emc6d100_specific));
++ template_used = CTLTBL_EMC6D100 ;
++ break ;
++ default :
++ printk("lm85: Internal error, invalid kind (%d)!", kind);
++ err = -EFAULT ;
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields */
++ new_client->id = lm85_id++;
++ printk("lm85: Assigning ID %d to %s at %d,0x%02x\n",
++ new_client->id, new_client->name,
++ i2c_adapter_id(new_client->adapter),
++ new_client->addr
++ );
++
++ /* Housekeeping values */
++ data->type = kind;
++ data->valid = 0;
++
++ /* Set the VRM version */
++ data->vrm = LM85_INIT_VRM ;
++
++ /* Zero the accumulators */
++ data->therm_total = 0;
++ data->therm_ovfl = 0;
++
++ init_MUTEX(&data->update_lock);
++
++ /* Initialize the LM85 chip */
++ lm85_init_client(new_client);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR1;
++
++ /* Finish out the template */
++ memcpy( template + template_used, lm85_common, sizeof(lm85_common) );
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ template)) < 0) {
++ err = i;
++ goto ERROR2;
++ }
++ data->sysctl_id = i;
++
++ return 0;
++
++ /* Error out and cleanup code */
++ ERROR2:
++ i2c_detach_client(new_client);
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++int lm85_detach_client(struct i2c_client *client)
++{
++ int err;
++ int id ;
++
++ id = client->id;
++ i2c_deregister_entry(((struct lm85_data *)(client->data))->sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk("lm85(%d): Client deregistration failed,"
++ " client not detached.\n", id );
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++int lm85_read_value(struct i2c_client *client, u16 reg)
++{
++ int res;
++
++ /* What size location is it? */
++ switch( reg ) {
++ case LM85_REG_FAN(0) : /* Read WORD data */
++ case LM85_REG_FAN(1) :
++ case LM85_REG_FAN(2) :
++ case LM85_REG_FAN(3) :
++ case LM85_REG_FAN_MIN(0) :
++ case LM85_REG_FAN_MIN(1) :
++ case LM85_REG_FAN_MIN(2) :
++ case LM85_REG_FAN_MIN(3) :
++ case LM85_REG_ALARM : /* Read ALARM1 and ALARM2 */
++ case ADM1027_REG_INTMASK : /* Read MASK1 and MASK2 */
++ case ADM1027_REG_EXTEND_ADC : /* Read ADC1 and ADC2 */
++ reg &= 0xff ; /* Pseudo words have address + 0x0100 */
++ res = i2c_smbus_read_byte_data(client, reg) & 0xff ;
++ res |= (i2c_smbus_read_byte_data(client, reg+1) & 0xff) << 8 ;
++ break ;
++ case ADT7463_REG_TMIN_CTL : /* Read WORD MSB, LSB */
++ reg &= 0xff ; /* Pseudo words have address + 0x0100 */
++ res = (i2c_smbus_read_byte_data(client, reg) & 0xff) << 8 ;
++ res |= i2c_smbus_read_byte_data(client, reg+1) & 0xff ;
++ break ;
++ default: /* Read BYTE data */
++ res = i2c_smbus_read_byte_data(client, reg & 0xff) & 0xff ;
++ break ;
++ }
++
++ return res ;
++}
++
++int lm85_write_value(struct i2c_client *client, u16 reg, int value)
++{
++ int res ;
++
++ switch( reg ) {
++ case LM85_REG_FAN(0) : /* Write WORD data */
++ case LM85_REG_FAN(1) :
++ case LM85_REG_FAN(2) :
++ case LM85_REG_FAN(3) :
++ case LM85_REG_FAN_MIN(0) :
++ case LM85_REG_FAN_MIN(1) :
++ case LM85_REG_FAN_MIN(2) :
++ case LM85_REG_FAN_MIN(3) :
++ case ADM1027_REG_INTMASK :
++ /* NOTE: ALARM and ADC are read only, so not included here */
++ reg &= 0xff ; /* Pseudo words have address + 0x0100 */
++ res = i2c_smbus_write_byte_data(client, reg, value & 0xff) ;
++ res |= i2c_smbus_write_byte_data(client, reg+1, (value>>8) & 0xff) ;
++ break ;
++ case ADT7463_REG_TMIN_CTL : /* Write WORD MSB, LSB */
++ reg &= 0xff ; /* Pseudo words have address + 0x0100 */
++ res = i2c_smbus_write_byte_data(client, reg, (value>>8) & 0xff);
++ res |= i2c_smbus_write_byte_data(client, reg+1, value & 0xff) ;
++ break ;
++ default: /* Write BYTE data */
++ res = i2c_smbus_write_byte_data(client, reg & 0xff, value);
++ break ;
++ }
++
++ return res ;
++}
++
++/* Called when we have found a new LM85. It should set limits, etc. */
++void lm85_init_client(struct i2c_client *client)
++{
++ int value;
++ struct lm85_data *data = client->data;
++
++#ifdef DEBUG
++ printk("lm85(%d): Initializing device\n", client->id);
++#endif
++
++ /* Warn if part was not "READY" */
++ value = lm85_read_value(client, LM85_REG_CONFIG);
++#ifdef DEBUG
++ printk("lm85(%d): LM85_REG_CONFIG is: 0x%02x\n", client->id, value );
++#endif
++ if( value & 0x02 ) {
++ printk("lm85(%d): Client (%d,0x%02x) config is locked.\n",
++ client->id,
++ i2c_adapter_id(client->adapter), client->addr );
++ };
++ if( ! (value & 0x04) ) {
++ printk("lm85(%d): Client (%d,0x%02x) is not ready.\n",
++ client->id,
++ i2c_adapter_id(client->adapter), client->addr );
++ };
++ if( (data->type == adm1027 || data->type == adt7463)
++ && (value & 0x10)
++ ) {
++ printk("lm85(%d): Client (%d,0x%02x) VxI mode is set. "
++ "Please report this to the lm85 maintainer.\n",
++ client->id,
++ i2c_adapter_id(client->adapter), client->addr );
++ };
++
++ /* See if SYNC to PWM3 is set */
++ if( data->type == adt7463
++ && (lm85_read_value(client, LM85_REG_AFAN_SPIKE1) & 0x10)
++ ) {
++ printk("lm85(%d): Sync to PWM3 is set. Expect PWM3 "
++ "to control fans 2, 3, and 4\n",
++ client->id );
++ };
++
++ /* See if PWM2 is #SMBALERT */
++ if( (data->type == adm1027 || data->type == adt7463)
++ && (lm85_read_value(client, ADM1027_REG_CONFIG3) & 0x01)
++ ) {
++ printk("lm85(%d): PWM2 is SMBALERT. PWM2 not available.\n",
++ client->id );
++ };
++
++ /* Check if 2.5V and 5V inputs are reconfigured */
++ if( data->type == adt7463 ) {
++ value = lm85_read_value(client, ADT7463_REG_CONFIG4);
++ if( value & 0x01 ) {
++ printk("lm85(%d): 2.5V input (in0) is SMBALERT. "
++ "in0 not available.\n", client->id );
++ };
++ if( value & 0x02 ) {
++ printk("lm85(%d): 5V input (in3) is THERM. "
++ "in3 not available.\n", client->id );
++ }
++ };
++
++ /* FIXME? Display EMC6D100 config info? */
++
++ /* WE INTENTIONALLY make no changes to the limits,
++ * offsets, pwms, fans and zones. If they were
++ * configured, we don't want to mess with them.
++ * If they weren't, the default is 100% PWM, no
++ * control and will suffice until 'sensors -s'
++ * can be run by the user.
++ */
++
++ /* Start monitoring */
++ value = lm85_read_value(client, LM85_REG_CONFIG);
++ /* Try to clear LOCK, Set START, save everything else */
++ value = ((value & ~ 0x02) | 0x01) & 0xff ;
++#ifdef DEBUG
++ printk("lm85(%d): Setting CONFIG to: 0x%02x\n", client->id, value );
++#endif
++ lm85_write_value(client, LM85_REG_CONFIG, value);
++
++}
++
++void lm85_update_client(struct i2c_client *client)
++{
++ struct lm85_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if (!data->valid
++ || (jiffies - data->last_reading > LM85_DATA_INTERVAL )) {
++ /* Things that change quickly */
++
++#ifdef DEBUG
++ printk("lm85(%d): Reading sensor values\n", client->id);
++#endif
++ /* Have to read extended bits first to "freeze" the
++ * more significant bits that are read later.
++ */
++ switch( data->type ) {
++ case adm1027 :
++ case adt7463 :
++ data->extend_adc =
++ lm85_read_value(client, ADM1027_REG_EXTEND_ADC);
++ break ;
++ default :
++ data->extend_adc = 0 ;
++ break ;
++ }
++
++ for (i = 0; i <= 4; ++i) {
++ data->in[i] =
++ lm85_read_value(client, LM85_REG_IN(i));
++ }
++
++ for (i = 0; i <= 3; ++i) {
++ data->fan[i] =
++ lm85_read_value(client, LM85_REG_FAN(i));
++ }
++
++ for (i = 0; i <= 2; ++i) {
++ data->temp[i] =
++ lm85_read_value(client, LM85_REG_TEMP(i));
++ }
++
++ for (i = 0; i <= 2; ++i) {
++ data->pwm[i] =
++ lm85_read_value(client, LM85_REG_PWM(i));
++ }
++
++ data->alarms = lm85_read_value(client, LM85_REG_ALARM);
++
++ switch( ((struct lm85_data *)(client->data))->type ) {
++ case adt7463 :
++ /* REG_THERM code duplicated in therm_signal() */
++ i = lm85_read_value(client, ADT7463_REG_THERM);
++ if( data->therm_total < LONG_MAX - 256 ) {
++ data->therm_total += i ;
++ }
++ if( i >= 255 ) {
++ ++data->therm_ovfl ;
++ }
++ break ;
++ case emc6d100 :
++ /* Three more voltage sensors */
++ for (i = 5; i <= 7; ++i) {
++ data->in[i] =
++ lm85_read_value(client, EMC6D100_REG_IN(i));
++ }
++ /* More alarm bits */
++ data->alarms |=
++ lm85_read_value(client, EMC6D100_REG_ALARM3) << 16;
++
++ break ;
++ default : break ; /* no warnings */
++ }
++
++ data->last_reading = jiffies ;
++ }; /* last_reading */
++
++ if (!data->valid
++ || (jiffies - data->last_config > LM85_CONFIG_INTERVAL) ) {
++ /* Things that don't change often */
++
++#ifdef DEBUG
++ printk("lm85(%d): Reading config values\n", client->id);
++#endif
++ for (i = 0; i <= 4; ++i) {
++ data->in_min[i] =
++ lm85_read_value(client, LM85_REG_IN_MIN(i));
++ data->in_max[i] =
++ lm85_read_value(client, LM85_REG_IN_MAX(i));
++ }
++
++ for (i = 0; i <= 3; ++i) {
++ data->fan_min[i] =
++ lm85_read_value(client, LM85_REG_FAN_MIN(i));
++ }
++
++ for (i = 0; i <= 2; ++i) {
++ data->temp_min[i] =
++ lm85_read_value(client, LM85_REG_TEMP_MIN(i));
++ data->temp_max[i] =
++ lm85_read_value(client, LM85_REG_TEMP_MAX(i));
++ }
++
++ data->vid = lm85_read_value(client, LM85_REG_VID);
++
++ for (i = 0; i <= 2; ++i) {
++ int val ;
++ data->autofan[i].config =
++ lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
++ val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
++ data->autofan[i].freq = val & 0x07 ;
++ data->zone[i].range = (val >> 4) & 0x0f ;
++ data->autofan[i].min_pwm =
++ lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
++ data->zone[i].limit =
++ lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
++ data->zone[i].critical =
++ lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
++ }
++
++ i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
++ data->smooth[0] = i & 0x0f ;
++ data->syncpwm3 = i & 0x10 ; /* Save PWM3 config */
++ data->autofan[0].min_off = i & 0x20 ;
++ data->autofan[1].min_off = i & 0x40 ;
++ data->autofan[2].min_off = i & 0x80 ;
++ i = lm85_read_value(client, LM85_REG_AFAN_SPIKE2);
++ data->smooth[1] = (i>>4) & 0x0f ;
++ data->smooth[2] = i & 0x0f ;
++
++ i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
++ data->zone[0].hyst = (i>>4) & 0x0f ;
++ data->zone[1].hyst = i & 0x0f ;
++
++ i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
++ data->zone[2].hyst = (i>>4) & 0x0f ;
++
++ switch( ((struct lm85_data *)(client->data))->type ) {
++ case lm85b :
++ case lm85c :
++ data->tach_mode = lm85_read_value(client,
++ LM85_REG_TACH_MODE );
++ data->spinup_ctl = lm85_read_value(client,
++ LM85_REG_SPINUP_CTL );
++ break ;
++ case adt7463 :
++ for (i = 0; i <= 2; ++i) {
++ data->oppoint[i] = lm85_read_value(client,
++ ADT7463_REG_OPPOINT(i) );
++ }
++ data->tmin_ctl = lm85_read_value(client,
++ ADT7463_REG_TMIN_CTL );
++ data->therm_limit = lm85_read_value(client,
++ ADT7463_REG_THERM_LIMIT );
++ /* FALL THROUGH */
++ case adm1027 :
++ for (i = 0; i <= 2; ++i) {
++ data->temp_offset[i] = lm85_read_value(client,
++ ADM1027_REG_TEMP_OFFSET(i) );
++ }
++ data->tach_mode = lm85_read_value(client,
++ ADM1027_REG_CONFIG3 );
++ data->fan_ppr = lm85_read_value(client,
++ ADM1027_REG_FAN_PPR );
++ data->alarm_mask = lm85_read_value(client,
++ ADM1027_REG_INTMASK );
++ break ;
++ case emc6d100 :
++ for (i = 5; i <= 7; ++i) {
++ data->in_min[i] =
++ lm85_read_value(client, EMC6D100_REG_IN_MIN(i));
++ data->in_max[i] =
++ lm85_read_value(client, EMC6D100_REG_IN_MAX(i));
++ }
++ break ;
++ default : break ; /* no warnings */
++ }
++
++ data->last_config = jiffies;
++ }; /* last_config */
++
++ data->valid = 1;
++
++ up(&data->update_lock);
++}
++
++
++/* The next functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the data
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ */
++void lm85_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - LM85_SYSCTL_IN0;
++
++ if (nr < 0 || nr > 4)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3; /* 1.000 */
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ int ext = 0 ;
++ lm85_update_client(client);
++ ext = EXT_FROM_REG(data->extend_adc, nr);
++ results[0] = INS_FROM_REG(nr,data->in_min[nr]);
++ results[1] = INS_FROM_REG(nr,data->in_max[nr]);
++ results[2] = INSEXT_FROM_REG(nr,data->in[nr],ext);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 1) {
++ data->in_max[nr] = INS_TO_REG(nr,results[1]);
++ lm85_write_value(client, LM85_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ if (*nrels_mag > 0) {
++ data->in_min[nr] = INS_TO_REG(nr,results[0]);
++ lm85_write_value(client, LM85_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void lm85_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - LM85_SYSCTL_FAN1 ;
++
++ if (nr < 0 || nr > 3)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr]);
++ results[1] = FAN_FROM_REG(data->fan[nr]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->fan_min[nr] = FAN_TO_REG(results[0]);
++ lm85_write_value(client, LM85_REG_FAN_MIN(nr),
++ data->fan_min[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++
++void lm85_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - LM85_SYSCTL_TEMP1 ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ int ext = 0 ;
++ lm85_update_client(client);
++
++ /* +5 for offset of temp data in ext reg */
++ ext = EXT_FROM_REG(data->extend_adc, nr+5);
++
++ results[0] = TEMP_FROM_REG(data->temp_min[nr]);
++ results[1] = TEMP_FROM_REG(data->temp_max[nr]);
++ results[2] = TEMPEXT_FROM_REG(data->temp[nr],ext);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 1) {
++ data->temp_max[nr] = TEMP_TO_REG(results[1]);
++ lm85_write_value(client, LM85_REG_TEMP_MAX(nr),
++ data->temp_max[nr]);
++ }
++ if (*nrels_mag > 0) {
++ data->temp_min[nr] = TEMP_TO_REG(results[0]);
++ lm85_write_value(client, LM85_REG_TEMP_MIN(nr),
++ data->temp_min[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void lm85_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - LM85_SYSCTL_PWM1 ;
++ int pwm_zone ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = PWM_FROM_REG(data->pwm[nr]);
++ pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
++ /* PWM "enabled" if not off (0) nor on (-1) */
++ results[1] = pwm_zone != 0 && pwm_zone != -1 ;
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ /* PWM enable is read-only */
++ if (*nrels_mag > 0) {
++ data->pwm[nr] = PWM_TO_REG(results[0]);
++ lm85_write_value(client, LM85_REG_PWM(nr),
++ data->pwm[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void lm85_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++
++ if( ctl_name != LM85_SYSCTL_VID )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = VID_FROM_REG((data->vid)&0x3f,data->vrm);
++ *nrels_mag = 1;
++ }
++}
++
++void lm85_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++
++ if( ctl_name != LM85_SYSCTL_VRM )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm ;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->vrm = results[0] ;
++ }
++ up(&data->update_lock);
++ }
++}
++
++void lm85_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++
++ if( ctl_name != LM85_SYSCTL_ALARMS )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void lm85_spinup_ctl(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int old;
++
++ if( ctl_name != LM85_SYSCTL_SPINUP_CTL )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = (data->spinup_ctl & 1) != 0 ;
++ results[1] = (data->spinup_ctl & 2) != 0 ;
++ results[2] = (data->spinup_ctl & 4) != 0 ;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ old = data->spinup_ctl ;
++ if (*nrels_mag > 2) {
++ old = (old & (~4)) | (results[2]?4:0) ;
++ }
++ if (*nrels_mag > 1) {
++ old = (old & (~2)) | (results[1]?2:0) ;
++ }
++ if (*nrels_mag > 0) {
++ old = (old & (~1)) | (results[0]?1:0) ;
++ lm85_write_value(client, LM85_REG_SPINUP_CTL, old);
++ data->spinup_ctl = old ;
++ }
++ up(&data->update_lock);
++ }
++}
++
++void lm85_tach_mode(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int old;
++
++ /* Tach Mode 1, Tach Mode 2, Tach Mode 3 & 4 */
++
++ if( ctl_name != LM85_SYSCTL_TACH_MODE )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = (data->tach_mode & 0x03) ;
++ results[1] = (data->tach_mode & 0x0c) >> 2 ;
++ results[2] = (data->tach_mode & 0x30) >> 4 ;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ old = data->tach_mode ;
++ if (*nrels_mag > 2) {
++ old = (old & (~0x30)) | ((results[2]&3) << 4) ;
++ }
++ if (*nrels_mag > 1) {
++ old = (old & (~0x0c)) | ((results[1]&3) << 2) ;
++ }
++ if (*nrels_mag > 0) {
++ old = (old & (~0x03)) | (results[0]&3) ;
++ lm85_write_value(client, LM85_REG_TACH_MODE, old);
++ data->tach_mode = old ;
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1027_tach_mode(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int old;
++
++ /* Tach/DC 1, Tach/DC 2, Tach/DC 3, Tach/DC 4 */
++
++ if( ctl_name != ADM1027_SYSCTL_TACH_MODE )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = (data->tach_mode & 0x10) != 0 ;
++ results[1] = (data->tach_mode & 0x20) != 0 ;
++ results[2] = (data->tach_mode & 0x40) != 0 ;
++ results[3] = (data->tach_mode & 0x80) != 0 ;
++ *nrels_mag = 4;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ old = data->tach_mode ;
++ if (*nrels_mag > 3) {
++ old = (old & (~0x80)) | (results[3] ? 0x80 : 0) ;
++ }
++ if (*nrels_mag > 2) {
++ old = (old & (~0x40)) | (results[2] ? 0x40 : 0) ;
++ }
++ if (*nrels_mag > 1) {
++ old = (old & (~0x20)) | (results[1] ? 0x20 : 0) ;
++ }
++ if (*nrels_mag > 0) {
++ old = (old & (~0x10)) | (results[0] ? 0x10 : 0) ;
++
++ /* Enable fast measurements if any TACH's are DC */
++ old = (old & (~0x08)) | ((old&0xf0) ? 0x08 : 0) ;
++
++ lm85_write_value(client, ADM1027_REG_CONFIG3, old);
++ data->tach_mode = old ;
++ }
++ up(&data->update_lock);
++ }
++}
++
++void lm85_pwm_config(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - LM85_SYSCTL_PWM_CFG1 ;
++
++ /* Spinup, min PWM, PWM Frequency, min below limit, Invert */
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++
++ results[0] = SPINUP_FROM_REG(data->autofan[nr].config);
++ results[1] = PWM_FROM_REG(data->autofan[nr].min_pwm)*10;
++ results[2] = FREQ_FROM_REG(data->autofan[nr].freq);
++ results[3] = data->autofan[nr].min_off ? 10 : 0 ;
++ results[4] = (data->autofan[nr].config & 0x10) ? 10 : 0 ;
++ *nrels_mag = 5;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ int old_config ;
++
++ down(&data->update_lock);
++ old_config = data->autofan[nr].config ;
++ if (*nrels_mag > 4) {
++ old_config = (old_config & (~0x10)) | (results[4]?0x10:0) ;
++ }
++ if (*nrels_mag > 3) {
++ data->autofan[nr].min_off = results[3] != 0 ;
++ lm85_write_value(client, LM85_REG_AFAN_SPIKE1,
++ data->smooth[0]
++ | data->syncpwm3
++ | (data->autofan[0].min_off ? 0x20 : 0)
++ | (data->autofan[1].min_off ? 0x40 : 0)
++ | (data->autofan[2].min_off ? 0x80 : 0)
++ );
++ }
++ if (*nrels_mag > 2) {
++ data->autofan[nr].freq = FREQ_TO_REG(results[2]) ;
++ lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
++ (data->zone[nr].range << 4)
++ | data->autofan[nr].freq
++ );
++ }
++ if (*nrels_mag > 1) {
++ data->autofan[nr].min_pwm = PWM_TO_REG((results[1]+5)/10);
++ lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
++ data->autofan[nr].min_pwm
++ );
++ }
++ if (*nrels_mag > 0) {
++ old_config = (old_config & (~0x07)) | SPINUP_TO_REG(results[0]) ;
++ lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr), old_config);
++ data->autofan[nr].config = old_config ;
++ }
++ up(&data->update_lock);
++ }
++}
++
++void lm85_smooth(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - LM85_SYSCTL_SMOOTH1 ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = SMOOTH_FROM_REG(data->smooth[nr]);
++ *nrels_mag = 1;
++
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if( *nrels_mag > 0 ) {
++ data->smooth[nr] = SMOOTH_TO_REG(results[0]);
++ }
++ if( nr == 0 ) {
++ lm85_write_value(client, LM85_REG_AFAN_SPIKE1,
++ data->smooth[0]
++ | data->syncpwm3
++ | (data->autofan[0].min_off ? 0x20 : 0)
++ | (data->autofan[1].min_off ? 0x40 : 0)
++ | (data->autofan[2].min_off ? 0x80 : 0)
++ );
++ } else {
++ lm85_write_value(client, LM85_REG_AFAN_SPIKE2,
++ (data->smooth[1] << 4) | data->smooth[2]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void lm85_zone(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - LM85_SYSCTL_ZONE1 ;
++
++ /* Limit, Hysteresis (neg), Range, Critical */
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++
++ results[0] = TEMP_FROM_REG(data->zone[nr].limit) / 10;
++ results[1] = HYST_FROM_REG(data->zone[nr].hyst);
++ results[2] = RANGE_FROM_REG(data->zone[nr].range);
++ results[3] = TEMP_FROM_REG(data->zone[nr].critical) / 10;
++ *nrels_mag = 4;
++
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 3) {
++ data->zone[nr].critical = TEMP_TO_REG(results[3]*10);
++ lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
++ data->zone[nr].critical );
++ }
++ if (*nrels_mag > 2) {
++ data->zone[nr].range = RANGE_TO_REG(results[2]);
++ lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
++ (data->zone[nr].range << 4)
++ | data->autofan[nr].freq
++ );
++ }
++ if (*nrels_mag > 1) {
++ data->zone[nr].hyst = HYST_TO_REG(results[1]);
++ if( nr == 0 || nr == 1 ) {
++ lm85_write_value(client, LM85_REG_AFAN_HYST1,
++ (data->zone[0].hyst << 4)
++ | data->zone[1].hyst
++ );
++ } else {
++ lm85_write_value(client, LM85_REG_AFAN_HYST2,
++ (data->zone[2].hyst << 4)
++ );
++ }
++ }
++ if (*nrels_mag > 0) {
++ data->zone[nr].limit = TEMP_TO_REG(results[0]*10);
++ lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
++ data->zone[nr].limit
++ );
++ }
++ up(&data->update_lock);
++ }
++}
++
++void lm85_pwm_zone(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - LM85_SYSCTL_PWM_ZONE1 ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = ZONE_FROM_REG(data->autofan[nr].config);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->autofan[nr].config =
++ (data->autofan[nr].config & (~0xe0))
++ | ZONE_TO_REG(results[0]) ;
++ lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
++ data->autofan[nr].config);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1027_temp_offset(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - ADM1027_SYSCTL_TEMP_OFFSET1 ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ switch( data->type ) {
++ case adm1027 :
++ default :
++ results[0] = TEMP_FROM_REG(data->temp_offset[nr]);
++ break ;
++ case adt7463 :
++ results[0] = TEMPEXT_FROM_REG(0,data->temp_offset[nr]);
++ break ;
++ }
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ switch( data->type ) {
++ case adm1027 :
++ default :
++ data->temp_offset[nr] = TEMP_TO_REG(results[0]);
++ break ;
++ case adt7463 :
++ data->temp_offset[nr] = EXTTEMP_TO_REG(results[0]);
++ break ;
++ };
++ lm85_write_value(client, ADM1027_REG_TEMP_OFFSET(nr),
++ data->temp_offset[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1027_fan_ppr(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int old ;
++
++ if (ctl_name != ADM1027_SYSCTL_FAN_PPR)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = PPR_FROM_REG(data->fan_ppr,0);
++ results[1] = PPR_FROM_REG(data->fan_ppr,1);
++ results[2] = PPR_FROM_REG(data->fan_ppr,2);
++ results[3] = PPR_FROM_REG(data->fan_ppr,3);
++ *nrels_mag = 4;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ old = data->fan_ppr ;
++ if (*nrels_mag > 3) {
++ old = (old & ~PPR_MASK(3)) | PPR_TO_REG(results[3],3);
++ };
++ if (*nrels_mag > 2) {
++ old = (old & ~PPR_MASK(2)) | PPR_TO_REG(results[2],2);
++ };
++ if (*nrels_mag > 1) {
++ old = (old & ~PPR_MASK(1)) | PPR_TO_REG(results[1],1);
++ };
++ if (*nrels_mag > 0) {
++ old = (old & ~PPR_MASK(0)) | PPR_TO_REG(results[0],0);
++ lm85_write_value(client, ADM1027_REG_FAN_PPR, old);
++ data->fan_ppr = old ;
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adm1027_alarm_mask(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++
++ if( ctl_name != ADM1027_SYSCTL_ALARM_MASK )
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = INTMASK_FROM_REG(data->alarm_mask);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 0) {
++ data->alarm_mask = INTMASK_TO_REG(results[0]);
++ lm85_write_value(client, ADM1027_REG_INTMASK,
++ data->alarm_mask);
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adt7463_tmin_ctl(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - ADT7463_SYSCTL_TMIN_CTL1 ;
++ u16 old ;
++
++ if (nr < 0 || nr > 2)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ old = data->tmin_ctl ;
++ results[0] = (old & ( 0x2000 << nr )) != 0 ;
++ results[1] = (old >> (nr*3)) & 0x07 ;
++ results[2] = (old & ( 0x0400 << nr )) != 0 ;
++ results[3] = OPPOINT_FROM_REG(data->oppoint[nr]);
++ *nrels_mag = 4;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ old = data->tmin_ctl ;
++ if (*nrels_mag > 3) {
++ data->oppoint[nr] = OPPOINT_TO_REG(results[3]);
++ lm85_write_value(client, ADT7463_REG_OPPOINT(nr),
++ data->oppoint[nr]);
++ };
++ if (*nrels_mag > 2) {
++ if( results[2] ) {
++ old |= (0x0400 << nr) ;
++ } else {
++ old &= ~(0x0400 << nr) ;
++ }
++ };
++ if (*nrels_mag > 1) {
++ old &= ~(0x07 << (nr*3)) ;
++ old |= (results[1] & 0x07) << (nr*3) ;
++ };
++ if (*nrels_mag > 0) {
++ if( results[0] ) {
++ old |= 0x2000 << nr ;
++ } else {
++ old &= ~(0x2000 << nr) ;
++ }
++ lm85_write_value(client, ADT7463_REG_TMIN_CTL, old);
++ data->tmin_ctl = old ;
++ }
++ up(&data->update_lock);
++ }
++}
++
++void adt7463_therm_signal(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int counts ;
++
++ if (ctl_name != ADT7463_SYSCTL_THERM_SIGNAL)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ /* Don't call update_client here because
++ * ADT7463_REG_THERM has to be read every
++ * 5 seconds to prevent lost counts
++ */
++ down(&data->update_lock);
++ counts = lm85_read_value(client, ADT7463_REG_THERM) & 0xff;
++ if( data->therm_total < LONG_MAX - 256 ) {
++ data->therm_total += counts ;
++ }
++ if( counts >= 255 ) {
++ ++data->therm_ovfl ;
++ }
++ up(&data->update_lock);
++
++ results[0] = data->therm_limit ;
++ results[1] = data->therm_total ;
++ results[2] = data->therm_ovfl ;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ /* therm_total and therm_ovfl are read only */
++ if (*nrels_mag > 0) {
++ data->therm_limit = SENSORS_LIMIT(results[0],0,255);
++ lm85_write_value(client, ADT7463_REG_THERM_LIMIT,
++ data->therm_limit);
++ };
++ up(&data->update_lock);
++ }
++}
++
++
++void emc6d100_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm85_data *data = client->data;
++ int nr = ctl_name - EMC6D100_SYSCTL_IN5 +5;
++
++ if (nr < 5 || nr > 7)
++ return ; /* ERROR */
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3; /* 1.000 */
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm85_update_client(client);
++ results[0] = INS_FROM_REG(nr,data->in_min[nr]);
++ results[1] = INS_FROM_REG(nr,data->in_max[nr]);
++ results[2] = INS_FROM_REG(nr,data->in[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ down(&data->update_lock);
++ if (*nrels_mag > 1) {
++ data->in_max[nr] = INS_TO_REG(nr,results[1]);
++ lm85_write_value(client, EMC6D100_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ if (*nrels_mag > 0) {
++ data->in_min[nr] = INS_TO_REG(nr,results[0]);
++ lm85_write_value(client, EMC6D100_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ up(&data->update_lock);
++ }
++}
++
++
++static int __init sm_lm85_init(void)
++{
++ printk("lm85: Version %s (%s)\n", LM_VERSION, LM_DATE);
++ printk("lm85: See http://www.penguincomputing.com/lm_sensors for more info.\n" );
++ return i2c_add_driver(&lm85_driver);
++}
++
++static void __exit sm_lm85_exit(void)
++{
++ i2c_del_driver(&lm85_driver);
++}
++
++/* Thanks to Richard Barrington for adding the LM85 to sensors-detect.
++ * Thanks to Margit Schubert-While <margitsw@t-online.de> for help with
++ * post 2.7.0 CVS changes
++ */
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com");
++MODULE_DESCRIPTION("LM85-B, LM85-C driver");
++
++module_init(sm_lm85_init);
++module_exit(sm_lm85_exit);
+--- linux-old/drivers/sensors/lm87.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/lm87.c Mon Dec 13 20:18:49 2004
+@@ -0,0 +1,988 @@
++/*
++ LM87.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2000 Frodo Looijaard <frodol@dds.nl>
++ Philip Edelbrock <phil@netroedge.com>
++ Stephen Rousset <stephen.rousset@rocketlogix.com>
++ Dan Eaton <dan.eaton@rocketlogix.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++
++/* Chip configuration settings. These should be set to reflect the
++HARDWARE configuration of your chip. By default (read: when all of
++these are left commented out), this driver assumes that the
++configuration is the same as National's defaults for the Channel Mode
++register.
++
++Set to '1' the appropriate defines, as nessesary:
++
++ - External temp sensors 2 (possible second CPU temp)
++ This will disable the 2.5V and Vccp2 readings.
++ Ironically, National decided that you can read the
++ temperature of a second CPU or it's core voltage,
++ but not both! Comment out if FAULT is reported. */
++
++/* #define LM87_EXT2 1 */
++
++/* Aux analog input. When enabled, the Fan 1 reading
++ will be disabled */
++
++/* #define LM87_AIN1 1 */
++
++/* Aux analog input 2. When enabled, the Fan 2 reading
++ will be disabled */
++
++/* #define LM87_AIN2 1 */
++
++/* Internal Vcc is 5V instead of 3.3V */
++
++/* #define LM87_5V_VCC 1 */
++
++/* That's the end of the hardware config defines. I would have made
++ them insmod params, but it would be too much work. ;') */
++
++
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x2c, 0x2e, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(lm87);
++
++/* The following is the calculation for the register offset
++ * for the monitored items minimum and maximum locations.
++ */
++#define LM87_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
++#define LM87_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
++#define LM87_REG_IN(nr) (0x20 + (nr))
++
++/* Initial limits */
++
++/*
++ * LM87 register definition
++ *
++ */
++
++ /* The LM87 registers */
++#define LM87_INT_TEMP_HI_LIMIT_LOCKABLE 0x13
++#define LM87_EXT_TEMP_HI_LIMIT_LOCKABLE 0x14
++#define LM87_REG_TEST 0x15
++#define LM87_REG_CHANNEL_MODE 0x16
++#define LM87_REG_INT_TEMP_HI_LIMIT 0x17
++#define LM87_REG_EXT_TEMP_HI_LIMIT 0x18
++#define LM87_REG_ANALOG_OUT 0x19
++
++ /* These are all read-only */
++#define LM87_REG_2_5V_EXT_TEMP_2 0x20
++#define LM87_REG_VCCP1 0x21
++#define LM87_REG_3_3V 0x22
++#define LM87_REG_5V 0x23
++#define LM87_REG_12V 0x24
++#define LM87_REG_VCCP2 0x25
++#define LM87_REG_EXT_TEMP_1 0x26
++#define LM87_REG_INT_TEMP 0x27 /* LM87 temp. */
++#define LM87_REG_FAN1_AIN1 0x28
++#define LM87_REG_FAN2_AIN2 0x29
++
++/* These are read/write */
++#define LM87_REG_AIN1_LOW 0x1A
++#define LM87_REG_AIN2_LOW 0x1B
++#define LM87_REG_2_5V_EXT_TEMP_2_HIGH 0x2B
++#define LM87_REG_2_5V_EXT_TEMP_2_LOW 0x2C
++#define LM87_REG_VCCP1_HIGH 0x2D
++#define LM87_REG_VCCP1_LOW 0x2E
++#define LM87_REG_3_3V_HIGH 0x2F
++#define LM87_REG_3_3V_LOW 0x30
++#define LM87_REG_5V_HIGH 0x31
++#define LM87_REG_5V_LOW 0x32
++#define LM87_REG_12V_HIGH 0x33
++#define LM87_REG_12V_LOW 0x34
++#define LM87_REG_VCCP2_HIGH 0x35
++#define LM87_REG_VCCP2_LOW 0x36
++#define LM87_REG_EXT_TEMP_1_HIGH 0x37
++#define LM87_REG_EXT_TEMP_1_LOW 0x38
++#define LM87_REG_INT_TEMP_HIGH 0x39
++#define LM87_REG_INT_TEMP_LOW 0x3A
++#define LM87_REG_FAN1_AIN1_LIMIT 0x3B
++#define LM87_REG_FAN2_AIN2_LIMIT 0x3C
++#define LM87_REG_COMPANY_ID 0x3E
++#define LM87_REG_DIE_REV 0x3F
++
++#define LM87_REG_CONFIG 0x40
++#define LM87_REG_INT1_STAT 0x41
++#define LM87_REG_INT2_STAT 0x42
++#define LM87_REG_INT1_MASK 0x43
++#define LM87_REG_INT2_MASK 0x44
++#define LM87_REG_CHASSIS_CLEAR 0x46
++#define LM87_REG_VID_FAN_DIV 0x47
++#define LM87_REG_VID4 0x49
++#define LM87_REG_CONFIG_2 0x4A
++#define LM87_REG_INTRPT_STATUS_1_MIRROR 0x4C
++#define LM87_REG_INTRPT_STATUS_2_MIRROR 0x4D
++#define LM87_REG_SMBALERT_NUM_ENABLE 0x80
++
++
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++
++#define IN_TO_REG(val,nr) (SENSORS_LIMIT(((val) & 0xff),0,255))
++#define IN_FROM_REG(val,nr) (val)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?-1:\
++ (val)==255?0:1350000/((div)*(val)))
++
++#define TEMP_FROM_REG(temp) (temp * 10)
++
++#define TEMP_LIMIT_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*10)
++
++#define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT(((val)<0?(((val)-5)/10):\
++ ((val)+5)/10),0,255)
++#if 0
++#define TEMP_FROM_REG(temp) \
++ ((temp)<256?((((temp)&0x1fe) >> 1) * 10) + ((temp) & 1) * 5: \
++ ((((temp)&0x1fe) >> 1) -255) * 10 - ((temp) & 1) * 5) \
++
++#define TEMP_LIMIT_FROM_REG(val) (val)
++
++#define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT((val),0,255)
++#endif
++
++
++#define ALARMS_FROM_REG(val) (val)
++
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val)==1?0:((val)==8?3:((val)==4?2:1)))
++
++/* For each registered LM87, we need to keep some data in memory. That
++ data is pointed to by LM87_list[NR]->data. The structure itself is
++ dynamically allocated, at the same time when a new LM87 client is
++ allocated. */
++struct lm87_data {
++ struct i2c_client client;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[6]; /* Scaled Register value */
++ u8 in_max[6]; /* Scaled Register value */
++ u8 in_min[6]; /* Scaled Register value */
++ u8 ain1; /* Register value */
++ u8 ain1_min; /* Register value */
++ u8 ain1_max; /* Register value */
++ u8 ain2; /* Register value */
++ u8 ain2_min; /* Register value */
++ u8 ain2_max; /* Register value */
++ u8 fan; /* Register value */
++ u8 fan_min; /* Register value */
++ u8 fan_div; /* Register encoding, shifted right */
++ u8 fan2; /* Register value */
++ u8 fan2_min; /* Register value */
++ u8 fan2_div; /* Register encoding, shifted right */
++ int ext2_temp; /* Temp, shifted right */
++ int ext_temp; /* Temp, shifted right */
++ int int_temp; /* Temp, shifted right */
++ u8 ext_temp_max; /* Register value */
++ u8 ext_temp_min; /* Register value */
++ u8 ext2_temp_max; /* Register value */
++ u8 ext2_temp_min; /* Register value */
++ u8 int_temp_max; /* Register value */
++ u8 int_temp_min; /* Register value */
++ u16 alarms; /* Register encoding, combined */
++ u8 analog_out; /* Register value */
++ u8 vid; /* Register value combined */
++ u8 vrm; /* VRM version * 10 */
++};
++
++static int lm87_attach_adapter(struct i2c_adapter *adapter);
++static int lm87_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int lm87_detach_client(struct i2c_client *client);
++
++static int lm87_read_value(struct i2c_client *client, u8 register);
++static int lm87_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void lm87_update_client(struct i2c_client *client);
++static void lm87_init_client(struct i2c_client *client);
++
++
++static void lm87_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++#if defined (LM87_AIN1) || defined (LM87_AIN2)
++static void lm87_ain(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++#endif
++static void lm87_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm87_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm87_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm87_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm87_analog_out(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag,
++ long *results);
++static void lm87_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm87_vrm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int lm87_id = 0;
++
++static struct i2c_driver LM87_driver = {
++ .owner = THIS_MODULE,
++ .name = "LM87 sensor driver",
++ .id = I2C_DRIVERID_LM87,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = lm87_attach_adapter,
++ .detach_client = lm87_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++#define LM87_SYSCTL_IN0 1000 /* Volts * 100 */
++#define LM87_SYSCTL_IN1 1001
++#define LM87_SYSCTL_IN2 1002
++#define LM87_SYSCTL_IN3 1003
++#define LM87_SYSCTL_IN4 1004
++#define LM87_SYSCTL_IN5 1005
++#define LM87_SYSCTL_AIN1 1006
++#define LM87_SYSCTL_AIN2 1007
++#define LM87_SYSCTL_FAN1 1102
++#define LM87_SYSCTL_FAN2 1103
++#define LM87_SYSCTL_TEMP1 1250 /* Degrees Celcius * 100 */
++#define LM87_SYSCTL_TEMP2 1251 /* Degrees Celcius * 100 */
++#define LM87_SYSCTL_TEMP3 1252 /* Degrees Celcius * 100 */
++#define LM87_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define LM87_SYSCTL_ALARMS 2001 /* bitvector */
++#define LM87_SYSCTL_ANALOG_OUT 2002
++#define LM87_SYSCTL_VID 2003
++#define LM87_SYSCTL_VRM 2004
++
++#define LM87_ALARM_IN0 0x0001
++#define LM87_ALARM_IN1 0x0002
++#define LM87_ALARM_IN2 0x0004
++#define LM87_ALARM_IN3 0x0008
++#define LM87_ALARM_TEMP1 0x0010
++#define LM87_ALARM_TEMP2 0x0020
++#define LM87_ALARM_TEMP3 0x0020 /* same?? */
++#define LM87_ALARM_FAN1 0x0040
++#define LM87_ALARM_FAN2 0x0080
++#define LM87_ALARM_IN4 0x0100
++#define LM87_ALARM_IN5 0x0200
++#define LM87_ALARM_RESERVED1 0x0400
++#define LM87_ALARM_RESERVED2 0x0800
++#define LM87_ALARM_CHAS 0x1000
++#define LM87_ALARM_THERM_SIG 0x2000
++#define LM87_ALARM_TEMP2_FAULT 0x4000
++#define LM87_ALARM_TEMP3_FAULT 0x08000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* The /proc/sys entries */
++/* These files are created for each detected LM87. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++
++static ctl_table LM87_dir_table_template[] = {
++#ifdef LM87_AIN1
++ {LM87_SYSCTL_AIN1, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_ain},
++#endif
++#ifdef LM87_AIN2
++ {LM87_SYSCTL_AIN2, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_ain},
++#endif
++#ifndef LM87_EXT2
++ {LM87_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_in},
++ {LM87_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_in},
++#endif
++ {LM87_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_in},
++ {LM87_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_in},
++ {LM87_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_in},
++ {LM87_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_in},
++#ifndef LM87_AIN1
++ {LM87_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_fan},
++ {LM87_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_fan_div},
++#define LM87_FANDIV_FLAG
++#endif
++#ifndef LM87_AIN2
++ {LM87_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_fan},
++#ifndef LM87_FANDIV_FLAG
++ {LM87_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_fan_div},
++#endif /* LM87_FANDIV_FLAG */
++#endif /* LM87_AIN2 */
++#ifdef LM87_EXT2
++ {LM87_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_temp},
++#endif
++ {LM87_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_temp},
++ {LM87_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_temp},
++ {LM87_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_alarms},
++ {LM87_SYSCTL_ANALOG_OUT, "analog_out", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_analog_out},
++ {LM87_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_vid},
++ {LM87_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm87_vrm},
++ {0}
++};
++
++static int lm87_attach_adapter(struct i2c_adapter *adapter)
++{
++ int error;
++ struct i2c_client_address_data lm87_client_data;
++
++ lm87_client_data.normal_i2c = addr_data.normal_i2c;
++ lm87_client_data.normal_i2c_range = addr_data.normal_i2c_range;
++ lm87_client_data.probe = addr_data.probe;
++ lm87_client_data.probe_range = addr_data.probe_range;
++ lm87_client_data.ignore = addr_data.ignore;
++ lm87_client_data.ignore_range = addr_data.ignore_range;
++ lm87_client_data.force = addr_data.forces->force;
++
++ error = i2c_probe(adapter, &lm87_client_data, lm87_detect);
++ i2c_detect(adapter, &addr_data, lm87_detect);
++
++ return error;
++}
++
++static int lm87_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct lm87_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access LM87_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct lm87_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &LM87_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ if (kind < 0) {
++ if (((lm87_read_value(new_client, LM87_REG_CONFIG) & 0x80)
++ != 0x00) ||
++ (lm87_read_value(new_client, LM87_REG_COMPANY_ID) != 0x02))
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields and put into the global list */
++ type_name = "lm87";
++ client_name = "LM87 chip";
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = lm87_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ LM87_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the LM87 chip */
++ lm87_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int lm87_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct lm87_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("lm87.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++static int lm87_read_value(struct i2c_client *client, u8 reg)
++{
++ return 0xFF & i2c_smbus_read_byte_data(client, reg);
++}
++
++static int lm87_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++/* Called when we have found a new LM87. It should set limits, etc. */
++static void lm87_init_client(struct i2c_client *client)
++{
++ struct lm87_data *data = client->data;
++
++ /* Reset all except Watchdog values and last conversion values
++ This sets fan-divs to 2, among others. This makes most other
++ initializations unnecessary */
++ lm87_write_value(client, LM87_REG_CONFIG, 0x80);
++
++ /* Setup Channel Mode register for configuration of monitoring
++ * Default is 00000000b
++ * bit 0 - Configures Fan 1/AIN 1 input (1 = AIN)
++ * bit 1 - Configures Fan 2/AIN 2 input (1 = AIN)
++ * bit 2 - Configures 2.5V&Vccp2/D2 input (1 = 2nd Therm.)
++ * bit 3 - Configures Vcc for 5V/3.3V reading (0 = 3.3V)
++ * bit 4 - Configures IRQ0 Enable if = 1
++ * bit 5 - Configures IRQ1 Enable if = 1
++ * bit 6 - Configures IRQ2 Enable if = 1
++ * bit 7 - Configures VID/IRQ input as interrupts if = 1
++ */
++
++/* I know, not clean, but it works. :'p */
++ lm87_write_value(client, LM87_REG_CHANNEL_MODE,
++#ifdef LM87_AIN1
++ 0x01
++#else
++0
++#endif
++ |
++#ifdef LM87_AIN2
++ 0x02
++#else
++0
++#endif
++ |
++#ifdef LM87_EXT2
++ 0x04
++#else
++0
++#endif
++ |
++#ifdef LM87_5V_VCC
++0x08
++#else
++0
++#endif
++ );
++
++ data->vrm = DEFAULT_VRM;
++
++ /* Start monitoring */
++ lm87_write_value(client, LM87_REG_CONFIG, 0x01);
++}
++
++static void lm87_update_client(struct i2c_client *client)
++{
++ struct lm87_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ) || /* 1 sec cache */
++ (jiffies < data->last_updated) ||
++ !data->valid) {
++ for (i = 0; i <= 5; i++) {
++ data->in[i] =
++ lm87_read_value(client,LM87_REG_IN(i));
++ data->in_min[i] =
++ lm87_read_value(client,LM87_REG_IN_MIN(i));
++ data->in_max[i] =
++ lm87_read_value(client,LM87_REG_IN_MAX(i));
++ }
++ data->ain1 =
++ lm87_read_value(client,LM87_REG_FAN1_AIN1);
++ data->ain1_min =
++ lm87_read_value(client,LM87_REG_AIN1_LOW);
++ data->ain1_max =
++ lm87_read_value(client,LM87_REG_FAN1_AIN1_LIMIT);
++ data->ain2 =
++ lm87_read_value(client,LM87_REG_FAN2_AIN2);
++ data->ain2_min =
++ lm87_read_value(client,LM87_REG_AIN2_LOW);
++ data->ain2_max =
++ lm87_read_value(client,LM87_REG_FAN2_AIN2_LIMIT);
++
++ data->fan =
++ lm87_read_value(client, LM87_REG_FAN1_AIN1);
++ data->fan_min =
++ lm87_read_value(client, LM87_REG_FAN1_AIN1_LIMIT);
++ data->fan2 =
++ lm87_read_value(client, LM87_REG_FAN2_AIN2);
++ data->fan2_min =
++ lm87_read_value(client, LM87_REG_FAN2_AIN2_LIMIT);
++
++ data->ext2_temp =
++ lm87_read_value(client, LM87_REG_2_5V_EXT_TEMP_2);
++ data->ext_temp =
++ lm87_read_value(client, LM87_REG_EXT_TEMP_1);
++ data->int_temp =
++ lm87_read_value(client, LM87_REG_INT_TEMP);
++
++ data->ext2_temp_max =
++ lm87_read_value(client, LM87_REG_2_5V_EXT_TEMP_2_HIGH);
++ data->ext2_temp_min =
++ lm87_read_value(client, LM87_REG_2_5V_EXT_TEMP_2_LOW);
++
++ data->ext_temp_max =
++ lm87_read_value(client, LM87_REG_EXT_TEMP_1_HIGH);
++ data->ext_temp_min =
++ lm87_read_value(client, LM87_REG_EXT_TEMP_1_LOW);
++
++ data->int_temp_max =
++ lm87_read_value(client, LM87_REG_INT_TEMP_HIGH);
++ data->int_temp_min =
++ lm87_read_value(client, LM87_REG_INT_TEMP_LOW);
++
++ i = lm87_read_value(client, LM87_REG_VID_FAN_DIV);
++ data->fan_div = (i >> 4) & 0x03;
++ data->fan2_div = (i >> 6) & 0x03;
++ data->vid = i & 0x0f;
++ data->vid |=
++ (lm87_read_value(client, LM87_REG_VID4) & 0x01)
++ << 4;
++ data->alarms =
++ lm87_read_value(client, LM87_REG_INT1_STAT) +
++ (lm87_read_value(client, LM87_REG_INT2_STAT) << 8);
++ data->analog_out =
++ lm87_read_value(client, LM87_REG_ANALOG_OUT);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void lm87_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ long scales[6] = { 250, 270,
++#ifdef LM87_5V_VCC
++500,
++#else
++330,
++#endif
++ 500, 1200, 270 };
++
++ struct lm87_data *data = client->data;
++ int nr = ctl_name - LM87_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm87_update_client(client);
++ results[0] =
++ ((long)data->in_min[nr] * scales[nr]) / 192;
++ results[1] =
++ ((long)data->in_max[nr] * scales[nr]) / 192;
++ results[2] =
++ ((long)data->in[nr] * scales[nr]) / 192;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] =
++ (results[0] * 192) / scales[nr];
++ lm87_write_value(client, LM87_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] =
++ (results[1] * 192) / scales[nr];
++ lm87_write_value(client, LM87_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++#if defined (LM87_AIN1) || defined (LM87_AIN2)
++void lm87_ain(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm87_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm87_update_client(client);
++ if (ctl_name == LM87_SYSCTL_AIN1) {
++ results[0] = data->ain1_min;
++ results[1] = data->ain1_max;
++ results[2] = data->ain1;
++ } else {
++ results[0] = data->ain2_min;
++ results[1] = data->ain2_max;
++ results[2] = data->ain2;
++ }
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (ctl_name == LM87_SYSCTL_AIN1) {
++ data->ain1_min = results[0];
++ lm87_write_value(client, LM87_REG_AIN1_LOW,
++ data->ain1_min);
++ } else {
++ data->ain2_min = results[0];
++ lm87_write_value(client, LM87_REG_AIN2_LOW,
++ data->ain2_min);
++ }
++ }
++ if (*nrels_mag >= 2) {
++ if (ctl_name == LM87_SYSCTL_AIN1) {
++ data->ain1_max = results[1];
++ lm87_write_value(client, LM87_REG_FAN1_AIN1_LIMIT,
++ data->ain1_max);
++ } else {
++ data->ain2_max = results[1];
++ lm87_write_value(client, LM87_REG_FAN2_AIN2_LIMIT,
++ data->ain2_max);
++ }
++ }
++ }
++}
++#endif
++
++void lm87_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm87_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm87_update_client(client);
++ if (ctl_name == LM87_SYSCTL_FAN1) {
++ results[0] = FAN_FROM_REG(data->fan_min,
++ DIV_FROM_REG(data->fan_div));
++ results[1] = FAN_FROM_REG(data->fan,
++ DIV_FROM_REG(data->fan_div));
++ } else {
++ results[0] = FAN_FROM_REG(data->fan2_min,
++ DIV_FROM_REG(data->fan2_div));
++ results[1] = FAN_FROM_REG(data->fan2,
++ DIV_FROM_REG(data->fan2_div));
++ }
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 0) {
++ if (ctl_name == LM87_SYSCTL_FAN1) {
++ data->fan_min = FAN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->fan_div));
++ lm87_write_value(client, LM87_REG_FAN1_AIN1_LIMIT,
++ data->fan_min);
++ } else {
++ data->fan2_min = FAN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->fan2_div));
++ lm87_write_value(client, LM87_REG_FAN2_AIN2_LIMIT,
++ data->fan2_min);
++ }
++ }
++ }
++}
++
++
++void lm87_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm87_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm87_update_client(client);
++
++ /* find out which temp. is being requested */
++ if (ctl_name == LM87_SYSCTL_TEMP3)
++ {
++ results[0] = TEMP_LIMIT_FROM_REG(data->ext2_temp_max);
++ results[1] = TEMP_LIMIT_FROM_REG(data->ext2_temp_min);
++ results[2] = TEMP_FROM_REG(data->ext2_temp);
++ }
++ else if(ctl_name == LM87_SYSCTL_TEMP2)
++ {
++ results[0] = TEMP_LIMIT_FROM_REG(data->ext_temp_max);
++ results[1] = TEMP_LIMIT_FROM_REG(data->ext_temp_min);
++ results[2] = TEMP_FROM_REG(data->ext_temp);
++ }
++ else if(ctl_name == LM87_SYSCTL_TEMP1)
++ {
++ results[0] = TEMP_LIMIT_FROM_REG(data->int_temp_max);
++ results[1] = TEMP_LIMIT_FROM_REG(data->int_temp_min);
++ results[2] = TEMP_FROM_REG(data->int_temp);
++ }
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (ctl_name == LM87_SYSCTL_TEMP3) {
++ data->ext2_temp_max = TEMP_LIMIT_TO_REG(results[0]);
++ lm87_write_value(client, LM87_REG_2_5V_EXT_TEMP_2_HIGH,
++ data->ext2_temp_max);
++ }
++ if (ctl_name == LM87_SYSCTL_TEMP2) {
++ data->ext_temp_max = TEMP_LIMIT_TO_REG(results[0]);
++ lm87_write_value(client, LM87_REG_EXT_TEMP_1_HIGH,
++ data->ext_temp_max);
++ }
++ if (ctl_name == LM87_SYSCTL_TEMP1) {
++ data->int_temp_max = TEMP_LIMIT_TO_REG(results[0]);
++ lm87_write_value(client, LM87_REG_INT_TEMP_HIGH,
++ data->int_temp_max);
++ }
++ }
++ if (*nrels_mag >= 2) {
++ if (ctl_name == LM87_SYSCTL_TEMP3) {
++ data->ext2_temp_min = TEMP_LIMIT_TO_REG(results[1]);
++ lm87_write_value(client, LM87_REG_2_5V_EXT_TEMP_2_LOW,
++ data->ext2_temp_min);
++ }
++ if (ctl_name == LM87_SYSCTL_TEMP2) {
++ data->ext_temp_min = TEMP_LIMIT_TO_REG(results[1]);
++ lm87_write_value(client, LM87_REG_EXT_TEMP_1_LOW,
++ data->ext_temp_min);
++ }
++ if (ctl_name == LM87_SYSCTL_TEMP1) {
++ data->int_temp_min = TEMP_LIMIT_TO_REG(results[1]);
++ lm87_write_value(client, LM87_REG_INT_TEMP_LOW,
++ data->int_temp_min);
++ }
++ }
++ }
++}
++
++void lm87_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm87_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm87_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void lm87_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++/* This gets a little hairy depending on the hardware config */
++
++ struct lm87_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm87_update_client(client);
++#ifndef LM87_AIN1
++ results[0] = DIV_FROM_REG(data->fan_div);
++# ifndef LM87_AIN2
++ results[1] = DIV_FROM_REG(data->fan2_div);
++ *nrels_mag = 2;
++# else
++ *nrels_mag = 1;
++# endif
++#else /* Must be referring to fan 2 */
++ results[0] = DIV_FROM_REG(data->fan2_div);
++ *nrels_mag = 1;
++#endif
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = lm87_read_value(client, LM87_REG_VID_FAN_DIV);
++/* Note: it's OK to change fan2 div even if fan2 isn't enabled */
++#ifndef LM87_AIN1
++ if (*nrels_mag >= 2) {
++ data->fan2_div = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | (data->fan2_div << 6);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan_div << 4);
++ lm87_write_value(client, LM87_REG_VID_FAN_DIV, old);
++ }
++#else /* Must be referring to fan 2 */
++ if (*nrels_mag >= 1) {
++ data->fan2_div = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan2_div << 6);
++ lm87_write_value(client, LM87_REG_VID_FAN_DIV, old);
++ }
++#endif
++ }
++}
++
++void lm87_analog_out(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm87_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm87_update_client(client);
++ results[0] = data->analog_out;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->analog_out = results[0];
++ lm87_write_value(client, LM87_REG_ANALOG_OUT,
++ data->analog_out);
++ }
++ }
++}
++
++void lm87_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm87_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ lm87_update_client(client);
++ results[0] = vid_from_reg(data->vid, data->vrm);
++ *nrels_mag = 1;
++ }
++}
++
++void lm87_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct lm87_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1)
++ data->vrm = results[0];
++ }
++}
++
++static int __init sm_lm87_init(void)
++{
++ printk("lm87.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&LM87_driver);
++}
++
++static void __exit sm_lm87_exit(void)
++{
++ i2c_del_driver(&LM87_driver);
++}
++
++
++
++MODULE_LICENSE("GPL");
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl>, Philip Edelbrock <phil@netroedge.com>, "
++ "Mark Studebaker <mdsxyz123@yahoo.com>, and Stephen Rousset <stephen.rousset@rocketlogix.com>");
++
++MODULE_DESCRIPTION("LM87 driver");
++
++module_init(sm_lm87_init);
++module_exit(sm_lm87_exit);
+--- linux-old/drivers/sensors/lm90.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/lm90.c Mon Dec 13 20:18:49 2004
+@@ -0,0 +1,782 @@
++/*
++ * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
++ * monitoring
++ * Copyright (C) 2003-2004 Jean Delvare <khali@linux-fr.org>
++ *
++ * Based on the lm83 driver. The LM90 is a sensor chip made by National
++ * Semiconductor. It reports up to two temperatures (its own plus up to
++ * one external one) with a 0.125 deg resolution (1 deg for local
++ * temperature) and a 3-4 deg accuracy. Complete datasheet can be
++ * obtained from National's website at:
++ * http://www.national.com/pf/LM/LM90.html
++ *
++ * This driver also supports the LM89 and LM99, two other sensor chips
++ * made by National Semiconductor. Both have an increased remote
++ * temperature measurement accuracy (1 degree), and the LM99
++ * additionally shifts remote temperatures (measured and limits) by 16
++ * degrees, which allows for higher temperatures measurement. The
++ * driver doesn't handle it since it can be done easily in user-space.
++ * Complete datasheets can be obtained from National's website at:
++ * http://www.national.com/pf/LM/LM89.html
++ * http://www.national.com/pf/LM/LM99.html
++ * Note that there is no way to differenciate between both chips.
++ *
++ * This driver also supports the LM86, another sensor chip made by
++ * National Semiconductor. It is exactly similar to the LM90 except it
++ * has a higher accuracy.
++ * Complete datasheet can be obtained from National's website at:
++ * http://www.national.com/pf/LM/LM86.html
++ *
++ * This driver also supports the ADM1032, a sensor chip made by Analog
++ * Devices. That chip is similar to the LM90, with a few differences
++ * that are not handled by this driver. Complete datasheet can be
++ * obtained from Analog's website at:
++ * http://products.analog.com/products/info.asp?product=ADM1032
++ * Among others, it has a higher accuracy than the LM90, much like the
++ * LM86 does.
++ *
++ * This driver also supports the MAX6657 and MAX6658, sensor chips made
++ * by Maxim. These chips are similar to the LM86. Complete datasheet
++ * can be obtained at Maxim's website at:
++ * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
++ * Note that there is no way to differenciate between both chips (but
++ * no need either).
++ *
++ * Since the LM90 was the first chipset supported by this driver, most
++ * comments will refer to this chipset, but are actually general and
++ * concern all supported chipsets, unless mentioned otherwise.
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++ */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++#ifndef I2C_DRIVERID_LM90
++#define I2C_DRIVERID_LM90 1042
++#endif
++
++/*
++ * Addresses to scan
++ * Address is fully defined internally and cannot be changed.
++ * LM86, LM89, LM90, LM99, ADM1032, MAX6657 and MAX6658 have address 0x4c.
++ * LM89-1, and LM99-1 have address 0x4d.
++ */
++
++static unsigned short normal_i2c[] = { 0x4c, 0x4d, SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/*
++ * Insmod parameters
++ */
++
++SENSORS_INSMOD_5(lm90, adm1032, lm99, lm86, max6657);
++
++/*
++ * The LM90 registers
++ */
++
++#define LM90_REG_R_MAN_ID 0xFE
++#define LM90_REG_R_CHIP_ID 0xFF
++#define LM90_REG_R_CONFIG1 0x03
++#define LM90_REG_W_CONFIG1 0x09
++#define LM90_REG_R_CONFIG2 0xBF
++#define LM90_REG_W_CONFIG2 0xBF
++#define LM90_REG_R_CONVRATE 0x04
++#define LM90_REG_W_CONVRATE 0x0A
++#define LM90_REG_R_STATUS 0x02
++#define LM90_REG_R_LOCAL_TEMP 0x00
++#define LM90_REG_R_LOCAL_HIGH 0x05
++#define LM90_REG_W_LOCAL_HIGH 0x0B
++#define LM90_REG_R_LOCAL_LOW 0x06
++#define LM90_REG_W_LOCAL_LOW 0x0C
++#define LM90_REG_R_LOCAL_CRIT 0x20
++#define LM90_REG_W_LOCAL_CRIT 0x20
++#define LM90_REG_R_REMOTE_TEMPH 0x01
++#define LM90_REG_R_REMOTE_TEMPL 0x10
++#define LM90_REG_R_REMOTE_OFFSH 0x11
++#define LM90_REG_W_REMOTE_OFFSH 0x11
++#define LM90_REG_R_REMOTE_OFFSL 0x12
++#define LM90_REG_W_REMOTE_OFFSL 0x12
++#define LM90_REG_R_REMOTE_HIGHH 0x07
++#define LM90_REG_W_REMOTE_HIGHH 0x0D
++#define LM90_REG_R_REMOTE_HIGHL 0x13
++#define LM90_REG_W_REMOTE_HIGHL 0x13
++#define LM90_REG_R_REMOTE_LOWH 0x08
++#define LM90_REG_W_REMOTE_LOWH 0x0E
++#define LM90_REG_R_REMOTE_LOWL 0x14
++#define LM90_REG_W_REMOTE_LOWL 0x14
++#define LM90_REG_R_REMOTE_CRIT 0x19
++#define LM90_REG_W_REMOTE_CRIT 0x19
++#define LM90_REG_R_TCRIT_HYST 0x21
++#define LM90_REG_W_TCRIT_HYST 0x21
++
++/*
++ * Conversions and various macros
++ * The LM90 uses signed 8-bit values for the local temperatures,
++ * and signed 11-bit values for the remote temperatures (except
++ * T_CRIT). The 11-bit conversion formulas may not round negative
++ * numbers perfectly, but who cares?
++ */
++
++#define TEMP1_FROM_REG(val) (val & 0x80 ? val-0x100 : val)
++#define TEMP1_TO_REG(val) (val < 0 ? val+0x100 : val)
++#define TEMP2_FROM_REG(val) (((val & 0x8000 ? val-0x10000 : val) \
++ * 10 + 128) >> 8)
++#define TEMP2_TO_REG(val) (((val << 8) / 10 + (val < 0 ? \
++ 0x10000 : 0)) & 0xFFE0)
++#define HYST_TO_REG(val) (val < 0 ? 0 : val > 31 ? 31 : val)
++
++/*
++ * Functions declaration
++ */
++
++static int lm90_attach_adapter(struct i2c_adapter *adapter);
++static int lm90_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void lm90_init_client(struct i2c_client *client);
++static int lm90_detach_client(struct i2c_client *client);
++static void lm90_local_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm90_remote_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm90_local_tcrit(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm90_remote_tcrit(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm90_local_hyst(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm90_remote_hyst(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void lm90_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++/*
++ * Driver data (common to all clients)
++ */
++
++static struct i2c_driver lm90_driver = {
++ .owner = THIS_MODULE,
++ .name = "LM90/ADM1032 sensor driver",
++ .id = I2C_DRIVERID_LM90,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = lm90_attach_adapter,
++ .detach_client = lm90_detach_client
++};
++
++/*
++ * Client data (each client gets its own)
++ */
++
++struct lm90_data
++{
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* zero until following fields are valid */
++ unsigned long last_updated; /* in jiffies */
++
++ /* registers values */
++ u8 local_temp, local_high, local_low;
++ u16 remote_temp, remote_high, remote_low; /* combined */
++ u8 local_crit, remote_crit;
++ u8 hyst; /* linked to two sysctl files (hyst1 RW, hyst2 RO) */
++ u16 alarms; /* bitvector, combined */
++};
++
++/*
++ * Proc entries
++ * These files are created for each detected LM90.
++ */
++
++/* -- SENSORS SYSCTL START -- */
++
++#define LM90_SYSCTL_LOCAL_TEMP 1200
++#define LM90_SYSCTL_REMOTE_TEMP 1201
++#define LM90_SYSCTL_LOCAL_TCRIT 1204
++#define LM90_SYSCTL_REMOTE_TCRIT 1205
++#define LM90_SYSCTL_LOCAL_HYST 1207
++#define LM90_SYSCTL_REMOTE_HYST 1208
++#define LM90_SYSCTL_ALARMS 1210
++
++#define LM90_ALARM_LOCAL_HIGH 0x40
++#define LM90_ALARM_LOCAL_LOW 0x20
++#define LM90_ALARM_LOCAL_CRIT 0x01
++#define LM90_ALARM_REMOTE_HIGH 0x10
++#define LM90_ALARM_REMOTE_LOW 0x08
++#define LM90_ALARM_REMOTE_CRIT 0x02
++#define LM90_ALARM_REMOTE_OPEN 0x04
++
++/* -- SENSORS SYSCTL END -- */
++
++
++static ctl_table lm90_dir_table_template[] =
++{
++ {LM90_SYSCTL_LOCAL_TEMP, "temp1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm90_local_temp},
++ {LM90_SYSCTL_REMOTE_TEMP, "temp2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm90_remote_temp},
++ {LM90_SYSCTL_LOCAL_TCRIT, "tcrit1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm90_local_tcrit},
++ {LM90_SYSCTL_REMOTE_TCRIT, "tcrit2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm90_remote_tcrit},
++ {LM90_SYSCTL_LOCAL_HYST, "hyst1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm90_local_hyst},
++ {LM90_SYSCTL_REMOTE_HYST, "hyst2", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm90_remote_hyst},
++ {LM90_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &lm90_alarms},
++ {0}
++};
++
++/*
++ * Internal variables
++ */
++
++static int lm90_id = 0;
++
++/*
++ * Real code
++ */
++
++static int lm90_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, lm90_detect);
++}
++
++/*
++ * The following function does more than just detection. If detection
++ * succeeds, it also registers the new chip.
++ */
++static int lm90_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ struct i2c_client *new_client;
++ struct lm90_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter))
++ {
++ printk("lm90.o: Called for an ISA bus adapter, aborting.\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ {
++#ifdef DEBUG
++ printk("lm90.o: I2C bus doesn't support byte read mode, "
++ "skipping.\n");
++#endif
++ return 0;
++ }
++
++ if (!(data = kmalloc(sizeof(struct lm90_data), GFP_KERNEL)))
++ {
++ printk("lm90.o: Out of memory in lm90_detect (new_client).\n");
++ return -ENOMEM;
++ }
++
++ /*
++ * The common I2C client data is placed right before the
++ * LM90-specific data. The LM90-specific data is pointed to by the
++ * data field from the I2C client data.
++ */
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &lm90_driver;
++ new_client->flags = 0;
++
++ /*
++ * Now we do the remaining detection. A negative kind means that
++ * the driver was loaded with no force parameter (default), so we
++ * must both detect and identify the chip. A zero kind means that
++ * the driver was loaded with the force parameter, the detection
++ * step shall be skipped. A positive kind means that the driver
++ * was loaded with the force parameter and a given kind of chip is
++ * requested, so both the detection and the identification steps
++ * are skipped.
++ */
++
++ /* Default to an LM90 if forced */
++ if (kind == 0)
++ kind = lm90;
++
++ if (kind < 0) /* detection and identification */
++ {
++ u8 man_id, chip_id, reg_config1, reg_convrate;
++
++ man_id = i2c_smbus_read_byte_data(new_client,
++ LM90_REG_R_MAN_ID);
++ chip_id = i2c_smbus_read_byte_data(new_client,
++ LM90_REG_R_CHIP_ID);
++ reg_config1 = i2c_smbus_read_byte_data(new_client,
++ LM90_REG_R_CONFIG1);
++ reg_convrate = i2c_smbus_read_byte_data(new_client,
++ LM90_REG_R_CONVRATE);
++
++ if (man_id == 0x01) /* National Semiconductor */
++ {
++ u8 reg_config2;
++
++ reg_config2 = i2c_smbus_read_byte_data(new_client,
++ LM90_REG_R_CONFIG2);
++
++ if ((reg_config1 & 0x2A) == 0x00
++ && (reg_config2 & 0xF8) == 0x00
++ && reg_convrate <= 0x09)
++ {
++ if (address == 0x4C
++ && (chip_id & 0xF0) == 0x20) /* LM90 */
++ kind = lm90;
++ else if ((chip_id & 0xF0) == 0x30) /* LM89/LM99 */
++ kind = lm99;
++ else if (address == 0x4C
++ && (chip_id & 0xF0) == 0x10) /* LM86 */
++ kind = lm99;
++ }
++ }
++ else if (man_id == 0x41) /* Analog Devices */
++ {
++ if (address == 0x4C
++ && (chip_id & 0xF0) == 0x40 /* ADM1032 */
++ && (reg_config1 & 0x3F) == 0x00
++ && reg_convrate <= 0x0A)
++ kind = adm1032;
++ }
++ else if (man_id == 0x4D) /* Maxim */
++ {
++ if (address == 0x4C
++ && (reg_config1 & 0x1F) == 0
++ && reg_convrate <= 0x09)
++ kind = max6657;
++ }
++ }
++
++ if (kind <= 0) /* identification failed */
++ {
++ printk("lm90.o: Unsupported chip.\n");
++ goto ERROR1;
++ }
++
++ if (kind == lm90)
++ {
++ type_name = "lm90";
++ client_name = "LM90 chip";
++ }
++ else if (kind == adm1032)
++ {
++ type_name = "adm1032";
++ client_name = "ADM1032 chip";
++ }
++ else if (kind == lm99)
++ {
++ type_name = "lm99";
++ client_name = "LM99 chip";
++ }
++ else if (kind == lm86)
++ {
++ type_name = "lm86";
++ client_name = "LM86 chip";
++ }
++ else if (kind == max6657)
++ {
++ type_name = "max6657";
++ client_name = "MAX6657 chip";
++ }
++ else
++ {
++ printk("lm90.o: Unknown kind %d.\n", kind);
++ goto ERROR1;
++ }
++
++ /*
++ * OK, we got a valid chip so we can fill in the remaining client
++ * fields.
++ */
++
++ strcpy(new_client->name, client_name);
++ new_client->id = lm90_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /*
++ * Tell the I2C layer a new client has arrived.
++ */
++
++ if ((err = i2c_attach_client(new_client)))
++ {
++#ifdef DEBUG
++ printk("lm90.o: Failed attaching client.\n");
++#endif
++ goto ERROR1;
++ }
++
++ /*
++ * Register a new directory entry.
++ */
++
++ if ((err = i2c_register_entry(new_client, type_name,
++ lm90_dir_table_template)) < 0)
++ {
++#ifdef DEBUG
++ printk("lm90.o: Failed registering directory entry.\n");
++#endif
++ goto ERROR2;
++ }
++ data->sysctl_id = err;
++
++ /*
++ * Initialize the LM90 chip.
++ */
++
++ lm90_init_client(new_client);
++ return 0;
++
++ ERROR2:
++ i2c_detach_client(new_client);
++ ERROR1:
++ kfree(data);
++ return err;
++}
++
++static void lm90_init_client(struct i2c_client *client)
++{
++ u8 config;
++
++ /*
++ * Start the conversions.
++ */
++
++ i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
++ 5); /* 2 Hz */
++ config = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
++ if (config & 0x40)
++ i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
++ config & 0xBF); /* run */
++}
++
++
++static int lm90_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct lm90_data *) (client->data))->sysctl_id);
++ if ((err = i2c_detach_client(client)))
++ {
++ printk("lm90.o: Client deregistration failed, client not "
++ "detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++ return 0;
++}
++
++static void lm90_update_client(struct i2c_client *client)
++{
++ struct lm90_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ * 2) ||
++ (jiffies < data->last_updated) || !data->valid)
++ {
++ u8 oldh, newh;
++#ifdef DEBUG
++ printk("lm90.o: Updating data.\n");
++#endif
++
++ data->local_temp =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_LOCAL_TEMP);
++ data->local_high =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_LOCAL_HIGH);
++ data->local_low =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_LOCAL_LOW);
++ data->local_crit =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_LOCAL_CRIT);
++
++ /*
++ * There is a trick here. We have to read two registers to
++ * have the remote sensor temperature, but we have to beware
++ * a conversion could occur inbetween the readings. The
++ * datasheet says we should either use the one-shot
++ * conversion register, which we don't want to do (disables
++ * hardware monitoring) or monitor the busy bit, which is
++ * impossible (we can't read the values and monitor that bit
++ * at the exact same time). So the solution used here is to
++ * read the high byte once, then the low byte, then the high
++ * byte again. If the new high byte matches the old one,
++ * then we have a valid reading. Else we have to read the low
++ * byte again, and now we believe we have a correct reading.
++ */
++
++ oldh =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPH);
++ data->remote_temp =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPL);
++ newh =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPH);
++ if (newh != oldh)
++ {
++ data->remote_temp =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPL);
++#ifdef DEBUG
++ oldh = /* actually newer */
++ i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_TEMPH);
++ if (newh != oldh)
++ printk("lm90.o: Remote temperature may be wrong.\n");
++#endif
++ }
++ data->remote_temp |= (newh << 8);
++ data->remote_high =
++ (i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_HIGHH) << 8)
++ + i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_HIGHL);
++ data->remote_low =
++ (i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_LOWH) << 8)
++ + i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_LOWL);
++ data->remote_crit =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_REMOTE_CRIT);
++
++ data->hyst =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_TCRIT_HYST);
++ data->alarms =
++ i2c_smbus_read_byte_data(client, LM90_REG_R_STATUS);
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++static void lm90_local_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm90_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm90_update_client(client);
++ results[0] = TEMP1_FROM_REG(data->local_high);
++ results[1] = TEMP1_FROM_REG(data->local_low);
++ results[2] = TEMP1_FROM_REG(data->local_temp);
++ *nrels_mag = 3;
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE)
++ {
++ if (*nrels_mag >= 1)
++ {
++ data->local_high = TEMP1_TO_REG(results[0]);
++ i2c_smbus_write_byte_data(client, LM90_REG_W_LOCAL_HIGH,
++ data->local_high);
++ }
++ if (*nrels_mag >= 2)
++ {
++ data->local_low = TEMP1_TO_REG(results[1]);
++ i2c_smbus_write_byte_data(client, LM90_REG_W_LOCAL_LOW,
++ data->local_low);
++ }
++ }
++}
++
++static void lm90_remote_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm90_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm90_update_client(client);
++ results[0] = TEMP2_FROM_REG(data->remote_high);
++ results[1] = TEMP2_FROM_REG(data->remote_low);
++ results[2] = TEMP2_FROM_REG(data->remote_temp);
++ *nrels_mag = 3;
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE)
++ {
++ if (*nrels_mag >= 1)
++ {
++ data->remote_high = TEMP2_TO_REG(results[0]);
++ i2c_smbus_write_byte_data(client, LM90_REG_W_REMOTE_HIGHH,
++ data->remote_high >> 8);
++ i2c_smbus_write_byte_data(client, LM90_REG_W_REMOTE_HIGHL,
++ data->remote_high & 0xFF);
++ }
++ if (*nrels_mag >= 2)
++ {
++ data->remote_low = TEMP2_TO_REG(results[1]);
++ i2c_smbus_write_byte_data(client, LM90_REG_W_REMOTE_LOWH,
++ data->remote_low >> 8);
++ i2c_smbus_write_byte_data(client, LM90_REG_W_REMOTE_LOWL,
++ data->remote_low & 0xFF);
++ }
++ }
++}
++
++static void lm90_local_tcrit(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm90_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm90_update_client(client);
++ results[0] = TEMP1_FROM_REG(data->local_crit);
++ *nrels_mag = 1;
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE)
++ {
++ if (*nrels_mag >= 1)
++ {
++ data->local_crit = TEMP1_TO_REG(results[0]);
++ i2c_smbus_write_byte_data(client, LM90_REG_W_LOCAL_CRIT,
++ data->local_crit);
++ }
++ }
++}
++
++static void lm90_remote_tcrit(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm90_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm90_update_client(client);
++ results[0] = TEMP1_FROM_REG(data->remote_crit);
++ *nrels_mag = 1;
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE)
++ {
++ if (*nrels_mag >= 1)
++ {
++ data->remote_crit = TEMP1_TO_REG(results[0]);
++ i2c_smbus_write_byte_data(client, LM90_REG_W_REMOTE_CRIT,
++ data->remote_crit);
++ }
++ }
++}
++
++/*
++ * One quick note about hysteresis. Internally, the hysteresis value
++ * is held in a single register by the LM90, as a relative value.
++ * This relative value applies to both the local critical temperature
++ * and the remote critical temperature. Since all temperatures exported
++ * through procfs have to be absolute, we have to do some conversions.
++ * The solution retained here is to export two absolute values, one for
++ * each critical temperature. In order not to confuse the users too
++ * much, only one file is writable. Would we fail to do so, users
++ * would probably attempt to write to both files, as if they were
++ * independant, and since they aren't, they wouldn't understand why
++ * setting one affects the other one (and would probably claim there's
++ * a bug in the driver).
++ */
++
++static void lm90_local_hyst(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm90_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm90_update_client(client);
++ results[0] = TEMP1_FROM_REG(data->local_crit) -
++ TEMP1_FROM_REG(data->hyst);
++ *nrels_mag = 1;
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE)
++ {
++ if (*nrels_mag >= 1)
++ {
++ data->hyst = HYST_TO_REG(data->local_crit - results[0]);
++ i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
++ data->hyst);
++ }
++ }
++}
++
++static void lm90_remote_hyst(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm90_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm90_update_client(client);
++ results[0] = TEMP1_FROM_REG(data->remote_crit) -
++ TEMP1_FROM_REG(data->hyst);
++ *nrels_mag = 1;
++ }
++}
++
++static void lm90_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct lm90_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0; /* magnitude */
++ else if (operation == SENSORS_PROC_REAL_READ)
++ {
++ lm90_update_client(client);
++ results[0] = data->alarms;
++ *nrels_mag = 1;
++ }
++}
++
++static int __init sm_lm90_init(void)
++{
++ printk(KERN_INFO "lm90.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&lm90_driver);
++}
++
++static void __exit sm_lm90_exit(void)
++{
++ i2c_del_driver(&lm90_driver);
++}
++
++MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
++MODULE_DESCRIPTION("LM90/ADM1032 sensor driver");
++MODULE_LICENSE("GPL");
++
++module_init(sm_lm90_init);
++module_exit(sm_lm90_exit);
+--- linux-old/drivers/sensors/lm92.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/lm92.c Mon Dec 13 20:18:49 2004
+@@ -0,0 +1,421 @@
++
++/*
++ * LM92 - Part of lm_sensors, Linux kernel modules for hardware
++ * monitoring
++ *
++ * Author: Abraham van der Merwe <abraham@2d3d.co.za>
++ *
++ * Linux support for the National Semiconductor LM92 Temperature
++ * Sensor.
++ *
++ * Based on code from the lm-sensors project which is available
++ * at http://www.lm-sensors.nu/. lm87.c have been particularly
++ * helpful (:
++ *
++ * This source code is free software; you can redistribute it and/or
++ * modify it under the terms of the GNU General Public License
++ * version 2 as published by the Free Software Foundation.
++ */
++
++#include <linux/config.h>
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/string.h>
++#include <linux/slab.h>
++#include <linux/init.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/proc_fs.h>
++#include <linux/sysctl.h>
++#include <asm/semaphore.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/* if defined, 4 faults must occur consecutively to set alarm flags */
++/* #define ENABLE_FAULT_QUEUE */
++
++#define LM92_REG_TEMPERATURE 0x00 /* ro, 16-bit */
++#define LM92_REG_CONFIGURATION 0x01 /* rw, 8-bit */
++#define LM92_REG_TRIP_HYSTERESIS 0x02 /* rw, 16-bit */
++#define LM92_REG_TRIP_CRITICAL 0x03 /* rw, 16-bit */
++#define LM92_REG_TRIP_LOW 0x04 /* rw, 16-bit */
++#define LM92_REG_TRIP_HIGH 0x05 /* rw, 16-bit */
++#define LM92_REG_MANUFACTURER 0x07 /* ro, 16-bit */
++
++#define LM92_MANUFACTURER_ID 0x8001
++
++#define TEMP_MIN (-4096)
++#define TEMP_MAX 4095
++
++#define LIMIT(x) do { \
++ if ((x) < TEMP_MIN) (x) = TEMP_MIN; \
++ if ((x) > TEMP_MAX) (x) = TEMP_MAX; \
++ } while (0)
++
++#define PROC_TO_NATIVE(x) ((x) / 625)
++#define NATIVE_TO_PROC(x) ((x) * 625)
++#define CELSIUS(x) ((x) * 16)
++
++static void lm92_temp (struct i2c_client *client,int operation,int ctl_name,int *nrels_mag,long *results);
++static void lm92_alarms (struct i2c_client *client,int operation,int ctl_name,int *nrels_mag,long *results);
++
++/* -- SENSORS SYSCTL START -- */
++#define LM92_SYSCTL_ALARMS 2001 /* high, low, critical */
++#define LM92_SYSCTL_TEMP 1200 /* high, low, critical, hysteresis, input */
++
++#define LM92_ALARM_TEMP_HIGH 0x01
++#define LM92_ALARM_TEMP_LOW 0x02
++#define LM92_ALARM_TEMP_CRIT 0x04
++#define LM92_TEMP_HIGH 0x08
++#define LM92_TEMP_LOW 0x10
++#define LM92_TEMP_CRIT 0x20
++#define LM92_TEMP_HYST 0x40
++#define LM92_TEMP_INPUT 0x80
++
++/* -- SENSORS SYSCTL END -- */
++
++static ctl_table lm92_dir_table[] = {
++ {LM92_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm92_temp, NULL},
++ {LM92_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &lm92_alarms, NULL},
++ {0}
++};
++
++/* NOTE: all temperatures are degrees centigrade * 16 */
++typedef struct {
++ struct i2c_client client;
++ int sysctl_id;
++ unsigned long timestamp;
++ struct {
++ long high;
++ long low;
++ long crit;
++ long hyst;
++ long input;
++ } temp;
++ struct {
++ long low;
++ long high;
++ long crit;
++ } alarms;
++} lm92_t;
++
++/* this is needed for each client driver method */
++static struct i2c_driver lm92_driver;
++
++/* ensure exclusive access to chip and static variables */
++static DECLARE_MUTEX (mutex);
++
++/* addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x48, 0x4f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* insmod parameters */
++SENSORS_INSMOD_1 (lm92);
++
++static inline int lm92_write8 (struct i2c_client *client,u8 reg,u8 value)
++{
++ return (i2c_smbus_write_byte_data (client,reg,value) < 0 ? -EIO : 0);
++}
++
++static inline int lm92_read16 (struct i2c_client *client,u8 reg,u16 *value)
++{
++ s32 tmp = i2c_smbus_read_word_data (client,reg);
++
++ if (tmp < 0) return (-EIO);
++
++ /* convert the data to little endian format */
++ *value = swab16((u16) tmp);
++
++ return (0);
++}
++
++static inline int lm92_write16 (struct i2c_client *client,u8 reg,u16 value)
++{
++ /* convert the data to big endian format */
++ if (i2c_smbus_write_word_data(client, reg, swab16(value)) < 0)
++ return -EIO;
++
++ return 0;
++}
++
++static int lm92_read (struct i2c_client *client)
++{
++ lm92_t *data = (lm92_t *) client->data;
++ u16 value[5];
++
++ if ((jiffies - data->timestamp) > HZ) {
++ if (lm92_read16 (client,LM92_REG_TEMPERATURE,value) < 0 ||
++ lm92_read16 (client,LM92_REG_TRIP_HYSTERESIS,value + 1) < 0 ||
++ lm92_read16 (client,LM92_REG_TRIP_CRITICAL,value + 2) < 0 ||
++ lm92_read16 (client,LM92_REG_TRIP_LOW,value + 3) < 0 ||
++ lm92_read16 (client,LM92_REG_TRIP_HIGH,value + 4) < 0)
++ return (-EIO);
++
++ data->temp.input = (s16) value[0] >> 3;
++ data->temp.hyst = (s16) value[1] >> 3;
++ data->temp.crit = (s16) value[2] >> 3;
++ data->temp.low = (s16) value[3] >> 3;
++ data->temp.high = (s16) value[4] >> 3;
++
++ data->alarms.low = value[0] & 1;
++ data->alarms.high = (value[0] & 2) >> 1;
++ data->alarms.crit = (value[0] & 4) >> 2;
++
++ data->timestamp = jiffies;
++ }
++
++ return (0);
++}
++
++static int lm92_write (struct i2c_client *client)
++{
++ lm92_t *data = (lm92_t *) client->data;
++
++ LIMIT (data->temp.hyst);
++ LIMIT (data->temp.crit);
++ LIMIT (data->temp.low);
++ LIMIT (data->temp.high);
++
++ if (lm92_write16 (client,LM92_REG_TRIP_HYSTERESIS,((s16) data->temp.hyst << 3)) < 0 ||
++ lm92_write16 (client,LM92_REG_TRIP_CRITICAL,((s16) data->temp.crit << 3)) < 0 ||
++ lm92_write16 (client,LM92_REG_TRIP_LOW,((s16) data->temp.low << 3)) < 0 ||
++ lm92_write16 (client,LM92_REG_TRIP_HIGH,((s16) data->temp.high << 3)) < 0)
++ return (-EIO);
++
++ return (0);
++}
++
++static void lm92_temp (struct i2c_client *client,int operation,int ctl_name,int *nrels_mag,long *results)
++{
++ if (!down_interruptible (&mutex)) {
++ lm92_t *data = (lm92_t *) client->data;
++
++ if (operation == SENSORS_PROC_REAL_READ) {
++ lm92_read (client);
++ results[0] = NATIVE_TO_PROC (data->temp.input);
++ results[1] = NATIVE_TO_PROC (data->temp.high);
++ results[2] = NATIVE_TO_PROC (data->temp.low);
++ results[3] = NATIVE_TO_PROC (data->temp.crit);
++ results[4] = NATIVE_TO_PROC (data->temp.hyst);
++ *nrels_mag = 5;
++ } else if (operation == SENSORS_PROC_REAL_WRITE && *nrels_mag == 4) {
++ data->temp.high = PROC_TO_NATIVE (results[0]);
++ data->temp.low = PROC_TO_NATIVE (results[1]);
++ data->temp.crit = PROC_TO_NATIVE (results[2]);
++ data->temp.hyst = PROC_TO_NATIVE (results[3]);
++ lm92_write (client);
++ } else if (operation == SENSORS_PROC_REAL_INFO) {
++ *nrels_mag = 4;
++ }
++
++ up (&mutex);
++ }
++}
++
++static void lm92_alarms (struct i2c_client *client,int operation,int ctl_name,int *nrels_mag,long *results)
++{
++ if (!down_interruptible (&mutex)) {
++ lm92_t *data = (lm92_t *) client->data;
++
++ if (operation == SENSORS_PROC_REAL_READ) {
++ lm92_read (client);
++ results[0] = data->alarms.high || (data->alarms.low << 1) || (data->alarms.crit << 2);
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_INFO) {
++ *nrels_mag = 0;
++ }
++
++ up (&mutex);
++ }
++}
++
++static int max6635_check(struct i2c_client *client)
++{
++ int i;
++ u16 temp_low, temp_high, temp_hyst, temp_crit;
++ u8 conf;
++
++ temp_low = i2c_smbus_read_word_data(client, LM92_REG_TRIP_LOW);
++ temp_high = i2c_smbus_read_word_data(client, LM92_REG_TRIP_HIGH);
++ temp_hyst = i2c_smbus_read_word_data(client, LM92_REG_TRIP_HYSTERESIS);
++ temp_crit = i2c_smbus_read_word_data(client, LM92_REG_TRIP_CRITICAL);
++
++ if ((temp_low & 0x7f00) || (temp_high & 0x7f00)
++ || (temp_hyst & 0x7f00) || (temp_crit & 0x7f00))
++ return 0;
++
++ conf = i2c_smbus_read_byte_data(client, LM92_REG_CONFIGURATION);
++
++ for (i=0; i<128; i+=16) {
++ if (temp_low != i2c_smbus_read_word_data(client, LM92_REG_TRIP_LOW + i)
++ || temp_high != i2c_smbus_read_word_data(client, LM92_REG_TRIP_HIGH + i)
++ || temp_hyst != i2c_smbus_read_word_data(client, LM92_REG_TRIP_HYSTERESIS + i)
++ || temp_crit != i2c_smbus_read_word_data(client, LM92_REG_TRIP_CRITICAL + i)
++ || conf != i2c_smbus_read_byte_data(client, LM92_REG_CONFIGURATION + i))
++ return 0;
++ }
++
++ return 1;
++}
++
++static int lm92_init_client (struct i2c_client *client)
++{
++ lm92_t *data = (lm92_t *) client->data;
++ u8 value = 0;
++ int result;
++
++ /* force reads to query the chip */
++ data->timestamp = 0;
++
++ /* setup the configuration register */
++
++#ifdef ENABLE_FAULT_QUEUE
++ value |= 0x10;
++#endif /* #ifdef ENABLE_FAULT_QUEUE */
++
++ if (lm92_write8 (client,LM92_REG_CONFIGURATION,value) < 0)
++ return (-ENODEV);
++
++ /* set default alarm trigger values */
++
++ data->temp.high = CELSIUS (64);
++ data->temp.low = CELSIUS (10);
++ data->temp.crit = CELSIUS (80);
++ data->temp.hyst = CELSIUS (2);
++
++ if ((result = lm92_write (client)) < 0)
++ return (result);
++
++ /* read everything once so that our cached data is updated */
++
++ if ((result = lm92_read (client)) < 0)
++ return (result);
++
++ return (0);
++}
++
++static int lm92_detect (struct i2c_adapter *adapter,int address,unsigned short flags,int kind)
++{
++ static int id = 0;
++ struct i2c_client *client;
++ lm92_t *data;
++ int result;
++ u16 manufacturer;
++
++ if (!i2c_check_functionality (adapter,I2C_FUNC_SMBUS_BYTE_DATA))
++ return (-ENODEV);
++
++ if (!(data = kmalloc(sizeof(lm92_t), GFP_KERNEL)))
++ return (-ENOMEM);
++
++ client = &data->client;
++ client->addr = address;
++ client->data = data;
++ client->adapter = adapter;
++ client->driver = &lm92_driver;
++ client->flags = 0;
++ strcpy (client->name,lm92_driver.name);
++
++ if (down_interruptible (&mutex)) {
++ result = -ERESTARTSYS;
++ goto ERROR1;
++ }
++
++ if (kind < 0) {
++ /* Is it an lm92? */
++ if (address < 0x4c
++ && (lm92_read16(client,LM92_REG_MANUFACTURER,&manufacturer) < 0
++ || manufacturer != LM92_MANUFACTURER_ID)) {
++ /* Is it a MAX6635/MAX6635/MAX6635? */
++ if (!max6635_check(client)) {
++ result = -ENODEV;
++ goto ERROR2;
++ }
++ }
++ }
++
++ if ((result = i2c_attach_client (client))) {
++ goto ERROR2;
++ }
++
++ if ((result = i2c_register_entry (client,client->name,lm92_dir_table)) < 0) {
++ goto ERROR3;
++ }
++ data->sysctl_id = result;
++
++ if ((result = lm92_init_client (client)) < 0) {
++ goto ERROR4;
++ }
++
++ client->id = id++;
++
++ up (&mutex);
++
++ return (0);
++
++ERROR4:
++ i2c_deregister_entry(data->sysctl_id);
++ERROR3:
++ i2c_detach_client(client);
++ERROR2:
++ up(&mutex);
++ERROR1:
++ kfree(data);
++ return result;
++}
++
++static int lm92_attach_adapter (struct i2c_adapter *adapter)
++{
++ return i2c_detect (adapter,&addr_data,lm92_detect);
++}
++
++static int lm92_detach_client (struct i2c_client *client)
++{
++ int result;
++
++ i2c_deregister_entry (((lm92_t *) (client->data))->sysctl_id);
++
++ if ((result = i2c_detach_client (client)))
++ return (result);
++
++ kfree(client->data);
++
++ return (0);
++}
++
++
++static struct i2c_driver lm92_driver = {
++ .owner = THIS_MODULE,
++ .name = "lm92",
++ .id = I2C_DRIVERID_LM92,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = lm92_attach_adapter,
++ .detach_client = lm92_detach_client,
++};
++
++static int __init sm_lm92_init(void)
++{
++ printk ("lm92.o version %s (%s)\n",LM_VERSION,LM_DATE);
++ return i2c_add_driver(&lm92_driver);
++}
++
++
++static void __exit sm_lm92_exit(void)
++{
++ i2c_del_driver(&lm92_driver);
++}
++
++
++
++MODULE_AUTHOR ("Abraham van der Merwe <abraham@2d3d.co.za>");
++MODULE_DESCRIPTION ("Linux support for LM92 Temperature Sensor");
++
++MODULE_LICENSE ("GPL");
++
++module_init(sm_lm92_init);
++module_exit(sm_lm92_exit);
++
+--- linux-old/drivers/sensors/matorb.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/matorb.c Mon Dec 13 20:18:49 2004
+@@ -0,0 +1,286 @@
++/*
++ matorb.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
++ and Philip Edelbrock <phil@netroedge.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++
++#define DEBUG 1
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { 0x2E, SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(matorb);
++
++/* Many MATORB constants specified below */
++
++
++/* Each client has this additional data */
++struct matorb_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++};
++
++static int matorb_attach_adapter(struct i2c_adapter *adapter);
++static int matorb_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void matorb_init_client(struct i2c_client *client);
++static int matorb_detach_client(struct i2c_client *client);
++
++static int matorb_write_value(struct i2c_client *client, u8 reg,
++ u16 value);
++static void matorb_disp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void matorb_update_client(struct i2c_client *client);
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver matorb_driver = {
++ .owner = THIS_MODULE,
++ .name = "Matrix Orbital LCD driver",
++ .id = I2C_DRIVERID_MATORB,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = matorb_attach_adapter,
++ .detach_client = matorb_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++#define MATORB_SYSCTL_DISP 1000
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected MATORB. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table matorb_dir_table_template[] = {
++ {MATORB_SYSCTL_DISP, "disp", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &matorb_disp},
++ {0}
++};
++
++static int matorb_id = 0;
++
++static int matorb_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, matorb_detect);
++}
++
++/* This function is called by i2c_detect */
++int matorb_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i, cur;
++ struct i2c_client *new_client;
++ struct matorb_data *data;
++ int err = 0;
++ const char *type_name = "matorb";
++ const char *client_name = "matorb";
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("matorb.o: matorb_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WRITE_BYTE |
++ I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
++ goto ERROR0;
++
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access matorb_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct matorb_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &matorb_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. It is lousy. */
++ cur = i2c_smbus_write_byte_data(new_client, 0x0FE, 0x58); /* clear screen */
++
++ printk("matorb.o: debug detect 0x%X\n", cur);
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = matorb_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ matorb_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ matorb_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int matorb_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct matorb_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("matorb.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++
++#if 0
++/* All registers are word-sized, except for the configuration register.
++ MATORB uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int matorb_read_value(struct i2c_client *client, u8 reg)
++{
++ return -1; /* Doesn't support reads */
++}
++#endif
++
++/* All registers are word-sized, except for the configuration register.
++ MATORB uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int matorb_write_value(struct i2c_client *client, u8 reg, u16 value)
++{
++ if (reg == 0) {
++ return i2c_smbus_write_byte(client, value);
++ } else {
++ return i2c_smbus_write_byte_data(client, reg, value);
++ }
++}
++
++static void matorb_init_client(struct i2c_client *client)
++{
++ /* Initialize the MATORB chip */
++}
++
++static void matorb_update_client(struct i2c_client *client)
++{
++ struct matorb_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting matorb update\n");
++#endif
++
++/* nothing yet */
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++void matorb_disp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ int i;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ matorb_update_client(client);
++ results[0] = 0;
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ for (i = 1; i <= *nrels_mag; i++) {
++ matorb_write_value(client, 0, results[i - 1]);
++ }
++ }
++}
++
++static int __init sm_matorb_init(void)
++{
++ printk("matorb.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&matorb_driver);
++}
++
++static void __exit sm_matorb_exit(void)
++{
++ i2c_del_driver(&matorb_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("MATORB driver");
++
++module_init(sm_matorb_init);
++module_exit(sm_matorb_exit);
+--- linux-old/drivers/sensors/max6650.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/max6650.c Mon Dec 13 20:18:50 2004
+@@ -0,0 +1,545 @@
++/*
++ * max6650.c - Part of lm_sensors, Linux kernel modules for hardware
++ * monitoring.
++ *
++ * Author: John Morris <john.morris@spirentcom.com>
++ *
++ * Copyright (c) 2003 Spirent Communications
++ *
++ * This module has only been tested with the MAX6651 chip. It should
++ * work with the MAX6650 also, though with reduced functionality. It
++ * does not yet distinguish max6650 and max6651 chips.
++ *
++ * Tha datasheet was last seen at:
++ *
++ * http://pdfserv.maxim-ic.com/en/ds/MAX6650-MAX6651.pdf
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++ */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/i2c-id.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++#ifndef I2C_DRIVERID_MAX6650
++#define I2C_DRIVERID_MAX6650 1044
++#endif
++
++/*
++ * Addresses to scan. There are four disjoint possibilities, by pin config.
++ */
++
++static unsigned short normal_i2c[] = {0x1b, 0x1f, 0x48, 0x4b, SENSORS_I2C_END};
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/*
++ * Insmod parameters
++ */
++
++SENSORS_INSMOD_1(max6650);
++
++/*
++ * MAX 6650/6651 registers
++ */
++
++#define MAX6650_REG_SPEED 0x00
++#define MAX6650_REG_CONFIG 0x02
++#define MAX6650_REG_GPIO_DEF 0x04
++#define MAX6650_REG_DAC 0x06
++#define MAX6650_REG_ALARM_EN 0x08
++#define MAX6650_REG_ALARM 0x0A
++#define MAX6650_REG_TACH0 0x0C
++#define MAX6650_REG_TACH1 0x0E
++#define MAX6650_REG_TACH2 0x10
++#define MAX6650_REG_TACH3 0x12
++#define MAX6650_REG_GPIO_STAT 0x14
++#define MAX6650_REG_COUNT 0x16
++
++/*
++ * Config register bits
++ */
++
++#define MAX6650_CFG_MODE_MASK 0x30
++#define MAX6650_CFG_MODE_ON 0x00
++#define MAX6650_CFG_MODE_OFF 0x10
++#define MAX6650_CFG_MODE_CLOSED_LOOP 0x20
++#define MAX6650_CFG_MODE_OPEN_LOOP 0x30
++
++static const u8 tach_reg[] =
++{
++ MAX6650_REG_TACH0, MAX6650_REG_TACH1,
++ MAX6650_REG_TACH2, MAX6650_REG_TACH3
++};
++
++#define MAX6650_INT_CLK 254000 /* Default clock speed - 254 kHz */
++
++/*
++ * Functions declaration
++ */
++
++static void max6650_fan (struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results);
++static void max6650_speed (struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results);
++static void max6650_xdump (struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results);
++static int max6650_detect(struct i2c_adapter *adapter, int address, unsigned
++ short flags, int kind);
++static int max6650_attach_adapter(struct i2c_adapter *adapter);
++static int max6650_detach_client(struct i2c_client *client);
++static void max6650_init_client(struct i2c_client *client);
++static int max6650_read(struct i2c_client *client, u8 reg);
++
++/*
++ * Driver data (common to all clients)
++ */
++
++
++static struct i2c_driver max6650_driver = {
++ .owner = THIS_MODULE,
++ .name = "MAX6650/1 sensor driver",
++ .id = I2C_DRIVERID_MAX6650,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = max6650_attach_adapter,
++ .detach_client = max6650_detach_client
++};
++
++/*
++ * Client data (each client gets its own)
++ */
++
++struct max6650_data
++{
++ struct i2c_client client;
++ int sysctl_id;
++ struct semaphore update_lock;
++ char valid; /* zero until following fields are valid */
++ unsigned long last_updated; /* in jiffies */
++
++ /* register values */
++
++ u8 speed;
++ u8 config;
++ u8 tach[4];
++ u8 count;
++};
++
++/*
++ * Proc entries
++ * These files are created for each detected max6650.
++ */
++
++/* -- SENSORS SYSCTL START -- */
++
++#define MAX6650_SYSCTL_FAN1 1101
++#define MAX6650_SYSCTL_FAN2 1102
++#define MAX6650_SYSCTL_FAN3 1103
++#define MAX6650_SYSCTL_FAN4 1104
++#define MAX6650_SYSCTL_SPEED 1105
++#define MAX6650_SYSCTL_XDUMP 1106
++
++
++/* -- SENSORS SYSCTL END -- */
++
++
++static ctl_table max6650_dir_table_template[] =
++{
++ {MAX6650_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &max6650_fan},
++ {MAX6650_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &max6650_fan},
++ {MAX6650_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &max6650_fan},
++ {MAX6650_SYSCTL_FAN4, "fan4", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &max6650_fan},
++ {MAX6650_SYSCTL_SPEED, "speed", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &max6650_speed},
++ {MAX6650_SYSCTL_XDUMP, "xdump", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &max6650_xdump},
++ {0}
++};
++
++/*
++ * Internal variables
++ */
++
++static int max6650_id = 0;
++
++/*
++ * Real code
++ */
++
++static int max6650_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, max6650_detect);
++}
++
++/*
++ * The following function does more than just detection. If detection
++ * succeeds, it also registers the new chip.
++ */
++
++static int max6650_detect(struct i2c_adapter *adapter, int address, unsigned
++ short flags, int kind)
++{
++ struct i2c_client *new_client;
++ struct max6650_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk("max6650.o: Called for an ISA bus adapter, aborting.\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
++#ifdef DEBUG
++ printk("max6650.o: I2C bus doesn't support byte read mode, skipping.\n");
++#endif
++ return 0;
++ }
++
++ if (!(data = kmalloc(sizeof(struct max6650_data), GFP_KERNEL))) {
++ printk("max6650.o: Out of memory in max6650_detect (new_client).\n");
++ return -ENOMEM;
++ }
++
++ /*
++ * The common I2C client data is placed right before the
++ * max6650-specific data. The max6650-specific data is pointed to by the
++ * data field from the I2C client data.
++ */
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &max6650_driver;
++ new_client->flags = 0;
++
++ /*
++ * Now we do the remaining detection. A negative kind means that
++ * the driver was loaded with no force parameter (default), so we
++ * must both detect and identify the chip (actually there is only
++ * one possible kind of chip for now, max6650). A zero kind means that
++ * the driver was loaded with the force parameter, the detection
++ * step shall be skipped. A positive kind means that the driver
++ * was loaded with the force parameter and a given kind of chip is
++ * requested, so both the detection and the identification steps
++ * are skipped.
++ *
++ * Currently I can find no way to distinguish between a MAX6650 and
++ * a MAX6651. This driver has only been tried on the latter.
++ */
++
++ if (kind < 0) { /* detection */
++ if (
++ (max6650_read(new_client, MAX6650_REG_CONFIG) & 0xC0) ||
++ (max6650_read(new_client, MAX6650_REG_GPIO_STAT) & 0xE0) ||
++ (max6650_read(new_client, MAX6650_REG_ALARM_EN) & 0xE0) ||
++ (max6650_read(new_client, MAX6650_REG_ALARM) & 0xE0) ||
++ (max6650_read(new_client, MAX6650_REG_COUNT) & 0xFC)
++ )
++ {
++#ifdef DEBUG
++ printk("max6650.o: max6650 detection failed at 0x%02x.\n",
++ address);
++#endif
++ goto ERROR1;
++ }
++ }
++
++ if (kind <= 0) { /* identification */
++ kind = max6650;
++ }
++
++ if (kind <= 0) { /* identification failed */
++ printk("max6650.o: Unsupported chip.\n");
++ goto ERROR1;
++ }
++
++ if (kind == max6650) {
++ type_name = "max6650";
++ client_name = "max6650 chip";
++ } else {
++ printk("max6650.o: Unknown kind %d.\n", kind);
++ goto ERROR1;
++ }
++
++ /*
++ * OK, we got a valid chip so we can fill in the remaining client
++ * fields.
++ */
++
++ strcpy(new_client->name, client_name);
++ new_client->id = max6650_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /*
++ * Tell the I2C layer a new client has arrived.
++ */
++
++ if ((err = i2c_attach_client(new_client))) {
++#ifdef DEBUG
++ printk("max6650.o: Failed attaching client.\n");
++#endif
++ goto ERROR1;
++ }
++
++ /*
++ * Register a new directory entry.
++ */
++ if ((err = i2c_register_entry(new_client, type_name,
++ max6650_dir_table_template)) < 0) {
++#ifdef DEBUG
++ printk("max6650.o: Failed registering directory entry.\n");
++#endif
++ goto ERROR2;
++ }
++ data->sysctl_id = err;
++
++ /*
++ * Initialize the max6650 chip
++ */
++ max6650_init_client(new_client);
++ return 0;
++
++ERROR2:
++ i2c_detach_client(new_client);
++ERROR1:
++ kfree(data);
++ return err;
++}
++
++static void max6650_init_client(struct i2c_client *client)
++{
++ /* Nothing to do here - assume the BIOS has initialized the chip */
++}
++
++static int max6650_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct max6650_data *) (client->data))->sysctl_id);
++ if ((err = i2c_detach_client(client))) {
++ printk("max6650.o: Client deregistration failed, "
++ "client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++ return 0;
++}
++
++static int max6650_read(struct i2c_client *client, u8 reg)
++{
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++static int max6650_write(struct i2c_client *client, u8 reg, u8 value)
++{
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++static void max6650_update_client(struct i2c_client *client)
++{
++ int i;
++ struct max6650_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ) ||
++ (jiffies < data->last_updated) || !data->valid) {
++#ifdef DEBUG
++ printk("max6650.o: Updating max6650 data.\n");
++#endif
++ data->speed = max6650_read (client, MAX6650_REG_SPEED);
++ data->config = max6650_read (client, MAX6650_REG_CONFIG);
++ for (i = 0; i < 4; i++) {
++ data->tach[i] = max6650_read(client, tach_reg[i]);
++ }
++ data->count = max6650_read (client, MAX6650_REG_COUNT);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++ up(&data->update_lock);
++}
++
++static void max6650_fan (struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results)
++{
++ int index = ctl_name - MAX6650_SYSCTL_FAN1;
++ struct max6650_data *data = client->data;
++ int tcount; /* Tachometer count time, 0.25 second units */
++
++ if (operation == SENSORS_PROC_REAL_INFO) {
++ *nrels_mag = 0;
++ } else if (operation == SENSORS_PROC_REAL_READ) {
++ max6650_update_client(client);
++
++ /*
++ * Calculation details:
++ *
++ * Each tachometer counts over an interval given by the "count"
++ * register (0.25, 0.5, 1 or 2 seconds). This module assumes
++ * that the fans produce two pulses per revolution (this seems
++ * to be the most common).
++ */
++
++ tcount = 1 << data->count; /* 0.25 second units */
++ results[0] = (data->tach[index] * 240) / tcount; /* counts per min */
++ results[0] /= 2; /* Assume two counts per rev */
++ *nrels_mag = 1;
++ }
++}
++
++/*
++ * Set the fan speed to the specified RPM (or read back the RPM setting).
++ *
++ * The MAX6650/1 will automatically control fan speed when in closed loop
++ * mode.
++ *
++ * Assumptions:
++ *
++ * 1) The MAX6650/1 is running from its internal 254kHz clock (perhaps
++ * this should be made a module parameter).
++ *
++ * 2) The prescaler (low three bits of the config register) has already
++ * been set to an appropriate value.
++ *
++ * The relevant equations are given on pages 21 and 22 of the datasheet.
++ *
++ * From the datasheet, the relevant equation when in regulation is:
++ *
++ * [fCLK / (128 x (KTACH + 1))] = 2 x FanSpeed / KSCALE
++ *
++ * where:
++ *
++ * fCLK is the oscillator frequency (either the 254kHz internal
++ * oscillator or the externally applied clock)
++ *
++ * KTACH is the value in the speed register
++ *
++ * FanSpeed is the speed of the fan in rps
++ *
++ * KSCALE is the prescaler value (1, 2, 4, 8, or 16)
++ *
++ * When reading, we need to solve for FanSpeed. When writing, we need to
++ * solve for KTACH.
++ *
++ * Note: this tachometer is completely separate from the tachometers
++ * used to measure the fan speeds. Only one fan's speed (fan1) is
++ * controlled.
++ */
++
++static void max6650_speed (struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results)
++{
++ struct max6650_data *data = client->data;
++ int kscale, ktach, fclk, rpm;
++
++ if (operation == SENSORS_PROC_REAL_INFO) {
++ *nrels_mag = 0;
++ } else if (operation == SENSORS_PROC_REAL_READ) {
++ /*
++ * Use the datasheet equation:
++ *
++ * FanSpeed = KSCALE x fCLK / [256 x (KTACH + 1)]
++ *
++ * then multiply by 60 to give rpm.
++ */
++
++ max6650_update_client(client);
++
++ kscale = 1 << (data->config & 7);
++ ktach = data->speed;
++ fclk = MAX6650_INT_CLK;
++ rpm = 60 * kscale * fclk / (256 * (ktach + 1));
++
++ results[0] = rpm;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE && *nrels_mag >= 1) {
++ /*
++ * Divide the required speed by 60 to get from rpm to rps, then
++ * use the datasheet equation:
++ *
++ * KTACH = [(fCLK x KSCALE) / (256 x FanSpeed)] - 1
++ */
++
++ max6650_update_client(client);
++
++ rpm = results[0];
++ kscale = 1 << (data->config & 7);
++ fclk = MAX6650_INT_CLK;
++ ktach = ((fclk * kscale) / (256 * rpm / 60)) - 1;
++
++ data->speed = ktach;
++ data->config = (data->config & ~MAX6650_CFG_MODE_MASK) |
++ MAX6650_CFG_MODE_CLOSED_LOOP;
++ max6650_write (client, MAX6650_REG_CONFIG, data->config);
++ max6650_write (client, MAX6650_REG_SPEED, data->speed);
++ }
++}
++
++/*
++ * Debug - dump all registers except the tach counts.
++ */
++
++static void max6650_xdump (struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results)
++{
++ if (operation == SENSORS_PROC_REAL_INFO) {
++ *nrels_mag = 0;
++ } else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = max6650_read (client, MAX6650_REG_SPEED);
++ results[1] = max6650_read (client, MAX6650_REG_CONFIG);
++ results[2] = max6650_read (client, MAX6650_REG_GPIO_DEF);
++ results[3] = max6650_read (client, MAX6650_REG_DAC);
++ results[4] = max6650_read (client, MAX6650_REG_ALARM_EN);
++ results[5] = max6650_read (client, MAX6650_REG_ALARM);
++ results[6] = max6650_read (client, MAX6650_REG_GPIO_STAT);
++ results[7] = max6650_read (client, MAX6650_REG_COUNT);
++ *nrels_mag = 8;
++ }
++}
++
++static int __init sm_max6650_init(void)
++{
++ printk(KERN_INFO "max6650.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&max6650_driver);
++}
++
++static void __exit sm_max6650_exit(void)
++{
++ i2c_del_driver(&max6650_driver);
++}
++
++MODULE_AUTHOR("john.morris@spirentcom.com");
++MODULE_DESCRIPTION("max6650 sensor driver");
++MODULE_LICENSE("GPL");
++
++module_init(sm_max6650_init);
++module_exit(sm_max6650_exit);
+--- linux-old/drivers/sensors/maxilife.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/maxilife.c Mon Dec 13 20:18:50 2004
+@@ -0,0 +1,1387 @@
++/*
++ maxilife.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1999-2000 Fons Rademakers <Fons.Rademakers@cern.ch>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* The is the driver for the HP MaxiLife Health monitoring system
++ as used in the line of HP Kayak Workstation PC's.
++
++ The driver supports the following MaxiLife firmware versions:
++
++ 0) HP KAYAK XU/XAs (Dual Pentium II Slot 1, Deschutes/Klamath)
++ 1) HP KAYAK XU (Dual Xeon [Slot 2] 400/450 Mhz)
++ 2) HP KAYAK XA (Pentium II Slot 1, monoprocessor)
++
++ Currently firmware auto detection is not implemented. To use the
++ driver load it with the correct option for you Kayak. For example:
++
++ insmod maxilife.o maxi_version=0 | 1 | 2
++
++ maxi_version=0 is the default
++
++ This version of MaxiLife is called MaxiLife'98 and has been
++ succeeded by MaxiLife'99, see below.
++
++ The new version of the driver also supports MaxiLife NBA (New BIOS
++ Architecture). This new MaxiLife controller provides a much cleaner
++ machine independent abstraction layer to the MaxiLife controller.
++ Instead of accessing directly registers (different for each revision)
++ one now accesses the sensors via unique mailbox tokens that do not
++ change between revisions. Also the quantities are already in physical
++ units (degrees, rpms, voltages, etc.) and don't need special conversion
++ formulas. This new MaxiLife is available on the new 2000 machines,
++ like the Kayak XU800 and XM600. This hardware is also autodetected.
++*/
++
++static const char *version_str = "2.00 29/2/2000 Fons Rademakers";
++
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++#undef AUTODETECT /* try to autodetect MaxiLife version */
++/*#define AUTODETECT*/
++#define NOWRITE /* don't allow writing to MaxiLife registers */
++
++#ifdef AUTODETECT
++#include <linux/vmalloc.h>
++#include <linux/ctype.h>
++#endif
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x10, 0x14, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(maxilife);
++
++/* Macro definitions */
++#define LOW(MyWord) ((u8) (MyWord))
++#define HIGH(MyWord) ((u8) (((u16)(MyWord) >> 8) & 0xFF))
++
++/*----------------- MaxiLife'98 registers and conversion formulas ------------*/
++#define MAXI_REG_TEMP(nr) (0x60 + (nr))
++
++#define MAXI_REG_FAN(nr) (0x65 + (nr))
++#define MAXI_REG_FAN_MIN(nr) ((nr)==0 ? 0xb3 : (nr)==1 ? 0xb3 : 0xab)
++#define MAXI_REG_FAN_MINAS(nr) ((nr)==0 ? 0xb3 : (nr)==1 ? 0xab : 0xb3)
++#define MAXI_REG_FAN_SPEED(nr) ((nr)==0 ? 0xe4 : (nr)==1 ? 0xe5 : 0xe9)
++
++#define MAXI_REG_PLL 0xb9
++#define MAXI_REG_PLL_MIN 0xba
++#define MAXI_REG_PLL_MAX 0xbb
++
++#define MAXI_REG_VID(nr) ((nr)==0 ? 0xd1 : (nr)==1 ? 0xd9 : \
++ (nr)==2 ? 0xd4 : 0xc5)
++#define MAXI_REG_VID_MIN(nr) MAXI_REG_VID(nr)+1
++#define MAXI_REG_VID_MAX(nr) MAXI_REG_VID(nr)+2
++
++#define MAXI_REG_DIAG_RT1 0x2c
++#define MAXI_REG_DIAG_RT2 0x2d
++
++#define MAXI_REG_BIOS_CTRL 0x2a
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++
++ /* 0xfe: fan off, 0xff: stopped (alarm) */
++ /* 19531 / val * 60 == 1171860 / val */
++#define FAN_FROM_REG(val) ((val)==0xfe ? 0 : (val)==0xff ? -1 : \
++ (val)==0x00 ? -1 : (1171860 / (val)))
++
++static inline u8 FAN_TO_REG(long rpm)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1171860 + rpm / 2) / (rpm), 1, 254);
++}
++
++#define TEMP_FROM_REG(val) ((val) * 5)
++#define TEMP_TO_REG(val) (SENSORS_LIMIT((val+2) / 5),0,0xff)
++#define PLL_FROM_REG(val) (((val) * 1000) / 32)
++#define PLL_TO_REG(val) (SENSORS_LIMIT((((val) * 32 + 500) / 1000),\
++ 0,0xff))
++#define VID_FROM_REG(val) ((val) ? (((val) * 27390) / 256) + 3208 : 0)
++#define VID_TO_REG(val) (SENSORS_LIMIT((((val) - 3208) * 256) / 27390, \
++ 0,255))
++#define ALARMS_FROM_REG(val) (val)
++
++/*----------------- MaxiLife'99 mailbox and token definitions ----------------*/
++/* MaxiLife mailbox data register map */
++#define MAXI_REG_MBX_STATUS 0x5a
++#define MAXI_REG_MBX_CMD 0x5b
++#define MAXI_REG_MBX_TOKEN_H 0x5c
++#define MAXI_REG_MBX_TOKEN_L 0x5d
++#define MAXI_REG_MBX_DATA 0x60
++
++/* Mailbox status register definition */
++#define MAXI_STAT_IDLE 0xff
++#define MAXI_STAT_OK 0x00
++#define MAXI_STAT_BUSY 0x0b
++/* other values not used */
++
++/* Mailbox command register opcodes */
++#define MAXI_CMD_READ 0x02
++#define MAXI_CMD_WRITE 0x03
++/* other values not used */
++
++/* MaxiLife NBA Hardware monitoring tokens */
++
++/* Alarm tokens (0x1xxx) */
++#define MAXI_TOK_ALARM(nr) (0x1000 + (nr))
++#define MAXI_TOK_ALARM_EVENT 0x1000
++#define MAXI_TOK_ALARM_FAN 0x1001
++#define MAXI_TOK_ALARM_TEMP 0x1002
++#define MAXI_TOK_ALARM_VID 0x1003 /* voltages */
++#define MAXI_TOK_ALARM_AVID 0x1004 /* additional voltages */
++#define MAXI_TOK_ALARM_PWR 0x1101 /* power supply glitch */
++
++/* Fan status tokens (0x20xx) */
++#define MAXI_TOK_FAN(nr) (0x2000 + (nr))
++#define MAXI_TOK_FAN_CPU 0x2000
++#define MAXI_TOK_FAN_PCI 0x2001
++#define MAXI_TOK_FAN_HDD 0x2002 /* hard disk bay fan */
++#define MAXI_TOK_FAN_SINK 0x2003 /* heatsink */
++
++/* Temperature status tokens (0x21xx) */
++#define MAXI_TOK_TEMP(nr) (0x2100 + (nr))
++#define MAXI_TOK_TEMP_CPU1 0x2100
++#define MAXI_TOK_TEMP_CPU2 0x2101
++#define MAXI_TOK_TEMP_PCI 0x2102 /* PCI/ambient temp */
++#define MAXI_TOK_TEMP_HDD 0x2103 /* hard disk bay temp */
++#define MAXI_TOK_TEMP_MEM 0x2104 /* mother board temp */
++#define MAXI_TOK_TEMP_CPU 0x2105 /* CPU reference temp */
++
++/* Voltage status tokens (0x22xx) */
++#define MAXI_TOK_VID(nr) (0x2200 + (nr))
++#define MAXI_TOK_VID_12 0x2200 /* +12 volt */
++#define MAXI_TOK_VID_CPU1 0x2201 /* cpu 1 voltage */
++#define MAXI_TOK_VID_CPU2 0x2202 /* cpu 2 voltage */
++#define MAXI_TOK_VID_L2 0x2203 /* level 2 cache voltage */
++#define MAXI_TOK_VID_M12 0x2204 /* -12 volt */
++
++/* Additive voltage status tokens (0x23xx) */
++#define MAXI_TOK_AVID(nr) (0x2300 + (nr))
++#define MAXI_TOK_AVID_15 0x2300 /* 1.5 volt */
++#define MAXI_TOK_AVID_18 0x2301 /* 1.8 volt */
++#define MAXI_TOK_AVID_25 0x2302 /* 2.5 volt */
++#define MAXI_TOK_AVID_33 0x2303 /* 3.3 volt */
++#define MAXI_TOK_AVID_5 0x2304 /* 5 volt */
++#define MAXI_TOK_AVID_M5 0x2305 /* -5 volt */
++#define MAXI_TOK_AVID_BAT 0x2306 /* battery voltage */
++
++/* Threshold tokens (0x3xxx) */
++#define MAXI_TOK_MIN(token) ((token) + 0x1000)
++#define MAXI_TOK_MAX(token) ((token) + 0x1800)
++
++/* LCD Panel (0x4xxx) */
++#define MAXI_TOK_LCD(nr) (0x4000 + (nr))
++#define MAXI_TOK_LCD_LINE1 0x4000
++#define MAXI_TOK_LCD_LINE2 0x4001
++#define MAXI_TOK_LCD_LINE3 0x4002
++#define MAXI_TOK_LCD_LINE4 0x4003
++
++ /* 0xfe: fan off, 0xff: stopped (alarm) */
++ /* or not available */
++#define FAN99_FROM_REG(val) ((val)==0xfe ? 0 : (val)==0xff ? -1 : ((val)*39))
++
++ /* when no CPU2 temp is 127 (0x7f) */
++#define TEMP99_FROM_REG(val) ((val)==0x7f ? -1 : (val)==0xff ? -1 : (val))
++
++#define VID99_FROM_REG(nr,val) ((val)==0xff ? 0 : \
++ (nr)==1 ? ((val) * 608) : \
++ (nr)==2 ? ((val) * 160) : \
++ (nr)==3 ? ((val) * 160) : \
++ (nr)==4 ? (val) /* no formula spcified */ : \
++ (nr)==5 ? ((val) * 823 - 149140) : 0)
++
++
++/* The following product codenames apply:
++ Cristal/Geronimo: HP KAYAK XU/XAs
++ (Dual Pentium II Slot 1, Deschutes/Klamath)
++ Cognac: HP KAYAK XU (Dual Xeon [Slot 2] 400/450 Mhz)
++ Ashaki: HP KAYAK XA (Pentium II Slot 1, monoprocessor)
++ NBA: New BIOS Architecture, Kayak XU800, XM600, ... */
++
++enum maxi_type { cristal, cognac, ashaki, nba };
++enum sensor_type { fan, temp, vid, pll, lcd, alarm };
++
++/* For each registered MaxiLife controller, we need to keep some data in
++ memory. That data is pointed to by maxi_list[NR]->data. The structure
++ itself is dynamically allocated, at the same time when a new MaxiLife
++ client is allocated. We assume MaxiLife will only be present on the
++ SMBus and not on the ISA bus. */
++struct maxi_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++ enum maxi_type type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 fan[4]; /* Register value */
++ u8 fan_min[4]; /* Register value */
++ u8 fan_speed[4]; /* Register value */
++ u8 fan_div[4]; /* Static value */
++ u8 temp[6]; /* Register value */
++ u8 temp_max[6]; /* Static value */
++ u8 temp_hyst[6]; /* Static value */
++ u8 pll; /* Register value */
++ u8 pll_min; /* Register value */
++ u8 pll_max; /* register value */
++ u8 vid[5]; /* Register value */
++ u8 vid_min[5]; /* Register value */
++ u8 vid_max[5]; /* Register value */
++ u8 lcd[4][17]; /* Four LCD lines */
++ u16 alarms; /* Register encoding, combined */
++};
++
++
++static int maxi_attach_adapter(struct i2c_adapter *adapter);
++static int maxi_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int maxi_detach_client(struct i2c_client *client);
++
++static int maxi_read_value(struct i2c_client *client, u8 register);
++static int maxi_read_token(struct i2c_client *client, u16 token);
++#ifndef NOWRITE
++static int maxi_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++#endif
++static int maxi_write_token_loop(struct i2c_client *client, u16 token,
++ u8 len, u8 * values);
++
++static void maxi_update_client(struct i2c_client *client);
++static void maxi99_update_client(struct i2c_client *client,
++ enum sensor_type sensor, int which);
++static void maxi_init_client(struct i2c_client *client);
++
++static void maxi_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void maxi99_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void maxi_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void maxi99_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void maxi_pll(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void maxi_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void maxi99_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void maxi_lcd(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void maxi_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++/* The driver. I choose to use type i2c_driver, as at is identical to
++ the smbus_driver. */
++static struct i2c_driver maxi_driver = {
++ .owner = THIS_MODULE,
++ .name = "HP MaxiLife driver",
++ .id = I2C_DRIVERID_MAXILIFE,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = maxi_attach_adapter,
++ .detach_client = maxi_detach_client,
++};
++
++static int maxi_id = 0;
++
++/* Default firmware version. Use module option "maxi_version"
++ to set desired version. Auto detect is not yet working */
++static int maxi_version = cristal;
++
++/* The /proc/sys entries */
++
++/* -- SENSORS SYSCTL START -- */
++#define MAXI_SYSCTL_FAN1 1101 /* Rotations/min */
++#define MAXI_SYSCTL_FAN2 1102 /* Rotations/min */
++#define MAXI_SYSCTL_FAN3 1103 /* Rotations/min */
++#define MAXI_SYSCTL_FAN4 1104 /* Rotations/min */
++#define MAXI_SYSCTL_TEMP1 1201 /* Degrees Celcius */
++#define MAXI_SYSCTL_TEMP2 1202 /* Degrees Celcius */
++#define MAXI_SYSCTL_TEMP3 1203 /* Degrees Celcius */
++#define MAXI_SYSCTL_TEMP4 1204 /* Degrees Celcius */
++#define MAXI_SYSCTL_TEMP5 1205 /* Degrees Celcius */
++#define MAXI_SYSCTL_TEMP6 1206 /* Degrees Celcius */
++#define MAXI_SYSCTL_PLL 1301 /* MHz */
++#define MAXI_SYSCTL_VID1 1401 /* Volts / 6.337, for nba just Volts */
++#define MAXI_SYSCTL_VID2 1402 /* Volts */
++#define MAXI_SYSCTL_VID3 1403 /* Volts */
++#define MAXI_SYSCTL_VID4 1404 /* Volts */
++#define MAXI_SYSCTL_VID5 1405 /* Volts */
++#define MAXI_SYSCTL_LCD1 1501 /* Line 1 of LCD */
++#define MAXI_SYSCTL_LCD2 1502 /* Line 2 of LCD */
++#define MAXI_SYSCTL_LCD3 1503 /* Line 3 of LCD */
++#define MAXI_SYSCTL_LCD4 1504 /* Line 4 of LCD */
++#define MAXI_SYSCTL_ALARMS 2001 /* Bitvector (see below) */
++
++#define MAXI_ALARM_VID4 0x0001
++#define MAXI_ALARM_TEMP2 0x0002
++#define MAXI_ALARM_VID1 0x0004
++#define MAXI_ALARM_VID2 0x0008
++#define MAXI_ALARM_VID3 0x0010
++#define MAXI_ALARM_PLL 0x0080
++#define MAXI_ALARM_TEMP4 0x0100
++#define MAXI_ALARM_TEMP5 0x0200
++#define MAXI_ALARM_FAN1 0x1000
++#define MAXI_ALARM_FAN2 0x2000
++#define MAXI_ALARM_FAN3 0x4000
++
++#define MAXI_ALARM_FAN 0x0100 /* To be used with MaxiLife'99 */
++#define MAXI_ALARM_VID 0x0200 /* The MSB specifies which sensor */
++#define MAXI_ALARM_TEMP 0x0400 /* in the alarm group failed, i.e.: */
++#define MAXI_ALARM_VADD 0x0800 /* 0x0402 = TEMP2 failed = CPU2 temp */
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected MaxiLife processor.
++ This is just a template; though at first sight, you might think we
++ could use a statically allocated list, we need some way to get back
++ to the parent - which is done through one of the 'extra' fields
++ which are initialized when a new copy is allocated. */
++static ctl_table maxi_dir_table_template[] = {
++ {MAXI_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_fan},
++ {MAXI_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_fan},
++ {MAXI_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_fan},
++ {MAXI_SYSCTL_FAN4, "fan4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_fan},
++ {MAXI_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_temp},
++ {MAXI_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_temp},
++ {MAXI_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_temp},
++ {MAXI_SYSCTL_TEMP4, "temp4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_temp},
++ {MAXI_SYSCTL_TEMP5, "temp5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_temp},
++ {MAXI_SYSCTL_TEMP6, "temp6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_temp},
++ {MAXI_SYSCTL_PLL, "pll", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_pll},
++ {MAXI_SYSCTL_VID1, "vid1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_vid},
++ {MAXI_SYSCTL_VID2, "vid2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_vid},
++ {MAXI_SYSCTL_VID3, "vid3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_vid},
++ {MAXI_SYSCTL_VID4, "vid4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_vid},
++ {MAXI_SYSCTL_VID5, "vid5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_vid},
++ {MAXI_SYSCTL_LCD1, "lcd1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_lcd},
++ {MAXI_SYSCTL_LCD2, "lcd2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_lcd},
++ {MAXI_SYSCTL_LCD3, "lcd3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_lcd},
++ {MAXI_SYSCTL_LCD4, "lcd4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_lcd},
++ {MAXI_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &maxi_alarms},
++ {0}
++};
++
++/* This function is called when:
++ - maxi_driver is inserted (when this module is loaded), for each
++ available adapter
++ - when a new adapter is inserted (and maxi_driver is still present) */
++static int maxi_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, maxi_detect);
++}
++
++/* This function is called by i2c_detect */
++int maxi_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ struct i2c_client *new_client;
++ struct maxi_data *data;
++ enum maxi_type type = 0;
++ int i, j, err = 0;
++ const char *type_name = NULL, *client_name = NULL;
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access maxi_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct maxi_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ /* Fill the new client structure with data */
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &maxi_driver;
++ new_client->flags = 0;
++
++ /* Now we do the remaining detection. */
++ if (kind < 0) {
++ if (i2c_smbus_read_byte_data
++ (new_client, MAXI_REG_MBX_STATUS) < 0)
++ goto ERROR2;
++ }
++
++ /* Determine the chip type - only one kind supported */
++ if (kind <= 0)
++ kind = maxilife;
++
++ if (kind == maxilife) {
++ /* Detect if the machine has a MaxiLife NBA controller.
++ The right way to perform this check is to do a read/modify/write
++ on register MbxStatus (5A):
++ - Read 5A (value 0 for non-NBA firmware, FF (MbxIdle on NBA-firmware)
++ - Write 55 on 5A, then read back 5A
++ Non-NBA firmware: value is 55 (reg 5A is a standard writable reg)
++ NBA firmaware: value is FF (write-protect on MbxStatus active) */
++ int stat;
++ i2c_smbus_write_byte_data(new_client, MAXI_REG_MBX_STATUS,
++ 0x55);
++ stat =
++ i2c_smbus_read_byte_data(new_client,
++ MAXI_REG_MBX_STATUS);
++
++ /*if (stat == MAXI_STAT_IDLE || stat == MAXI_STAT_OK) */
++ if (stat != 0x55)
++ maxi_version = nba;
++#ifdef AUTODETECT
++ else {
++ /* The right way to get the platform info is to read the firmware
++ revision from serial EEPROM (addr=0x54), at offset 0x0045.
++ This is a string as:
++ "CG 00.04" -> Cristal [XU] / Geronimo [XAs]
++ "CO 00.03" -> Cognac [XU]
++ "AS 00.01" -> Ashaki [XA] */
++#if 0
++ int biosctl;
++ biosctl =
++ i2c_smbus_read_byte_data(new_client,
++ MAXI_REG_BIOS_CTRL);
++ i2c_smbus_write_byte_data(new_client,
++ MAXI_REG_BIOS_CTRL,
++ biosctl | 4);
++ err = eeprom_read_byte_data(adapter, 0x54, 0x45);
++ i2c_smbus_write_byte_data(new_client,
++ MAXI_REG_BIOS_CTRL,
++ biosctl);
++#endif
++ int i;
++ char *biosmem, *bm;
++ bm = biosmem = ioremap(0xe0000, 0x20000);
++ if (biosmem) {
++ printk("begin of bios search\n");
++ for (i = 0; i < 0x20000; i++) {
++ if (*bm == 'C') {
++ char *s = bm;
++ while (s && isprint(*s)) {
++ printk("%c", *s);
++ s++;
++ }
++ printk("\n");
++ if (!strncmp
++ (bm, "CG 00.04", 8)) {
++ maxi_version =
++ cristal;
++ printk
++ ("maxilife: found MaxiLife Rev CG 00.04\n");
++ break;
++ }
++ if (!strncmp
++ (bm, "CO 00.03", 8)) {
++ maxi_version =
++ cognac;
++ printk
++ ("maxilife: found MaxiLife Rev CO 00.03\n");
++ break;
++ }
++ }
++ if (*bm == 'A' && *(bm + 1) == 'S') {
++ char *s = bm;
++ while (s && isprint(*s)) {
++ printk("%c", *s);
++ s++;
++ }
++ printk("\n");
++ if (!strncmp
++ (bm, "AS 00.01", 8)) {
++ maxi_version =
++ ashaki;
++ printk
++ ("maxilife: found MaxiLife Rev AS 00.01\n");
++ break;
++ }
++ }
++ bm++;
++ }
++ printk("end of bios search\n");
++ } else
++ printk("could not map bios memory\n");
++ }
++#endif
++
++ if (maxi_version == cristal) {
++ type = cristal;
++ type_name = "maxilife-cg";
++ client_name = "HP MaxiLife Rev CG 00.04";
++ printk
++ ("maxilife: HP KAYAK XU/XAs (Dual Pentium II Slot 1)\n");
++ } else if (maxi_version == cognac) {
++ type = cognac;
++ type_name = "maxilife-co";
++ client_name = "HP MaxiLife Rev CO 00.03";
++ printk
++ ("maxilife: HP KAYAK XU (Dual Xeon Slot 2 400/450 Mhz)\n");
++ } else if (maxi_version == ashaki) {
++ type = ashaki;
++ type_name = "maxilife-as";
++ client_name = "HP MaxiLife Rev AS 00.01";
++ printk
++ ("maxilife: HP KAYAK XA (Pentium II Slot 1, monoprocessor)\n");
++ } else if (maxi_version == nba) {
++ type = nba;
++ type_name = "maxilife-nba";
++ client_name = "HP MaxiLife NBA";
++ printk("maxilife: HP KAYAK XU800/XM600\n");
++ } else {
++#ifdef AUTODETECT
++ printk
++ ("maxilife: Warning: probed non-maxilife chip?!? (%x)\n",
++ err);
++#else
++ printk
++ ("maxilife: Error: specified wrong maxi_version (%d)\n",
++ maxi_version);
++#endif
++ goto ERROR2;
++ }
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ ((struct maxi_data *) (new_client->data))->type = type;
++
++ for (i = 0; i < 4; i++)
++ for (j = 0; j < 17; j++)
++ ((struct maxi_data *) (new_client->data))->
++ lcd[i][j] = (u8) 0;
++
++ new_client->id = maxi_id++;
++
++ data->valid = 0;
++ init_MUTEX(&data->lock);
++ init_MUTEX(&data->update_lock);
++
++ /* Tell i2c-core that a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR2;
++
++ /* Register a new directory entry with module sensors */
++ if ((err = i2c_register_entry(new_client, type_name,
++ maxi_dir_table_template)) < 0)
++ goto ERROR4;
++ data->sysctl_id = err;
++
++ /* Initialize the MaxiLife chip */
++ maxi_init_client(new_client);
++ return 0;
++
++ /* OK, this is not exactly good programming practice, usually.
++ But it is very code-efficient in this case. */
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR2:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++/* This function is called whenever a client should be removed:
++ - maxi_driver is removed (when this module is unloaded)
++ - when an adapter is removed which has a maxi client (and maxi_driver
++ is still present). */
++static int maxi_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct maxi_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("maxilife: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++ kfree(client->data);
++ return 0;
++}
++
++/* Read byte from specified register (-1 in case of error, value otherwise). */
++static int maxi_read_value(struct i2c_client *client, u8 reg)
++{
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++/* Read the byte value for a MaxiLife token (-1 in case of error, value otherwise */
++static int maxi_read_token(struct i2c_client *client, u16 token)
++{
++ u8 lowToken, highToken;
++ int error, value;
++
++ lowToken = LOW(token);
++ highToken = HIGH(token);
++
++ /* Set mailbox status register to idle state. */
++ error =
++ i2c_smbus_write_byte_data(client, MAXI_REG_MBX_STATUS,
++ MAXI_STAT_IDLE);
++ if (error < 0)
++ return error;
++
++ /* Check for mailbox idle state. */
++ error = i2c_smbus_read_byte_data(client, MAXI_REG_MBX_STATUS);
++ if (error != MAXI_STAT_IDLE)
++ return -1;
++
++ /* Write the most significant byte of the token we want to read. */
++ error =
++ i2c_smbus_write_byte_data(client, MAXI_REG_MBX_TOKEN_H,
++ highToken);
++ if (error < 0)
++ return error;
++
++ /* Write the least significant byte of the token we want to read. */
++ error =
++ i2c_smbus_write_byte_data(client, MAXI_REG_MBX_TOKEN_L,
++ lowToken);
++ if (error < 0)
++ return error;
++
++ /* Write the read token opcode to the mailbox. */
++ error =
++ i2c_smbus_write_byte_data(client, MAXI_REG_MBX_CMD,
++ MAXI_CMD_READ);
++ if (error < 0)
++ return error;
++
++ /* Check for transaction completion */
++ do {
++ error =
++ i2c_smbus_read_byte_data(client, MAXI_REG_MBX_STATUS);
++ } while (error == MAXI_STAT_BUSY);
++ if (error != MAXI_STAT_OK)
++ return -1;
++
++ /* Read the value of the token. */
++ value = i2c_smbus_read_byte_data(client, MAXI_REG_MBX_DATA);
++ if (value == -1)
++ return -1;
++
++ /* set mailbox status to idle to complete transaction. */
++ error =
++ i2c_smbus_write_byte_data(client, MAXI_REG_MBX_STATUS,
++ MAXI_STAT_IDLE);
++ if (error < 0)
++ return error;
++
++ return value;
++}
++
++#ifndef NOWRITE
++/* Write byte to specified register (-1 in case of error, 0 otherwise). */
++static int maxi_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++#endif
++
++/* Write a set of len byte values to MaxiLife token (-1 in case of error, 0 otherwise). */
++int maxi_write_token_loop(struct i2c_client *client, u16 token, u8 len,
++ u8 * values)
++{
++ u8 lowToken, highToken, bCounter;
++ int error;
++
++ lowToken = LOW(token);
++ highToken = HIGH(token);
++
++ /* Set mailbox status register to idle state. */
++ error =
++ i2c_smbus_write_byte_data(client, MAXI_REG_MBX_STATUS,
++ MAXI_STAT_IDLE);
++ if (error < 0)
++ return error;
++
++ /* Check for mailbox idle state. */
++ error = i2c_smbus_read_byte_data(client, MAXI_REG_MBX_STATUS);
++ if (error != MAXI_STAT_IDLE)
++ return -1;
++
++ for (bCounter = 0; (bCounter < len && bCounter < 32); bCounter++) {
++ error =
++ i2c_smbus_write_byte_data(client,
++ (u8) (MAXI_REG_MBX_DATA +
++ bCounter),
++ values[bCounter]);
++ if (error < 0)
++ return error;
++ }
++
++ /* Write the most significant byte of the token we want to read. */
++ error =
++ i2c_smbus_write_byte_data(client, MAXI_REG_MBX_TOKEN_H,
++ highToken);
++ if (error < 0)
++ return error;
++
++ /* Write the least significant byte of the token we want to read. */
++ error =
++ i2c_smbus_write_byte_data(client, MAXI_REG_MBX_TOKEN_L,
++ lowToken);
++ if (error < 0)
++ return error;
++
++ /* Write the write token opcode to the mailbox. */
++ error =
++ i2c_smbus_write_byte_data(client, MAXI_REG_MBX_CMD,
++ MAXI_CMD_WRITE);
++ if (error < 0)
++ return error;
++
++ /* Check for transaction completion */
++ do {
++ error =
++ i2c_smbus_read_byte_data(client, MAXI_REG_MBX_STATUS);
++ } while (error == MAXI_STAT_BUSY);
++ if (error != MAXI_STAT_OK)
++ return -1;
++
++ /* set mailbox status to idle to complete transaction. */
++ return i2c_smbus_write_byte_data(client, MAXI_REG_MBX_STATUS,
++ MAXI_STAT_IDLE);
++}
++
++/* Called when we have found a new MaxiLife. It should set limits, etc. */
++static void maxi_init_client(struct i2c_client *client)
++{
++ struct maxi_data *data = client->data;
++
++ if (data->type == nba) {
++ strcpy(data->lcd[2], " Linux MaxiLife");
++ maxi_write_token_loop(client, MAXI_TOK_LCD(2),
++ strlen(data->lcd[2]) + 1,
++ data->lcd[2]);
++ }
++}
++
++static void maxi_update_client(struct i2c_client *client)
++{
++ struct maxi_data *data = client->data;
++ int i;
++
++ if (data->type == nba) {
++ printk
++ ("maxi_update_client should never be called by nba\n");
++ return;
++ }
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("maxilife: Starting MaxiLife update\n");
++#endif
++ for (i = 0; i < 5; i++)
++ data->temp[i] =
++ maxi_read_value(client, MAXI_REG_TEMP(i));
++ switch (data->type) {
++ case cristal:
++ data->temp[0] = 0; /* not valid */
++ data->temp_max[0] = 0;
++ data->temp_hyst[0] = 0;
++ data->temp_max[1] = 110; /* max PCI slot temp */
++ data->temp_hyst[1] = 100;
++ data->temp_max[2] = 120; /* max BX chipset temp */
++ data->temp_hyst[2] = 110;
++ data->temp_max[3] = 100; /* max HDD temp */
++ data->temp_hyst[3] = 90;
++ data->temp_max[4] = 120; /* max CPU temp */
++ data->temp_hyst[4] = 110;
++ break;
++
++ case cognac:
++ data->temp_max[0] = 120; /* max CPU1 temp */
++ data->temp_hyst[0] = 110;
++ data->temp_max[1] = 110; /* max PCI slot temp */
++ data->temp_hyst[1] = 100;
++ data->temp_max[2] = 120; /* max CPU2 temp */
++ data->temp_hyst[2] = 110;
++ data->temp_max[3] = 100; /* max HDD temp */
++ data->temp_hyst[3] = 90;
++ data->temp_max[4] = 120; /* max reference CPU temp */
++ data->temp_hyst[4] = 110;
++ break;
++
++ case ashaki:
++ data->temp[0] = 0; /* not valid */
++ data->temp_max[0] = 0;
++ data->temp_hyst[0] = 0;
++ data->temp_max[1] = 110; /* max PCI slot temp */
++ data->temp_hyst[1] = 100;
++ data->temp[2] = 0; /* not valid */
++ data->temp_max[2] = 0;
++ data->temp_hyst[2] = 0;
++ data->temp_max[3] = 100; /* max HDD temp */
++ data->temp_hyst[3] = 90;
++ data->temp_max[4] = 120; /* max CPU temp */
++ data->temp_hyst[4] = 110;
++ break;
++
++ default:
++ printk("maxilife: Unknown MaxiLife chip\n");
++ }
++ data->temp[5] = 0; /* only used by MaxiLife'99 */
++ data->temp_max[5] = 0;
++ data->temp_hyst[5] = 0;
++
++ for (i = 0; i < 3; i++) {
++ data->fan[i] =
++ maxi_read_value(client, MAXI_REG_FAN(i));
++ data->fan_speed[i] =
++ maxi_read_value(client, MAXI_REG_FAN_SPEED(i));
++ data->fan_div[i] = 4;
++ if (data->type == ashaki)
++ data->fan_min[i] =
++ maxi_read_value(client,
++ MAXI_REG_FAN_MINAS(i));
++ else
++ data->fan_min[i] =
++ maxi_read_value(client,
++ MAXI_REG_FAN_MIN(i));
++ }
++ data->fan[3] = 0xff; /* only used by MaxiLife'99 */
++ data->fan_speed[3] = 0;
++ data->fan_div[3] = 4; /* avoid possible /0 */
++ data->fan_min[3] = 0;
++
++ data->pll = maxi_read_value(client, MAXI_REG_PLL);
++ data->pll_min = maxi_read_value(client, MAXI_REG_PLL_MIN);
++ data->pll_max = maxi_read_value(client, MAXI_REG_PLL_MAX);
++
++ for (i = 0; i < 4; i++) {
++ data->vid[i] =
++ maxi_read_value(client, MAXI_REG_VID(i));
++ data->vid_min[i] =
++ maxi_read_value(client, MAXI_REG_VID_MIN(i));
++ data->vid_max[i] =
++ maxi_read_value(client, MAXI_REG_VID_MAX(i));
++ }
++ switch (data->type) {
++ case cristal:
++ data->vid[3] = 0; /* no voltage cache L2 */
++ data->vid_min[3] = 0;
++ data->vid_max[3] = 0;
++ break;
++
++ case cognac:
++ break;
++
++ case ashaki:
++ data->vid[1] = 0; /* no voltage CPU 2 */
++ data->vid_min[1] = 0;
++ data->vid_max[1] = 0;
++ data->vid[3] = 0; /* no voltage cache L2 */
++ data->vid_min[3] = 0;
++ data->vid_max[3] = 0;
++ break;
++
++ default:
++ printk("maxilife: Unknown MaxiLife chip\n");
++ }
++ data->vid[4] = 0; /* only used by MaxliLife'99 */
++ data->vid_min[4] = 0;
++ data->vid_max[4] = 0;
++
++ data->alarms = maxi_read_value(client, MAXI_REG_DIAG_RT1) +
++ (maxi_read_value(client, MAXI_REG_DIAG_RT2) << 8);
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++void maxi99_update_client(struct i2c_client *client,
++ enum sensor_type sensor, int which)
++{
++ static unsigned long last_updated[6][6]; /* sensor, which */
++ struct maxi_data *data = client->data;
++
++ down(&data->update_lock);
++
++ /*maxi_write_token_loop(client, MAXI_TOK_LCD_LINE3, 13, "Linux 2.2.13"); */
++
++ if ((jiffies - last_updated[sensor][which] > 2 * HZ) ||
++ (jiffies < last_updated[sensor][which]
++ || !last_updated[sensor][which])) {
++
++ int tmp, i;
++
++ switch (sensor) {
++ case fan:
++ for (i = 0; i < 4; i++) {
++ if (i == which) {
++ tmp =
++ maxi_read_token(client,
++ MAXI_TOK_FAN
++ (i));
++ data->fan[i] =
++ maxi_read_token(client,
++ MAXI_TOK_FAN
++ (i));
++ data->fan_speed[i] =
++ maxi_read_token(client,
++ MAXI_TOK_MAX
++ (MAXI_TOK_FAN
++ (i)));
++ data->fan_div[i] = 1;
++ data->fan_min[i] = 0;
++ }
++ }
++ break;
++
++ case temp:
++ for (i = 0; i < 6; i++) {
++ if (i == which) {
++ data->temp[i] =
++ maxi_read_token(client,
++ MAXI_TOK_TEMP
++ (i));
++ data->temp_max[i] =
++ maxi_read_token(client,
++ MAXI_TOK_MAX
++ (MAXI_TOK_TEMP
++ (i)));
++ data->temp_hyst[i] =
++ data->temp_max[i] - 5;
++ }
++ }
++ break;
++
++ case vid:
++ for (i = 0; i < 5; i++) {
++ if (i == which) {
++ data->vid[i] =
++ maxi_read_token(client,
++ MAXI_TOK_VID
++ (i));
++ data->vid_min[i] =
++ maxi_read_token(client,
++ MAXI_TOK_MIN
++ (MAXI_TOK_VID
++ (i)));
++ data->vid_max[i] =
++ maxi_read_token(client,
++ MAXI_TOK_MAX
++ (MAXI_TOK_VID
++ (i)));
++ }
++ }
++ break;
++
++ case pll:
++ data->pll = 0;
++ data->pll_min = 0;
++ data->pll_max = 0;
++ break;
++
++ case alarm:
++ data->alarms =
++ (maxi_read_token(client, MAXI_TOK_ALARM_EVENT)
++ << 8);
++ if (data->alarms)
++ data->alarms +=
++ data->alarms ==
++ (1 << 8) ? maxi_read_token(client,
++ MAXI_TOK_ALARM_FAN)
++ : data->alarms ==
++ (2 << 8) ? maxi_read_token(client,
++ MAXI_TOK_ALARM_VID)
++ : data->alarms ==
++ (4 << 8) ? maxi_read_token(client,
++ MAXI_TOK_ALARM_TEMP)
++ : data->alarms ==
++ (8 << 8) ? maxi_read_token(client,
++ MAXI_TOK_ALARM_FAN)
++ : 0;
++ break;
++
++ default:
++ printk("maxilife: Unknown sensor type\n");
++ }
++
++ last_updated[sensor][which] = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the data
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void maxi_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct maxi_data *data = client->data;
++ int nr;
++
++ if (data->type == nba) {
++ maxi99_fan(client, operation, ctl_name, nrels_mag,
++ results);
++ return;
++ }
++
++ nr = ctl_name - MAXI_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ maxi_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1]);
++ results[1] = data->fan_div[nr - 1];
++ results[2] = FAN_FROM_REG(data->fan[nr - 1]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++#ifndef NOWRITE
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = FAN_TO_REG(results[0]);
++ maxi_write_value(client, MAXI_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++#endif
++ }
++}
++
++void maxi99_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct maxi_data *data = client->data;
++ int nr;
++
++ nr = ctl_name - MAXI_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ maxi99_update_client(client, fan, nr - 1);
++ results[0] = FAN99_FROM_REG(data->fan_min[nr - 1]); /* min rpm */
++ results[1] = data->fan_div[nr - 1]; /* divisor */
++ results[2] = FAN99_FROM_REG(data->fan[nr - 1]); /* rpm */
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++#ifndef NOWRITE
++ /* still to do */
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = FAN_TO_REG(results[0]);
++ maxi_write_value(client, MAXI_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++#endif
++ }
++}
++
++void maxi_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct maxi_data *data = client->data;
++ int nr;
++
++ if (data->type == nba) {
++ maxi99_temp(client, operation, ctl_name, nrels_mag,
++ results);
++ return;
++ }
++
++ nr = ctl_name - MAXI_SYSCTL_TEMP1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ maxi_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_max[nr - 1]);
++ results[1] = TEMP_FROM_REG(data->temp_hyst[nr - 1]);
++ results[2] = TEMP_FROM_REG(data->temp[nr - 1]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ /* temperature range can not be changed */
++ }
++}
++
++void maxi99_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct maxi_data *data = client->data;
++ int nr;
++
++ nr = ctl_name - MAXI_SYSCTL_TEMP1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ maxi99_update_client(client, temp, nr - 1);
++ results[0] = TEMP99_FROM_REG(data->temp_max[nr - 1]);
++ results[1] = TEMP99_FROM_REG(data->temp_hyst[nr - 1]);
++ results[2] = TEMP99_FROM_REG(data->temp[nr - 1]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ /* temperature range can not be changed */
++ }
++}
++
++void maxi_pll(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct maxi_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ if (data->type == nba)
++ maxi99_update_client(client, pll, 0);
++ else
++ maxi_update_client(client);
++ results[0] = PLL_FROM_REG(data->pll_min);
++ results[1] = PLL_FROM_REG(data->pll_max);
++ results[2] = PLL_FROM_REG(data->pll);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++#ifndef NOWRITE
++ if (*nrels_mag >= 1) {
++ data->pll_min = PLL_TO_REG(results[0]);
++ maxi_write_value(client, MAXI_REG_PLL_MIN,
++ data->pll_min);
++ }
++ if (*nrels_mag >= 2) {
++ data->pll_max = PLL_TO_REG(results[1]);
++ maxi_write_value(client, MAXI_REG_PLL_MAX,
++ data->pll_max);
++ }
++#endif
++ }
++}
++
++void maxi_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct maxi_data *data = client->data;
++ int nr;
++
++ if (data->type == nba) {
++ maxi99_vid(client, operation, ctl_name, nrels_mag,
++ results);
++ return;
++ }
++
++ nr = ctl_name - MAXI_SYSCTL_VID1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 4;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ maxi_update_client(client);
++ results[0] = VID_FROM_REG(data->vid_min[nr - 1]);
++ results[1] = VID_FROM_REG(data->vid_max[nr - 1]);
++ results[2] = VID_FROM_REG(data->vid[nr - 1]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++#ifndef NOWRITE
++ if (*nrels_mag >= 1) {
++ data->vid_min[nr - 1] = VID_TO_REG(results[0]);
++ maxi_write_value(client, MAXI_REG_VID_MIN(nr),
++ data->vid_min[nr - 1]);
++ }
++ if (*nrels_mag >= 2) {
++ data->vid_max[nr - 1] = VID_TO_REG(results[1]);
++ maxi_write_value(client, MAXI_REG_VID_MAX(nr),
++ data->vid_max[nr - 1]);
++ }
++#endif
++ }
++}
++
++void maxi99_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct maxi_data *data = client->data;
++ int nr = ctl_name - MAXI_SYSCTL_VID1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 4;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ maxi99_update_client(client, vid, nr - 1);
++ results[0] = VID99_FROM_REG(nr, data->vid_min[nr - 1]);
++ results[1] = VID99_FROM_REG(nr, data->vid_max[nr - 1]);
++ results[2] = VID99_FROM_REG(nr, data->vid[nr - 1]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++#ifndef NOWRITE
++ /* still to do */
++ if (*nrels_mag >= 1) {
++ data->vid_min[nr - 1] = VID_TO_REG(results[0]);
++ maxi_write_value(client, MAXI_REG_VID_MIN(nr),
++ data->vid_min[nr - 1]);
++ }
++ if (*nrels_mag >= 2) {
++ data->vid_max[nr - 1] = VID_TO_REG(results[1]);
++ maxi_write_value(client, MAXI_REG_VID_MAX(nr),
++ data->vid_max[nr - 1]);
++ }
++#endif
++ }
++}
++
++void maxi_lcd(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ /* Allows writing and reading from LCD display */
++
++ struct maxi_data *data = client->data;
++ int nr;
++
++ if (data->type != nba)
++ return;
++
++ nr = ctl_name - MAXI_SYSCTL_LCD1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = *((long *) &data->lcd[nr - 1][0]);
++ results[1] = *((long *) &data->lcd[nr - 1][4]);
++ results[2] = *((long *) &data->lcd[nr - 1][8]);
++ results[3] = *((long *) &data->lcd[nr - 1][12]);
++ *nrels_mag = 4;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ /*
++ Writing a string to line 3 of the LCD can be done like:
++ echo -n "Linux MaxiLife" | od -A n -l > \
++ /proc/sys/dev/sensors/maxilife-nba-i2c-0-14/lcd3
++ */
++ if (*nrels_mag >= 1)
++ *((long *) &data->lcd[nr - 1][0]) = results[0];
++ if (*nrels_mag >= 2)
++ *((long *) &data->lcd[nr - 1][4]) = results[1];
++ if (*nrels_mag >= 3)
++ *((long *) &data->lcd[nr - 1][8]) = results[2];
++ if (*nrels_mag >= 4)
++ *((long *) &data->lcd[nr - 1][12]) = results[3];
++ maxi_write_token_loop(client, MAXI_TOK_LCD(nr - 1),
++ strlen(data->lcd[nr - 1]) + 1,
++ data->lcd[nr - 1]);
++#if 0
++ if (*nrels_mag >= 1)
++ printk("nr=%d, result[0] = %.4s\n", nr,
++ (char *) &results[0]);
++ if (*nrels_mag >= 2)
++ printk("nr=%d, result[1] = %.4s\n", nr,
++ (char *) &results[1]);
++ if (*nrels_mag >= 3)
++ printk("nr=%d, result[2] = %.4s\n", nr,
++ (char *) &results[2]);
++ if (*nrels_mag >= 4)
++ printk("nr=%d, result[3] = %.4s\n", nr,
++ (char *) &results[3]);
++#endif
++ }
++
++}
++
++void maxi_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct maxi_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ if (data->type == nba)
++ maxi99_update_client(client, alarm, 0);
++ else
++ maxi_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++static int __init sm_maxilife_init(void)
++{
++ printk("maxilife: Version %s (lm_sensors %s (%s))\n", version_str,
++ LM_VERSION, LM_DATE);
++ return i2c_add_driver(&maxi_driver);
++}
++
++static void __exit sm_maxilife_exit(void)
++{
++ i2c_del_driver(&maxi_driver);
++}
++
++
++
++MODULE_AUTHOR("Fons Rademakers <Fons.Rademakers@cern.ch>");
++MODULE_DESCRIPTION("HP MaxiLife driver");
++MODULE_PARM(maxi_version, "i");
++MODULE_PARM_DESC(maxi_version, "MaxiLife firmware version");
++
++module_init(sm_maxilife_init);
++module_exit(sm_maxilife_exit);
+--- linux-old/drivers/sensors/mtp008.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/mtp008.c Mon Dec 13 20:18:51 2004
+@@ -0,0 +1,1103 @@
++/*
++ mtp008.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (C) 2001, 2004 Kris Van Hees <aedil@alchar.org>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++ */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = {SENSORS_I2C_END};
++static unsigned short normal_i2c_range[] = {0x2c, 0x2e, SENSORS_I2C_END};
++static unsigned int normal_isa[] = {SENSORS_ISA_END};
++static unsigned int normal_isa_range[] = {SENSORS_ISA_END};
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(mtp008);
++
++/* The MTP008 registers */
++/* in0 .. in6 */
++#define MTP008_REG_IN(nr) (0x20 + (nr))
++#define MTP008_REG_IN_MAX(nr) (0x2b + (nr) * 2)
++#define MTP008_REG_IN_MIN(nr) (0x2c + (nr) * 2)
++
++/* temp1 */
++#define MTP008_REG_TEMP 0x27
++#define MTP008_REG_TEMP_MAX 0x39
++#define MTP008_REG_TEMP_MIN 0x3a
++
++/* fan1 .. fan3 */
++#define MTP008_REG_FAN(nr) (0x27 + (nr))
++#define MTP008_REG_FAN_MIN(nr) (0x3a + (nr))
++
++#define MTP008_REG_CONFIG 0x40
++#define MTP008_REG_INT_STAT1 0x41
++#define MTP008_REG_INT_STAT2 0x42
++
++#define MTP008_REG_SMI_MASK1 0x43
++#define MTP008_REG_SMI_MASK2 0x44
++
++#define MTP008_REG_NMI_MASK1 0x45
++#define MTP008_REG_NMI_MASK2 0x46
++
++#define MTP008_REG_VID_FANDIV 0x47
++
++#define MTP008_REG_I2C_ADDR 0x48
++
++#define MTP008_REG_RESET_VID4 0x49
++
++#define MTP008_REG_OVT_PROP 0x50
++
++#define MTP008_REG_BEEP_CTRL1 0x51
++#define MTP008_REG_BEEP_CTRL2 0x52
++
++/* pwm1 .. pwm3 nr range 1-3 */
++#define MTP008_REG_PWM_CTRL(nr) (0x52 + (nr))
++
++#define MTP008_REG_PIN_CTRL1 0x56
++#define MTP008_REG_PIN_CTRL2 0x57
++
++#define MTP008_REG_CHIPID 0x58
++
++/*
++ * Pin control register configuration constants.
++ */
++#define MTP008_CFG_VT1_PII 0x08
++#define MTP008_CFG_VT2_AIN 0x00
++#define MTP008_CFG_VT2_VT 0x03
++#define MTP008_CFG_VT2_PII 0x04
++#define MTP008_CFG_VT2_MASK 0x06
++#define MTP008_CFG_VT3_VT 0x01
++
++/* sensor pin types */
++#define VOLTAGE 1
++#define THERMISTOR 2
++#define PIIDIODE 3
++
++/*
++ * Conversion routines and macros. Limit checking is only done on
++ * the TO_REG variants.
++ *
++ * Note that IN values are expressed as 100 times the actual voltage to avoid
++ * having to use floating point values. As such, IN values are between 0 and
++ * 409 (0V to 4.096V).
++ */
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val) * 10 + 8) / 16), 0, 255))
++#define IN_FROM_REG(val) (((val) * 16 + 5) / 10)
++
++/*
++ * The fan cotation count (as stored in the register) is calculated using the
++ * following formula:
++ * count = (22.5K * 60) / (rpm * div) = 1350000 / (rpm * div)
++ * and the rpm is therefore:
++ * rpm = 1350000 / (count * div)
++ */
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++
++ return SENSORS_LIMIT(
++ (1350000 + rpm * div / 2) / (rpm * div),
++ 1, 254
++ );
++}
++
++#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 \
++ : (val) == 255 ? 0 \
++ : 1350000 / \
++ ((val) * (div)) \
++ )
++
++/*
++ * Temperatures are stored as two's complement values of the Celsius value. It
++ * actually uses 10 times the Celsius value to avoid using floating point
++ * values.
++ */
++#define TEMP_TO_REG(val) ( \
++ (val) < 0 \
++ ? SENSORS_LIMIT(((val) - 5) / 10, 0, 255) \
++ : SENSORS_LIMIT(((val) + 5) / 10, 0, 255) \
++ )
++#define TEMP_FROM_REG(val) ( \
++ ( \
++ (val) > 0x80 ? (val) - 0x100 \
++ : (val) \
++ ) * 10 \
++ )
++
++/*
++ * VCORE voltage:
++ * 0x00 to 0x0f = 2.05 to 1.30 (0.05 per unit)
++ * 0x10 to 0x1e = 3.50 to 2.10 (0.10 per unit)
++ * 0x1f = No CPU
++ */
++#define VID_FROM_REG(val) ((val) == 0x1f \
++ ? 0 \
++ : (val) < 0x10 ? 205 - (val) * 5 \
++ : 510 - (val) * 10)
++
++/*
++ * Fan divider.
++ */
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val) == 8 ? 3 \
++ : (val) == 4 ? 2 \
++ : (val) == 2 ? 1 \
++ : 0)
++
++/*
++ * Alarms (interrupt status).
++ */
++#define ALARMS_FROM_REG(val) (val)
++
++/*
++ * Beep controls.
++ */
++#define BEEPS_FROM_REG(val) (val)
++#define BEEPS_TO_REG(val) (val)
++
++/*
++ * PWM control. nr range 1 to 3
++ */
++#define PWM_FROM_REG(val) (val)
++#define PWM_TO_REG(val) (val)
++#define PWMENABLE_FROM_REG(nr, val) (((val) >> ((nr) + 3)) & 1)
++
++/*
++ * For each registered MTP008, we need to keep some data in memory. The
++ * structure itself is dynamically allocated, at the same time when a new
++ * mtp008 client is allocated.
++ */
++struct mtp008_data {
++ struct i2c_client client;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[7]; /* Register value */
++ u8 in_max[7]; /* Register value */
++ u8 in_min[7]; /* Register value */
++ u8 temp; /* Register value */
++ u8 temp_max; /* Register value */
++ u8 temp_min; /* Register value */
++ u8 fan[3]; /* Register value */
++ u8 fan_min[3]; /* Register value */
++ u8 vid; /* Register encoding */
++ u8 fan_div[3]; /* Register encoding */
++ u16 alarms; /* Register encoding */
++ u16 beeps; /* Register encoding */
++ u8 pwm[4]; /* Register value */
++ u8 sens[3]; /* 1 = Analog input,
++ 2 = Thermistor,
++ 3 = PII/Celeron diode */
++ u8 pwmenable; /* Register 0x57 value */
++};
++
++static int mtp008_attach_adapter(struct i2c_adapter *adapter);
++static int mtp008_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int mtp008_detach_client(struct i2c_client *client);
++
++static int mtp008_read_value(struct i2c_client *client, u8 register);
++static int mtp008_write_value(struct i2c_client *client, u8 register, u8 value);
++static void mtp008_update_client(struct i2c_client *client);
++static void mtp008_init_client(struct i2c_client *client);
++
++static void mtp008_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_temp_add(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_beep(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_sens(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void mtp008_getsensortype(struct mtp008_data *data, u8 inp);
++
++static int mtp008_id = 0;
++
++static struct i2c_driver mtp008_driver =
++{
++ .owner = THIS_MODULE,
++ .name = "MTP008 sensor driver",
++ .id = I2C_DRIVERID_MTP008,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = mtp008_attach_adapter,
++ .detach_client = mtp008_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++#define MTP008_SYSCTL_IN0 1000 /* Volts * 100 */
++#define MTP008_SYSCTL_IN1 1001
++#define MTP008_SYSCTL_IN2 1002
++#define MTP008_SYSCTL_IN3 1003
++#define MTP008_SYSCTL_IN4 1004
++#define MTP008_SYSCTL_IN5 1005
++#define MTP008_SYSCTL_IN6 1006
++#define MTP008_SYSCTL_FAN1 1101 /* Rotations/min */
++#define MTP008_SYSCTL_FAN2 1102
++#define MTP008_SYSCTL_FAN3 1103
++#define MTP008_SYSCTL_TEMP1 1200 /* Degrees Celcius * 10 */
++#define MTP008_SYSCTL_TEMP2 1201 /* Degrees Celcius * 10 */
++#define MTP008_SYSCTL_TEMP3 1202 /* Degrees Celcius * 10 */
++#define MTP008_SYSCTL_VID 1300 /* Volts * 100 */
++#define MTP008_SYSCTL_PWM1 1401
++#define MTP008_SYSCTL_PWM2 1402
++#define MTP008_SYSCTL_PWM3 1403
++#define MTP008_SYSCTL_SENS1 1501 /* 1, 2, or Beta (3000-5000) */
++#define MTP008_SYSCTL_SENS2 1502
++#define MTP008_SYSCTL_SENS3 1503
++#define MTP008_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define MTP008_SYSCTL_ALARMS 2001 /* bitvector */
++#define MTP008_SYSCTL_BEEP 2002 /* bitvector */
++
++#define MTP008_ALARM_IN0 0x0001
++#define MTP008_ALARM_IN1 0x0002
++#define MTP008_ALARM_IN2 0x0004
++#define MTP008_ALARM_IN3 0x0008
++#define MTP008_ALARM_IN4 0x0100
++#define MTP008_ALARM_IN5 0x0200
++#define MTP008_ALARM_IN6 0x0400
++#define MTP008_ALARM_FAN1 0x0040
++#define MTP008_ALARM_FAN2 0x0080
++#define MTP008_ALARM_FAN3 0x0800
++#define MTP008_ALARM_TEMP1 0x0010
++#define MTP008_ALARM_TEMP2 0x0100
++#define MTP008_ALARM_TEMP3 0x0200
++
++/* -- SENSORS SYSCTL END -- */
++
++/* The /proc/sys entries */
++/* These files are created for each detected chip. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++
++static ctl_table mtp008_dir_table_template[] =
++{
++ {MTP008_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_in},
++ {MTP008_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_in},
++ {MTP008_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_in},
++ {MTP008_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_in},
++ {MTP008_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_in},
++ {MTP008_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_in},
++ {MTP008_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_in},
++ {MTP008_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_fan},
++ {MTP008_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_fan},
++ {MTP008_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_fan},
++ {MTP008_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_temp},
++ {MTP008_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_temp_add},
++ {MTP008_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_temp_add},
++ {MTP008_SYSCTL_VID, "vid", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_vid},
++ {MTP008_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_fan_div},
++ {MTP008_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_alarms},
++ {MTP008_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_beep},
++ {MTP008_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_pwm},
++ {MTP008_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_pwm},
++ {MTP008_SYSCTL_PWM3, "pwm3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_pwm},
++ {MTP008_SYSCTL_SENS1, "sensor1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_sens},
++ {MTP008_SYSCTL_SENS2, "sensor2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_sens},
++ {MTP008_SYSCTL_SENS3, "sensor3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &mtp008_sens},
++ {0}
++};
++
++/* This function is called when:
++ * mtp008_driver is inserted (when this module is loaded), for each available
++ * adapter when a new adapter is inserted (and mtp008_driver is still present)
++ */
++static int mtp008_attach_adapter(struct i2c_adapter *adapter)
++{
++ struct i2c_client_address_data mtp008_addr_data;
++
++ mtp008_addr_data.normal_i2c = addr_data.normal_i2c;
++ mtp008_addr_data.normal_i2c_range = addr_data.normal_i2c_range;
++ mtp008_addr_data.probe = addr_data.probe;
++ mtp008_addr_data.probe_range = addr_data.probe_range;
++ mtp008_addr_data.ignore = addr_data.ignore;
++ mtp008_addr_data.ignore_range = addr_data.ignore_range;
++ mtp008_addr_data.force = addr_data.forces->force;
++
++ return i2c_probe(adapter, &mtp008_addr_data, mtp008_detect);
++}
++
++int mtp008_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ const char *type_name = "";
++ const char *client_name = "";
++ int is_isa, err, sysid;
++ struct i2c_client *new_client;
++ struct mtp008_data *data;
++
++ err = 0;
++
++ is_isa = i2c_is_isa_adapter(adapter);
++ if (is_isa ||
++ !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /*
++ * We presume we have a valid client. We now create the client
++ * structure, even though we cannot fill it completely yet. But it
++ * allows us to use mtp008_(read|write)_value().
++ */
++ if (!(data = kmalloc(sizeof(struct mtp008_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &mtp008_driver;
++ new_client->flags = 0;
++
++ /*
++ * Remaining detection.
++ */
++ if (kind < 0) {
++ if (mtp008_read_value(new_client, MTP008_REG_CHIPID) != 0xac)
++ goto ERROR1;
++ }
++ /*
++ * Fill in the remaining client fields and put it into the global list.
++ */
++ type_name = "mtp008";
++ client_name = "MTP008 chip";
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = mtp008_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /*
++ * Tell the I2C layer that a new client has arrived.
++ */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR1;
++
++ /*
++ * Register a new directory entry with the sensors module.
++ */
++ if ((sysid = i2c_register_entry(new_client, type_name,
++ mtp008_dir_table_template)) < 0) {
++ err = sysid;
++ goto ERROR2;
++ }
++ data->sysctl_id = sysid;
++
++ /*
++ * Initialize the MTP008 chip.
++ */
++ mtp008_init_client(new_client);
++
++ return 0;
++
++ /*
++ * Error handling. Bad programming practise but very code efficient.
++ */
++ ERROR2:
++ i2c_detach_client(new_client);
++ ERROR1:
++ kfree(data);
++
++ ERROR0:
++ return err;
++}
++
++static int mtp008_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(
++ ((struct mtp008_data *) (client->data))->sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk("mtp008.o: Deregistration failed, "
++ "client not detached.\n");
++ return err;
++ }
++ kfree(client->data);
++
++ return 0;
++}
++
++
++static int mtp008_read_value(struct i2c_client *client, u8 reg)
++{
++ return i2c_smbus_read_byte_data(client, reg) & 0xff;
++}
++
++static int mtp008_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++/* Called when we have found a new MTP008. It should set limits, etc. */
++static void mtp008_init_client(struct i2c_client *client)
++{
++ u8 save1, save2;
++ struct mtp008_data *data;
++
++ data = client->data;
++
++ /*
++ * Initialize the Myson MTP008 hardware monitoring chip.
++ * Save the pin settings that the BIOS hopefully set.
++ */
++ save1 = mtp008_read_value(client, MTP008_REG_PIN_CTRL1);
++ save2 = mtp008_read_value(client, MTP008_REG_PIN_CTRL2);
++ mtp008_write_value(client, MTP008_REG_CONFIG,
++ (mtp008_read_value(client, MTP008_REG_CONFIG) & 0x7f) | 0x80);
++ mtp008_write_value(client, MTP008_REG_PIN_CTRL1, save1);
++ mtp008_write_value(client, MTP008_REG_PIN_CTRL2, save2);
++
++ mtp008_getsensortype(data, save2);
++
++
++ /*
++ * Start monitoring.
++ */
++ mtp008_write_value(
++ client, MTP008_REG_CONFIG,
++ (mtp008_read_value(client, MTP008_REG_CONFIG) & 0xf7) | 0x01
++ );
++}
++
++static void mtp008_update_client(struct i2c_client *client)
++{
++ int i;
++ u8 inp;
++ struct mtp008_data *data;
++
++ data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++#ifdef DEBUG
++ printk("Starting MTP008 update\n");
++#endif
++
++ /*
++ * Read in the analog inputs. We're reading AIN4 and AIN5 as
++ * regular analog inputs, even though they may have been
++ * configured as temperature readings instead. Interpretation
++ * of these values is done elsewhere.
++ */
++ for (i = 0; i < 7; i++) {
++ data->in[i] =
++ mtp008_read_value(client, MTP008_REG_IN(i));
++ data->in_max[i] =
++ mtp008_read_value(client, MTP008_REG_IN_MAX(i));
++ data->in_min[i] =
++ mtp008_read_value(client, MTP008_REG_IN_MIN(i));
++ }
++
++ /*
++ * Read the temperature sensor.
++ */
++ data->temp = mtp008_read_value(client, MTP008_REG_TEMP);
++ data->temp_max = mtp008_read_value(client, MTP008_REG_TEMP_MAX);
++ data->temp_min = mtp008_read_value(client, MTP008_REG_TEMP_MIN);
++
++ /*
++ * Read the first 2 fan dividers and the VID setting. Read the
++ * third fan divider from a different register.
++ */
++ inp = mtp008_read_value(client, MTP008_REG_VID_FANDIV);
++ data->vid = inp & 0x0f;
++ data->vid |= (mtp008_read_value(client,
++ MTP008_REG_RESET_VID4) & 0x01) << 4;
++
++ data->fan_div[0] = (inp >> 4) & 0x03;
++ data->fan_div[1] = inp >> 6;
++ data->fan_div[2] =
++ mtp008_read_value(client, MTP008_REG_PIN_CTRL1) >> 6;
++
++ /*
++ * Read the interrupt status registers.
++ */
++ data->alarms =
++ (mtp008_read_value(client,
++ MTP008_REG_INT_STAT1) & 0xdf) |
++ (mtp008_read_value(client,
++ MTP008_REG_INT_STAT2) & 0x0f) << 8;
++
++ /*
++ * Read the beep control registers.
++ */
++ data->beeps =
++ (mtp008_read_value(client,
++ MTP008_REG_BEEP_CTRL1) & 0xdf) |
++ (mtp008_read_value(client,
++ MTP008_REG_BEEP_CTRL2) & 0x8f) << 8;
++
++ /*
++ * Read the sensor configuration.
++ */
++ inp = mtp008_read_value(client, MTP008_REG_PIN_CTRL2);
++ mtp008_getsensortype(data, inp);
++ data->pwmenable = inp;
++
++ /*
++ * Read the PWM registers if enabled.
++ */
++ for (i = 1; i <= 3; i++)
++ {
++ if(PWMENABLE_FROM_REG(i, inp))
++ data->pwm[i-1] = mtp008_read_value(client,
++ MTP008_REG_PWM_CTRL(i));
++ else
++ data->pwm[i-1] = 255;
++ }
++
++ /*
++ * Read the fan sensors. Skip 3 if PWM1 enabled.
++ */
++ for (i = 1; i <= 3; i++) {
++ if(i == 3 && PWMENABLE_FROM_REG(1, inp)) {
++ data->fan[2] = 0;
++ data->fan_min[2] = 0;
++ } else {
++ data->fan[i-1] = mtp008_read_value(client,
++ MTP008_REG_FAN(i));
++ data->fan_min[i-1] = mtp008_read_value(client,
++ MTP008_REG_FAN_MIN(i));
++ }
++ }
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++ up(&data->update_lock);
++}
++
++static void mtp008_getsensortype(struct mtp008_data *data, u8 inp)
++{
++ inp &= 0x0f;
++ data->sens[0] = (inp >> 3) + 2; /* 2 or 3 */
++ data->sens[1] = ((inp >> 1) & 0x03) + 1; /* 1, 2 or 3 */
++ data->sens[2] = (inp & 0x01) + 1; /* 1 or 2 */
++}
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++void mtp008_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ int nr;
++ struct mtp008_data *data;
++
++ nr = ctl_name - MTP008_SYSCTL_IN0;
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 2;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ mtp008_update_client(client);
++
++ if((nr != 4 && nr != 5) || data->sens[nr - 3] == VOLTAGE) {
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ } else {
++ results[0] = 0;
++ results[1] = 0;
++ results[2] = 0;
++ }
++
++ *nrels_mag = 3;
++
++ break;
++ case SENSORS_PROC_REAL_WRITE:
++ if((nr != 4 && nr != 5) || data->sens[nr - 3] == VOLTAGE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0]);
++ mtp008_write_value(client, MTP008_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1]);
++ mtp008_write_value(client, MTP008_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++ }
++}
++
++void mtp008_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ int nr;
++ struct mtp008_data *data;
++
++ nr = ctl_name - MTP008_SYSCTL_FAN1;
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 0;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ mtp008_update_client(client);
++
++ results[0] = FAN_FROM_REG(data->fan_min[nr],
++ DIV_FROM_REG(data->fan_div[nr]));
++ results[1] = FAN_FROM_REG(data->fan[nr],
++ DIV_FROM_REG(data->fan_div[nr]));
++
++ *nrels_mag = 2;
++
++ break;
++ case SENSORS_PROC_REAL_WRITE:
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr] =
++ FAN_TO_REG(results[0],
++ DIV_FROM_REG(data->fan_div[nr]));
++ mtp008_write_value(client, MTP008_REG_FAN_MIN(nr + 1),
++ data->fan_min[nr]);
++ }
++ }
++}
++
++void mtp008_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct mtp008_data *data;
++
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 1;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ mtp008_update_client(client);
++
++ results[0] = TEMP_FROM_REG(data->temp_max);
++ results[1] = TEMP_FROM_REG(data->temp_min);
++ results[2] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++
++ break;
++ case SENSORS_PROC_REAL_WRITE:
++ if (*nrels_mag >= 1) {
++ data->temp_max = TEMP_TO_REG(results[0]);
++ mtp008_write_value(client, MTP008_REG_TEMP_MAX,
++ data->temp_max);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_min = TEMP_TO_REG(results[1]);
++ mtp008_write_value(client, MTP008_REG_TEMP_MIN,
++ data->temp_min);
++ }
++ }
++}
++
++void mtp008_temp_add(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ int nr;
++ struct mtp008_data *data;
++
++ nr = 3 + ctl_name - MTP008_SYSCTL_TEMP1; /* AIN4 or AIN5 */
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 1;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ mtp008_update_client(client);
++
++ if(data->sens[nr - 3] != VOLTAGE) {
++ results[0] = TEMP_FROM_REG(data->in_max[nr]);
++ results[1] = TEMP_FROM_REG(data->in_min[nr]);
++ results[2] = TEMP_FROM_REG(data->in[nr]);
++ } else {
++ results[0] = 0;
++ results[1] = 0;
++ results[2] = 0;
++ }
++ *nrels_mag = 3;
++
++ break;
++ case SENSORS_PROC_REAL_WRITE:
++ if(data->sens[nr - 3] != VOLTAGE) {
++ if (*nrels_mag >= 1) {
++ data->in_max[nr] = TEMP_TO_REG(results[0]);
++ mtp008_write_value(client,
++ MTP008_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_min[nr] = TEMP_TO_REG(results[1]);
++ mtp008_write_value(client,
++ MTP008_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ }
++ }
++}
++
++void mtp008_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct mtp008_data *data;
++
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 2;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ mtp008_update_client(client);
++
++ results[0] = VID_FROM_REG(data->vid);
++
++ *nrels_mag = 1;
++ }
++}
++
++void mtp008_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct mtp008_data *data;
++ u8 val;
++
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 0;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ mtp008_update_client(client);
++
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ results[2] = DIV_FROM_REG(data->fan_div[2]);
++
++ *nrels_mag = 3;
++
++ break;
++ case SENSORS_PROC_REAL_WRITE:
++ if (*nrels_mag >= 3) {
++ data->fan_div[2] = DIV_TO_REG(results[2]);
++ val = mtp008_read_value(client, MTP008_REG_PIN_CTRL1);
++ val = (val & 0x3f) | (data->fan_div[2] & 0x03) << 6;
++ mtp008_write_value(client, MTP008_REG_PIN_CTRL1, val);
++ }
++ if (*nrels_mag >= 1) {
++ val = mtp008_read_value(client, MTP008_REG_VID_FANDIV);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ val = (val & 0x3f) |
++ (data->fan_div[1] & 0x03) << 6;
++ }
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ val = (val & 0xcf) | (data->fan_div[0] & 0x03) << 4;
++ mtp008_write_value(client, MTP008_REG_VID_FANDIV, val);
++ }
++ }
++}
++
++void mtp008_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct mtp008_data *data;
++
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 0;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ mtp008_update_client(client);
++
++ results[0] = ALARMS_FROM_REG(data->alarms);
++
++ *nrels_mag = 1;
++ }
++}
++
++void mtp008_beep(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct mtp008_data *data;
++
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 0;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ mtp008_update_client(client);
++
++ results[0] = BEEPS_FROM_REG(data->beeps);
++
++ *nrels_mag = 1;
++
++ break;
++ case SENSORS_PROC_REAL_WRITE:
++ if (*nrels_mag >= 1) {
++ data->beeps = BEEPS_TO_REG(results[0]) & 0xdf8f;
++
++ mtp008_write_value(client, MTP008_REG_BEEP_CTRL1,
++ data->beeps & 0xff);
++ mtp008_write_value(client, MTP008_REG_BEEP_CTRL2,
++ data->beeps >> 8);
++ }
++ }
++}
++
++void mtp008_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ int nr;
++ struct mtp008_data *data;
++
++ nr = ctl_name - MTP008_SYSCTL_PWM1;
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 0;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ mtp008_update_client(client);
++
++ results[0] = PWM_FROM_REG(data->pwm[nr]);
++ results[1] = PWMENABLE_FROM_REG(nr + 1, data->pwmenable);
++ *nrels_mag = 2;
++
++ break;
++ case SENSORS_PROC_REAL_WRITE:
++ if (*nrels_mag >= 1) {
++ if (*nrels_mag >= 2) {
++ if(results[1])
++ data->pwmenable |= 0x10 << nr;
++ else
++ data->pwmenable &= ~(0x10 << nr);
++ mtp008_write_value(client, MTP008_REG_PIN_CTRL2,
++ data->pwmenable);
++ }
++ data->pwm[nr] = PWM_TO_REG(results[0]);
++ mtp008_write_value(client, MTP008_REG_PWM_CTRL(nr),
++ data->pwm[nr]);
++ }
++ }
++}
++
++void mtp008_sens(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ const char *opts = "";
++ int nr;
++ u8 tmp;
++ struct mtp008_data *data;
++
++ nr = 1 + ctl_name - MTP008_SYSCTL_SENS1;
++ data = client->data;
++
++ switch (operation) {
++ case SENSORS_PROC_REAL_INFO:
++ *nrels_mag = 0;
++
++ break;
++ case SENSORS_PROC_REAL_READ:
++ results[0] = data->sens[nr - 1];
++
++ *nrels_mag = 1;
++
++ break;
++ case SENSORS_PROC_REAL_WRITE:
++ if (*nrels_mag >= 1) {
++ tmp = mtp008_read_value(client, MTP008_REG_PIN_CTRL2);
++
++ switch (nr) {
++ case 1: /* VT or PII */
++ opts = "2 or 3";
++
++ switch (results[0]) {
++ case THERMISTOR:
++ mtp008_write_value(
++ client, MTP008_REG_PIN_CTRL2,
++ tmp & ~MTP008_CFG_VT1_PII);
++ data->sens[0] = 2;
++ return;
++ case PIIDIODE:
++ mtp008_write_value(
++ client, MTP008_REG_PIN_CTRL2,
++ tmp | MTP008_CFG_VT1_PII);
++ data->sens[0] = 3;
++ return;
++ }
++
++ break;
++ case 2: /* AIN, VT or PII */
++ tmp &= ~MTP008_CFG_VT2_MASK;
++ opts = "1, 2 or 3";
++
++ switch (results[0]) {
++ case VOLTAGE:
++ mtp008_write_value(
++ client, MTP008_REG_PIN_CTRL2,
++ tmp | MTP008_CFG_VT2_AIN);
++ data->sens[1] = 1;
++ return;
++ case THERMISTOR:
++ mtp008_write_value(
++ client, MTP008_REG_PIN_CTRL2,
++ tmp | MTP008_CFG_VT2_VT);
++ data->sens[1] = 2;
++ return;
++ case PIIDIODE:
++ mtp008_write_value(
++ client, MTP008_REG_PIN_CTRL2,
++ tmp | MTP008_CFG_VT2_PII);
++ data->sens[1] = 3;
++ return;
++ }
++
++ break;
++ case 3: /* AIN or VT */
++ opts = "1 or 2";
++
++ switch (results[0]) {
++ case VOLTAGE:
++ mtp008_write_value(
++ client, MTP008_REG_PIN_CTRL2,
++ tmp & ~MTP008_CFG_VT3_VT);
++ data->sens[2] = 1;
++ return;
++ case THERMISTOR:
++ mtp008_write_value(
++ client, MTP008_REG_PIN_CTRL2,
++ tmp | MTP008_CFG_VT3_VT);
++ data->sens[2] = 2;
++ return;
++ }
++
++ break;
++ }
++
++ printk("mtp008.o: Invalid sensor type %ld "
++ "for sensor %d; must be %s.\n",
++ results[0], nr, opts);
++ }
++ }
++}
++
++static int __init sm_mtp008_init(void)
++{
++ printk("mtp008.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&mtp008_driver);
++}
++
++static void __exit sm_mtp008_exit(void)
++{
++ i2c_del_driver(&mtp008_driver);
++}
++
++
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>, "
++ "Philip Edelbrock <phil@netroedge.com>, "
++ "and Kris Van Hees <aedil@alchar.org>");
++MODULE_DESCRIPTION("MTP008 driver");
++
++module_init(sm_mtp008_init);
++module_exit(sm_mtp008_exit);
+--- linux-old/drivers/sensors/pc87360.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/pc87360.c Mon Dec 13 20:18:51 2004
+@@ -0,0 +1,1357 @@
++/*
++ * pc87360.c - Part of lm_sensors, Linux kernel modules
++ * for hardware monitoring
++ * Copyright (C) 2004 Jean Delvare <khali@linux-fr.org>
++ *
++ * Copied from smsc47m1.c:
++ * Copyright (C) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++ *
++ * Supports the following chips:
++ *
++ * Chip #vin #fan #pwm #temp devid
++ * PC87360 - 2 2 - 0xE1
++ * PC87363 - 2 2 - 0xE8
++ * PC87364 - 3 3 - 0xE4
++ * PC87365 11 3 3 2 0xE5
++ * PC87366 11 3 3 3-4 0xE9
++ *
++ * This driver assumes that no more than one chip is present, and the
++ * standard Super-I/O address is used (0x2E/0x2F).
++ */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0x0000, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++static struct i2c_force_data forces[] = {{NULL}};
++static u8 devid;
++static unsigned int extra_isa[] = { 0x0000, 0x0000, 0x0000 };
++static u8 confreg[4];
++
++enum chips { any_chip, pc87360, pc87363, pc87364, pc87365, pc87366 };
++static struct i2c_address_data addr_data = {
++ .normal_i2c = normal_i2c,
++ .normal_i2c_range = normal_i2c_range,
++ .normal_isa = normal_isa,
++ .normal_isa_range = normal_isa_range,
++ .probe = normal_i2c, /* cheat */
++ .probe_range = normal_i2c_range, /* cheat */
++ .ignore = normal_i2c, /* cheat */
++ .ignore_range = normal_i2c_range, /* cheat */
++ .forces = forces,
++};
++
++static int init = 1;
++MODULE_PARM(init, "i");
++MODULE_PARM_DESC(init,
++ "Chip initialization level:\n"
++ " 0: None\n"
++ "*1: Forcibly enable internal voltage and temperature channels, except in9\n"
++ " 2: Forcibly enable all voltage and temperature channels, except in9\n"
++ " 3: Forcibly enable all voltage and temperature channels, including in9");
++
++/*
++ * Super-I/O registers and operations
++ */
++
++#define REG 0x2e /* The register to read/write */
++#define VAL 0x2f /* The value to read/write */
++
++#define DEV 0x07 /* Register: Logical device select */
++#define DEVID 0x20 /* Register: Device ID */
++#define ACT 0x30 /* Register: Device activation */
++#define BASE 0x60 /* Register: Base address */
++
++#define FSCM 0x09 /* Logical device: fans */
++#define VLM 0x0d /* Logical device: voltages */
++#define TMS 0x0e /* Logical device: temperatures */
++static const u8 logdev[3] = { FSCM, VLM, TMS };
++
++#define LD_FAN 0
++#define LD_IN 1
++#define LD_TEMP 2
++
++static inline void superio_outb(int reg, int val)
++{
++ outb(reg, REG);
++ outb(val, VAL);
++}
++
++static inline int superio_inb(int reg)
++{
++ outb(reg, REG);
++ return inb(VAL);
++}
++
++static inline void superio_exit(void)
++{
++ outb(0x02, REG);
++ outb(0x02, VAL);
++}
++
++/*
++ * Logical devices
++ */
++
++#define PC87360_EXTENT 0x10
++#define PC87365_REG_BANK 0x09
++#define NO_BANK 0xff
++
++/*
++ * Fan registers and conversions
++ */
++
++/* nr has to be 0 or 1 (PC87360/87363) or 2 (PC87364/87365/87366) */
++#define PC87360_REG_PRESCALE(nr) (0x00 + 2 * (nr))
++#define PC87360_REG_PWM(nr) (0x01 + 2 * (nr))
++#define PC87360_REG_FAN_MIN(nr) (0x06 + 3 * (nr))
++#define PC87360_REG_FAN(nr) (0x07 + 3 * (nr))
++#define PC87360_REG_FAN_STATUS(nr) (0x08 + 3 * (nr))
++
++#define FAN_FROM_REG(val,div) ((val)==0?0: \
++ 480000/((val)*(div)))
++#define FAN_TO_REG(val,div) ((val)<=100?0: \
++ 480000/((val)*(div)))
++#define FAN_DIV_FROM_REG(val) (1 << ((val >> 5) & 0x03))
++#define FAN_DIV_TO_REG(val) ((val)==8?0x60:(val)==4?0x40: \
++ (val)==1?0x00:0x20)
++#define FAN_STATUS_FROM_REG(val) ((val) & 0x07)
++
++#define FAN_CONFIG_MONITOR(val,nr) (((val) >> (2 + nr * 3)) & 1)
++#define FAN_CONFIG_CONTROL(val,nr) (((val) >> (3 + nr * 3)) & 1)
++#define FAN_CONFIG_INVERT(val,nr) (((val) >> (4 + nr * 3)) & 1)
++
++#define PWM_FROM_REG(val,inv) ((inv) ? 255 - (val) : (val))
++static inline u8 PWM_TO_REG(int val, int inv)
++{
++ if (inv)
++ val = 255 - val;
++ if (val < 0)
++ return 0;
++ if (val > 255)
++ return 255;
++ return val;
++}
++
++/*
++ * Voltage registers and conversions
++ */
++
++#define PC87365_REG_IN_CONVRATE 0x07
++#define PC87365_REG_IN_CONFIG 0x08
++#define PC87365_REG_IN 0x0B
++#define PC87365_REG_IN_MIN 0x0D
++#define PC87365_REG_IN_MAX 0x0C
++#define PC87365_REG_IN_STATUS 0x0A
++#define PC87365_REG_IN_ALARMS1 0x00
++#define PC87365_REG_IN_ALARMS2 0x01
++#define PC87365_REG_VID 0x06
++
++#define IN_FROM_REG(val,ref) (((val) * (ref) + 128) / 256)
++#define IN_TO_REG(val,ref) ((val)<0 ? 0 : \
++ (val)*256>=(ref)*255 ? 255: \
++ ((val) * 256 + (ref) / 2) / (ref))
++
++/*
++ * Temperature registers and conversions
++ */
++
++#define PC87365_REG_TEMP_CONFIG 0x08
++#define PC87365_REG_TEMP 0x0B
++#define PC87365_REG_TEMP_MIN 0x0D
++#define PC87365_REG_TEMP_MAX 0x0C
++#define PC87365_REG_TEMP_CRIT 0x0E
++#define PC87365_REG_TEMP_STATUS 0x0A
++#define PC87365_REG_TEMP_ALARMS 0x00
++
++#define TEMP_FROM_REG(val) ((val)&0x80 ? (val) - 0x100 : (val))
++#define TEMP_TO_REG(val) ((val)<-55 ? 201 : (val)>127 ? 0x7F : \
++ (val)<0 ? (val) + 0x100 : (val))
++
++struct pc87360_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++ int address[3];
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 fannr, innr, tempnr;
++
++ u8 fan[3]; /* Register value */
++ u8 fan_min[3]; /* Register value */
++ u8 fan_status[3]; /* Register value */
++ u8 pwm[3]; /* Register value */
++ u16 fan_conf; /* Configuration register values, combined */
++
++ u16 in_vref; /* 10mV/bit */
++ u8 in[14]; /* Register value */
++ u8 in_min[14]; /* Register value */
++ u8 in_max[14]; /* Register value */
++ u8 in_crit[3]; /* Register value */
++ u8 in_status[14]; /* Register value */
++ u16 in_alarms; /* Register values, combined, masked */
++ u8 vid_conf; /* Configuration register value */
++ u8 vrm;
++ u8 vid; /* Register value */
++
++ u8 temp[3]; /* Register value */
++ u8 temp_min[3]; /* Register value */
++ u8 temp_max[3]; /* Register value */
++ u8 temp_crit[3]; /* Register value */
++ u8 temp_status[3]; /* Register value */
++ u8 temp_alarms; /* Register value, masked */
++};
++
++
++static int pc87360_attach_adapter(struct i2c_adapter *adapter);
++static int pc87360_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int pc87360_detach_client(struct i2c_client *client);
++
++static int pc87360_read_value(struct pc87360_data *data, u8 ldi, u8 bank,
++ u8 reg);
++static void pc87360_write_value(struct pc87360_data *data, u8 ldi, u8 bank,
++ u8 reg, u8 value);
++static void pc87360_init_client(struct i2c_client *client, int use_thermistors);
++static void pc87360_update_client(struct i2c_client *client);
++static int pc87360_find(u8 *devid, int *address);
++
++
++void pc87365_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++
++static void pc87360_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void pc87360_fan_status(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void pc87360_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void pc87360_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++void pc87365_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++void pc87365_in_status(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++void pc87365_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++void pc87365_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++
++void pc87365_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++void pc87365_temp_status(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results);
++
++static int pc87360_id = 0;
++
++static struct i2c_driver pc87360_driver = {
++ .owner = THIS_MODULE,
++ .name = "PC8736x hardware monitor",
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = pc87360_attach_adapter,
++ .detach_client = pc87360_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++
++#define PC87365_SYSCTL_ALARMS 100 /* bit field */
++
++#define PC87360_SYSCTL_FAN1 1101 /* Rotations/min */
++#define PC87360_SYSCTL_FAN2 1102
++#define PC87360_SYSCTL_FAN3 1103 /* not for PC87360/PC87363 */
++#define PC87360_SYSCTL_FAN_DIV 1201 /* 1, 2, 4 or 8 */
++#define PC87360_SYSCTL_FAN1_STATUS 1301 /* bit field */
++#define PC87360_SYSCTL_FAN2_STATUS 1302
++#define PC87360_SYSCTL_FAN3_STATUS 1303 /* not for PC87360/PC87363 */
++#define PC87360_SYSCTL_PWM1 1401 /* 0-255 */
++#define PC87360_SYSCTL_PWM2 1402
++#define PC87360_SYSCTL_PWM3 1403 /* not for PC87360/PC87363 */
++
++#define PC87360_STATUS_FAN_READY 0x01
++#define PC87360_STATUS_FAN_LOW 0x02
++#define PC87360_STATUS_FAN_OVERFLOW 0x04
++
++#define PC87365_SYSCTL_IN0 2100 /* mV */
++#define PC87365_SYSCTL_IN1 2101
++#define PC87365_SYSCTL_IN2 2102
++#define PC87365_SYSCTL_IN3 2103
++#define PC87365_SYSCTL_IN4 2104
++#define PC87365_SYSCTL_IN5 2105
++#define PC87365_SYSCTL_IN6 2106
++#define PC87365_SYSCTL_IN7 2107
++#define PC87365_SYSCTL_IN8 2108
++#define PC87365_SYSCTL_IN9 2109
++#define PC87365_SYSCTL_IN10 2110
++#define PC87365_SYSCTL_TEMP4 2111 /* not for PC87365 */
++#define PC87365_SYSCTL_TEMP5 2112 /* not for PC87365 */
++#define PC87365_SYSCTL_TEMP6 2113 /* not for PC87365 */
++#define PC87365_SYSCTL_IN0_STATUS 2300 /* bit field */
++#define PC87365_SYSCTL_IN1_STATUS 2301
++#define PC87365_SYSCTL_IN2_STATUS 2302
++#define PC87365_SYSCTL_IN3_STATUS 2303
++#define PC87365_SYSCTL_IN4_STATUS 2304
++#define PC87365_SYSCTL_IN5_STATUS 2305
++#define PC87365_SYSCTL_IN6_STATUS 2306
++#define PC87365_SYSCTL_IN7_STATUS 2307
++#define PC87365_SYSCTL_IN8_STATUS 2308
++#define PC87365_SYSCTL_IN9_STATUS 2309
++#define PC87365_SYSCTL_IN10_STATUS 2310
++#define PC87365_SYSCTL_TEMP4_STATUS 2311 /* not for PC87365 */
++#define PC87365_SYSCTL_TEMP5_STATUS 2312 /* not for PC87365 */
++#define PC87365_SYSCTL_TEMP6_STATUS 2313 /* not for PC87365 */
++
++#define PC87365_SYSCTL_VID 2400
++#define PC87365_SYSCTL_VRM 2401
++
++#define PC87365_STATUS_IN_MIN 0x02
++#define PC87365_STATUS_IN_MAX 0x04
++
++#define PC87365_SYSCTL_TEMP1 3101 /* degrees Celcius */
++#define PC87365_SYSCTL_TEMP2 3102
++#define PC87365_SYSCTL_TEMP3 3103 /* not for PC87365 */
++#define PC87365_SYSCTL_TEMP1_STATUS 3301 /* bit field */
++#define PC87365_SYSCTL_TEMP2_STATUS 3302
++#define PC87365_SYSCTL_TEMP3_STATUS 3303 /* not for PC87365 */
++
++#define PC87365_STATUS_TEMP_MIN 0x02
++#define PC87365_STATUS_TEMP_MAX 0x04
++#define PC87365_STATUS_TEMP_CRIT 0x08
++#define PC87365_STATUS_TEMP_OPEN 0x40
++
++/* -- SENSORS SYSCTL END -- */
++
++static ctl_table pc87360_dir_table_template[] = { /* PC87363 and PC87364 too */
++ {PC87360_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan},
++ {PC87360_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan},
++ {PC87360_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan},
++ {PC87360_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan_div},
++ {PC87360_SYSCTL_FAN1_STATUS, "fan1_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan_status},
++ {PC87360_SYSCTL_FAN2_STATUS, "fan2_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan_status},
++ {PC87360_SYSCTL_FAN3_STATUS, "fan3_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan_status},
++ {PC87360_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_pwm},
++ {PC87360_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_pwm},
++ {PC87360_SYSCTL_PWM3, "pwm3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_pwm},
++ {0}
++};
++
++static ctl_table pc87365_dir_table_template[] = { /* PC87366 too */
++ {PC87365_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_alarms},
++ {PC87360_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan},
++ {PC87360_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan},
++ {PC87360_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan},
++ {PC87360_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan_div},
++ {PC87360_SYSCTL_FAN1_STATUS, "fan1_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan_status},
++ {PC87360_SYSCTL_FAN2_STATUS, "fan2_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan_status},
++ {PC87360_SYSCTL_FAN3_STATUS, "fan3_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_fan_status},
++ {PC87360_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_pwm},
++ {PC87360_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_pwm},
++ {PC87360_SYSCTL_PWM3, "pwm3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87360_pwm},
++ {PC87365_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN9, "in9", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN10, "in10", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_IN0_STATUS, "in0_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN1_STATUS, "in1_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN2_STATUS, "in2_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN3_STATUS, "in3_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN4_STATUS, "in4_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN5_STATUS, "in5_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN6_STATUS, "in6_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN7_STATUS, "in7_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN8_STATUS, "in8_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN9_STATUS, "in9_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_IN10_STATUS, "in10_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_temp},
++ {PC87365_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_temp},
++ {PC87365_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_temp},
++ {PC87365_SYSCTL_TEMP4, "temp4", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_TEMP5, "temp5", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_TEMP6, "temp6", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in},
++ {PC87365_SYSCTL_TEMP1_STATUS, "temp1_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_temp_status},
++ {PC87365_SYSCTL_TEMP2_STATUS, "temp2_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_temp_status},
++ {PC87365_SYSCTL_TEMP3_STATUS, "temp3_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_temp_status},
++ {PC87365_SYSCTL_TEMP4_STATUS, "temp4_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_TEMP5_STATUS, "temp5_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_TEMP6_STATUS, "temp6_status", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_in_status},
++ {PC87365_SYSCTL_VID, "vid", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_vid},
++ {PC87365_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &pc87365_vrm},
++ {0}
++};
++
++static int pc87360_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, pc87360_detect);
++}
++
++static int pc87360_find(u8 *devid, int *address)
++{
++ u16 val;
++ int i;
++ int nrdev; /* logical device count */
++
++ /* No superio_enter */
++
++ /* Identify device */
++ val = superio_inb(DEVID);
++ switch (val) {
++ case 0xE1: /* PC87360 */
++ case 0xE8: /* PC87363 */
++ case 0xE4: /* PC87364 */
++ nrdev = 1;
++ break;
++ case 0xE5: /* PC87365 */
++ case 0xE9: /* PC87366 */
++ nrdev = 3;
++ break;
++ default:
++ superio_exit();
++ return -ENODEV;
++ }
++ /* Remember the device id */
++ *devid = val;
++
++ for (i = 0; i < nrdev; i++) {
++ /* select logical device */
++ superio_outb(DEV, logdev[i]);
++
++ val = superio_inb(ACT);
++ if (!(val & 0x01)) {
++ printk(KERN_INFO "pc87360.o: Device 0x%02x not "
++ "activated\n", logdev[i]);
++ continue;
++ }
++
++ val = (superio_inb(BASE) << 8)
++ | superio_inb(BASE + 1);
++ if (!val) {
++ printk(KERN_INFO "pc87360.o: Base address not set for "
++ "device 0x%02x\n", logdev[i]);
++ continue;
++ }
++
++ address[i] = val;
++
++ if (i==0) { /* Fans */
++ confreg[0] = superio_inb(0xF0);
++ confreg[1] = superio_inb(0xF1);
++
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Fan 1: mon=%d "
++ "ctrl=%d inv=%d\n", (confreg[0]>>2)&1,
++ (confreg[0]>>3)&1, (confreg[0]>>4)&1);
++ printk(KERN_DEBUG "pc87360.o: Fan 2: mon=%d "
++ "ctrl=%d inv=%d\n", (confreg[0]>>5)&1,
++ (confreg[0]>>6)&1, (confreg[0]>>7)&1);
++ printk(KERN_DEBUG "pc87360.o: Fan 3: mon=%d "
++ "ctrl=%d inv=%d\n", confreg[1]&1,
++ (confreg[1]>>1)&1, (confreg[1]>>2)&1);
++#endif
++ } else if (i==1) { /* Voltages */
++ /* Are we using thermistors? */
++ if (*devid == 0xE9) { /* PC87366 */
++ /* These registers are not logical-device
++ specific, just that we won't need them if
++ we don't use the VLM device */
++ confreg[2] = superio_inb(0x2B);
++ confreg[3] = superio_inb(0x25);
++
++ if (confreg[2] & 0x40) {
++ printk(KERN_INFO "pc87360.o: Using "
++ "thermistors for temperature "
++ "monitoring\n");
++ }
++ if (confreg[3] & 0xE0) {
++ printk(KERN_INFO "pc87360.o: VID "
++ "inputs routed (mode %u)\n",
++ confreg[3] >> 5);
++ }
++ }
++ }
++ }
++
++ superio_exit();
++ return 0;
++}
++
++/* We don't really care about the address.
++ Read from extra_isa instead. */
++int pc87360_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct pc87360_data *data;
++ int err = 0;
++ const char *type_name = "pc87360";
++ const char *client_name = "PC8736x chip";
++ ctl_table *template = pc87360_dir_table_template;
++ int use_thermistors = 0;
++
++ if (!i2c_is_isa_adapter(adapter)) {
++ return 0;
++ }
++
++ for (i = 0; i < 3; i++) {
++ if (extra_isa[i]
++ && check_region(extra_isa[i], PC87360_EXTENT)) {
++ printk(KERN_ERR "pc87360.o: Region 0x%x-0x%x already "
++ "in use!\n", extra_isa[i],
++ extra_isa[i]+PC87360_EXTENT-1);
++ return -ENODEV;
++ }
++ }
++
++ if (!(data = kmalloc(sizeof(struct pc87360_data), GFP_KERNEL))) {
++ return -ENOMEM;
++ }
++ memset(data, 0x00, sizeof(struct pc87360_data));
++
++ new_client = &data->client;
++ new_client->addr = address;
++ init_MUTEX(&data->lock);
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &pc87360_driver;
++ new_client->flags = 0;
++
++ data->fannr = 2;
++ data->innr = 0;
++ data->tempnr = 0;
++
++ switch (devid) {
++ case 0xe8:
++ type_name = "pc87363";
++ break;
++ case 0xe4:
++ type_name = "pc87364";
++ data->fannr = 3;
++ break;
++ case 0xe5:
++ type_name = "pc87365";
++ template = pc87365_dir_table_template;
++ data->fannr = extra_isa[0] ? 3 : 0;
++ data->innr = extra_isa[1] ? 11 : 0;
++ data->tempnr = extra_isa[2] ? 2 : 0;
++ break;
++ case 0xe9:
++ type_name = "pc87366";
++ template = pc87365_dir_table_template;
++ data->fannr = extra_isa[0] ? 3 : 0;
++ data->innr = extra_isa[1] ? 14 : 0;
++ data->tempnr = extra_isa[2] ? 3 : 0;
++ break;
++ }
++
++ /* Retrieve the fans configuration from Super-I/O space */
++ if (data->fannr)
++ data->fan_conf = confreg[0] | (confreg[1] << 8);
++
++ for (i = 0; i < 3; i++) {
++ if ((data->address[i] = extra_isa[i])) {
++ request_region(extra_isa[i], PC87360_EXTENT, "pc87360");
++ }
++ }
++ strcpy(new_client->name, client_name);
++
++ new_client->id = pc87360_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR1;
++
++ /* Use the correct reference voltage
++ Unless both the VLM and the TMS logical devices agree to
++ use an external Vref, the internal one is used. */
++ if (data->innr) {
++ i = pc87360_read_value(data, LD_IN, NO_BANK,
++ PC87365_REG_IN_CONFIG);
++ if (data->tempnr) {
++ i &= pc87360_read_value(data, LD_TEMP, NO_BANK,
++ PC87365_REG_TEMP_CONFIG);
++ }
++ data->in_vref = (i&0x02) ? 3025 : 2966;
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Using %s reference voltage\n",
++ (i&0x02) ? "external" : "internal");
++#endif
++
++ data->vid_conf = confreg[3];
++ data->vrm = 90;
++ }
++
++ /* Fan clock dividers may be needed before any data is read */
++ for (i = 0; i < data->fannr; i++) {
++ data->fan_status[i] = pc87360_read_value(data, LD_FAN,
++ NO_BANK, PC87360_REG_FAN_STATUS(i));
++ }
++
++ if (init > 0) {
++ if (devid == 0xe9 && data->address[1]) /* PC87366 */
++ use_thermistors = confreg[2] & 0x40;
++
++ pc87360_init_client(new_client, use_thermistors);
++ }
++
++ if ((i = i2c_register_entry((struct i2c_client *) new_client,
++ type_name, template)) < 0) {
++ err = i;
++ goto ERROR2;
++ }
++ data->sysctl_id = i;
++
++ return 0;
++
++ERROR2:
++ i2c_detach_client(new_client);
++ERROR1:
++ for (i = 0; i < 3; i++) {
++ if (data->address[i]) {
++ release_region(data->address[i], PC87360_EXTENT);
++ }
++ }
++ kfree(data);
++ return err;
++}
++
++static int pc87360_detach_client(struct i2c_client *client)
++{
++ struct pc87360_data *data = client->data;
++ int i, err;
++
++ i2c_deregister_entry(data->sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk(KERN_ERR "pc87360.o: Client deregistration failed, "
++ "client not detached.\n");
++ return err;
++ }
++
++ for (i = 0; i < 3; i++) {
++ if (data->address[i]) {
++ release_region(data->address[i], PC87360_EXTENT);
++ }
++ }
++ kfree(client->data);
++
++ return 0;
++}
++
++/* ldi is the logical device index
++ bank is for voltages and temperatures only */
++static int pc87360_read_value(struct pc87360_data *data, u8 ldi, u8 bank,
++ u8 reg)
++{
++ int res;
++
++ down(&(data->lock));
++ if (bank != NO_BANK) {
++ outb_p(bank, data->address[ldi] + PC87365_REG_BANK);
++ }
++ res = inb_p(data->address[ldi] + reg);
++ up(&(data->lock));
++ return res;
++}
++
++static void pc87360_write_value(struct pc87360_data *data, u8 ldi, u8 bank,
++ u8 reg, u8 value)
++{
++ down(&(data->lock));
++ if (bank != NO_BANK) {
++ outb_p(bank, data->address[ldi] + PC87365_REG_BANK);
++ }
++ outb_p(value, data->address[ldi] + reg);
++ up(&(data->lock));
++}
++
++static void pc87360_init_client(struct i2c_client *client, int use_thermistors)
++{
++ struct pc87360_data *data = client->data;
++ int i, nr;
++ const u8 init_in[14] = { 2, 2, 2, 2, 2, 2, 2, 1, 1, 3, 1, 2, 2, 2 };
++ const u8 init_temp[3] = { 2, 2, 1 };
++ u8 reg;
++
++ if (init >= 2 && data->innr) {
++ reg = pc87360_read_value(data, LD_IN, NO_BANK,
++ PC87365_REG_IN_CONVRATE);
++ printk(KERN_INFO "pc87360.o: VLM conversion set to"
++ "1s period, 160us delay\n");
++ pc87360_write_value(data, LD_IN, NO_BANK,
++ PC87365_REG_IN_CONVRATE,
++ (reg & 0xC0) | 0x11);
++ }
++
++ nr = data->innr < 11 ? data->innr : 11;
++ for (i=0; i<nr; i++) {
++ if (init >= init_in[i]) {
++ /* Forcibly enable voltage channel */
++ reg = pc87360_read_value(data, LD_IN, i,
++ PC87365_REG_IN_STATUS);
++ if (!(reg & 0x01)) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Forcibly "
++ "enabling in%d\n", i);
++#endif
++ pc87360_write_value(data, LD_IN, i,
++ PC87365_REG_IN_STATUS,
++ (reg & 0x68) | 0x87);
++ }
++ }
++ }
++
++ /* We can't blindly trust the Super-I/O space configuration bit,
++ most BIOS won't set it properly */
++ for (i=11; i<data->innr; i++) {
++ reg = pc87360_read_value(data, LD_IN, i,
++ PC87365_REG_TEMP_STATUS);
++ use_thermistors = use_thermistors || (reg & 0x01);
++ }
++
++ i = use_thermistors ? 2 : 0;
++ for (; i<data->tempnr; i++) {
++ if (init >= init_temp[i]) {
++ /* Forcibly enable temperature channel */
++ reg = pc87360_read_value(data, LD_TEMP, i,
++ PC87365_REG_TEMP_STATUS);
++ if (!(reg & 0x01)) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Forcibly "
++ "enabling temp%d\n", i+1);
++#endif
++ pc87360_write_value(data, LD_TEMP, i,
++ PC87365_REG_TEMP_STATUS,
++ 0xCF);
++ }
++ }
++ }
++
++ if (use_thermistors) {
++ for (i=11; i<data->innr; i++) {
++ if (init >= init_in[i]) {
++ /* The pin may already be used by thermal
++ diodes */
++ reg = pc87360_read_value(data, LD_TEMP, (i-11)/2,
++ PC87365_REG_TEMP_STATUS);
++ if (reg & 0x01) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Skipping "
++ "temp%d, pin already in use by ",
++ "temp%d\n", i-7, (i-11)/2);
++#endif
++ continue;
++ }
++
++ /* Forcibly enable thermistor channel */
++ reg = pc87360_read_value(data, LD_IN, i,
++ PC87365_REG_IN_STATUS);
++ if (!(reg & 0x01)) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Forcibly "
++ "enabling temp%d\n", i-7);
++#endif
++ pc87360_write_value(data, LD_IN, i,
++ PC87365_REG_TEMP_STATUS,
++ (reg & 0x60) | 0x8F);
++ }
++ }
++ }
++ }
++
++ if (data->innr) {
++ reg = pc87360_read_value(data, LD_IN, NO_BANK,
++ PC87365_REG_IN_CONFIG);
++ if (reg & 0x01) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Forcibly "
++ "enabling monitoring (VLM)\n");
++#endif
++ pc87360_write_value(data, LD_IN, NO_BANK,
++ PC87365_REG_IN_CONFIG,
++ reg & 0xFE);
++ }
++ }
++
++ if (data->tempnr) {
++ reg = pc87360_read_value(data, LD_TEMP, NO_BANK,
++ PC87365_REG_TEMP_CONFIG);
++ if (reg & 0x01) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Forcibly "
++ "enabling monitoring (TMS)\n");
++#endif
++ pc87360_write_value(data, LD_TEMP, NO_BANK,
++ PC87365_REG_TEMP_CONFIG,
++ reg & 0xFE);
++ }
++
++ if (init >= 2) {
++ /* Chip config as documented by National Semi. */
++ pc87360_write_value(data, LD_TEMP, 0xF, 0xA, 0x08);
++ /* We voluntarily omit the bank here, in case the
++ sequence itself matters. It shouldn't be a problem,
++ since nobody else is supposed to access the
++ device at that point. */
++ pc87360_write_value(data, LD_TEMP, NO_BANK, 0xB, 0x04);
++ pc87360_write_value(data, LD_TEMP, NO_BANK, 0xC, 0x35);
++ pc87360_write_value(data, LD_TEMP, NO_BANK, 0xD, 0x05);
++ pc87360_write_value(data, LD_TEMP, NO_BANK, 0xE, 0x05);
++ }
++ }
++}
++
++static void pc87360_autodiv(struct pc87360_data *data, int nr)
++{
++ u8 old_min = data->fan_min[nr];
++
++ /* Increase clock divider if needed and possible */
++ if ((data->fan_status[nr] & 0x04) /* overflow flag */
++ || (data->fan[nr] >= 224)) { /* next to overflow */
++ if ((data->fan_status[nr] & 0x60) != 0x60) {
++ data->fan_status[nr] += 0x20;
++ data->fan_min[nr] >>= 1;
++ data->fan[nr] >>= 1;
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Increasing "
++ "clock divider to %d for fan %d\n",
++ FAN_DIV_FROM_REG(data->fan_status[nr]),
++ nr+1);
++#endif
++ }
++ } else {
++ /* Decrease clock divider if possible */
++ while (!(data->fan_min[nr] & 0x80) /* fan min "nails" divider */
++ && data->fan[nr] < 85 /* bad accuracy */
++ && (data->fan_status[nr] & 0x60) != 0x00) {
++ data->fan_status[nr] -= 0x20;
++ data->fan_min[nr] <<= 1;
++ data->fan[nr] <<= 1;
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Decreasing "
++ "clock divider to %d for fan %d\n",
++ FAN_DIV_FROM_REG(data->fan_status[nr]),
++ nr+1);
++#endif
++ }
++ }
++
++ /* Write new fan min if it changed */
++ if (old_min != data->fan_min[nr]) {
++ pc87360_write_value(data, LD_FAN, NO_BANK,
++ PC87360_REG_FAN_MIN(nr),
++ data->fan_min[nr]);
++ }
++}
++
++static void pc87360_update_client(struct i2c_client *client)
++{
++ struct pc87360_data *data = client->data;
++ u8 i;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ * 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "pc87360.o: Data update\n");
++#endif
++
++ /* Fans */
++ for (i = 0; i < data->fannr; i++) {
++ if (FAN_CONFIG_MONITOR(data->fan_conf, i)) {
++ data->fan_status[i] = pc87360_read_value(data,
++ LD_FAN, NO_BANK,
++ PC87360_REG_FAN_STATUS(i));
++ data->fan[i] = pc87360_read_value(data, LD_FAN,
++ NO_BANK, PC87360_REG_FAN(i));
++ data->fan_min[i] = pc87360_read_value(data,
++ LD_FAN, NO_BANK,
++ PC87360_REG_FAN_MIN(i));
++ /* Change clock divider if needed */
++ pc87360_autodiv(data, i);
++ /* Clear bits and write new divider */
++ pc87360_write_value(data, LD_FAN, NO_BANK,
++ PC87360_REG_FAN_STATUS(i),
++ data->fan_status[i]);
++ }
++ data->pwm[i] = pc87360_read_value(data, LD_FAN,
++ NO_BANK, PC87360_REG_PWM(i));
++ }
++
++ /* Voltages */
++ for (i = 0; i < data->innr; i++) {
++ data->in_status[i] = pc87360_read_value(data, LD_IN, i,
++ PC87365_REG_IN_STATUS);
++ /* Clear bits */
++ pc87360_write_value(data, LD_IN, i,
++ PC87365_REG_IN_STATUS,
++ data->in_status[i]);
++ if ((data->in_status[i] & 0x81) == 0x81) {
++ data->in[i] = pc87360_read_value(data, LD_IN,
++ i, PC87365_REG_IN);
++ }
++ if (data->in_status[i] & 0x01) {
++ data->in_min[i] = pc87360_read_value(data,
++ LD_IN, i,
++ PC87365_REG_IN_MIN);
++ data->in_max[i] = pc87360_read_value(data,
++ LD_IN, i,
++ PC87365_REG_IN_MAX);
++ if (i >= 11)
++ data->in_crit[i-11] =
++ pc87360_read_value(data, LD_IN,
++ i, PC87365_REG_TEMP_CRIT);
++ }
++ }
++ if (data->innr) {
++ data->in_alarms = pc87360_read_value(data, LD_IN,
++ NO_BANK, PC87365_REG_IN_ALARMS1)
++ | ((pc87360_read_value(data, LD_IN,
++ NO_BANK, PC87365_REG_IN_ALARMS2)
++ & 0x07) << 8);
++ data->vid = (data->vid_conf & 0xE0) ?
++ pc87360_read_value(data, LD_IN,
++ NO_BANK, PC87365_REG_VID) : 0x1F;
++ }
++
++ /* Temperatures */
++ for (i = 0; i < data->tempnr; i++) {
++ data->temp_status[i] = pc87360_read_value(data,
++ LD_TEMP, i,
++ PC87365_REG_TEMP_STATUS);
++ /* Clear bits */
++ pc87360_write_value(data, LD_TEMP, i,
++ PC87365_REG_TEMP_STATUS,
++ data->temp_status[i]);
++ if ((data->temp_status[i] & 0x81) == 0x81) {
++ data->temp[i] = pc87360_read_value(data,
++ LD_TEMP, i,
++ PC87365_REG_TEMP);
++ }
++ if (data->temp_status[i] & 0x01) {
++ data->temp_min[i] = pc87360_read_value(data,
++ LD_TEMP, i,
++ PC87365_REG_TEMP_MIN);
++ data->temp_max[i] = pc87360_read_value(data,
++ LD_TEMP, i,
++ PC87365_REG_TEMP_MAX);
++ data->temp_crit[i] = pc87360_read_value(data,
++ LD_TEMP, i,
++ PC87365_REG_TEMP_CRIT);
++ }
++ }
++ if (data->tempnr) {
++ data->temp_alarms = pc87360_read_value(data, LD_TEMP,
++ NO_BANK, PC87365_REG_TEMP_ALARMS)
++ & 0x3F;
++ }
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++void pc87365_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ results[0] = data->in_alarms;
++ results[1] = data->temp_alarms;
++ *nrels_mag = 2;
++ }
++}
++
++void pc87360_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ int nr = ctl_name - PC87360_SYSCTL_FAN1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr],
++ FAN_DIV_FROM_REG(data->fan_status[nr]));
++ results[1] = FAN_FROM_REG(data->fan[nr],
++ FAN_DIV_FROM_REG(data->fan_status[nr]));
++ *nrels_mag = 2;
++ }
++ /* We ignore National's recommendation */
++ else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (nr >= data->fannr)
++ return;
++ if (*nrels_mag >= 1) {
++ int fan_min = FAN_TO_REG(results[0],
++ FAN_DIV_FROM_REG(data->fan_status[nr]));
++ /* If it wouldn't fit, change clock divisor */
++ while (fan_min > 255
++ && (data->fan_status[nr] & 0x60) != 0x60) {
++ fan_min >>= 1;
++ data->fan[nr] >>= 1;
++ data->fan_status[nr] += 0x20;
++ }
++ data->fan_min[nr] = fan_min > 255 ? 255 : fan_min;
++ pc87360_write_value(data, LD_FAN, NO_BANK,
++ PC87360_REG_FAN_MIN(nr),
++ data->fan_min[nr]);
++ /* Write new divider, preserve alarm bits */
++ pc87360_write_value(data, LD_FAN, NO_BANK,
++ PC87360_REG_FAN_STATUS(nr),
++ data->fan_status[nr] & 0xF9);
++ }
++ }
++}
++
++void pc87360_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ int i;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ for (i = 0; i < data->fannr; i++) {
++ results[i] = FAN_DIV_FROM_REG(data->fan_status[i]);
++ }
++ for (; i < 3; i++) {
++ results[i] = 0;
++ }
++ *nrels_mag = 3;
++ }
++}
++
++void pc87360_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ int nr = ctl_name - PC87360_SYSCTL_PWM1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ results[0] = PWM_FROM_REG(data->pwm[nr],
++ FAN_CONFIG_INVERT(data->fan_conf, nr));
++ results[1] = FAN_CONFIG_CONTROL(data->fan_conf, nr);
++ *nrels_mag = 2;
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (nr >= data->fannr)
++ return;
++ if (*nrels_mag >= 1) {
++ data->pwm[nr] = PWM_TO_REG(results[0],
++ FAN_CONFIG_INVERT(data->fan_conf, nr));
++ pc87360_write_value(data, LD_FAN, NO_BANK,
++ PC87360_REG_PWM(nr),
++ data->pwm[nr]);
++ }
++ }
++}
++
++void pc87360_fan_status(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ int nr = ctl_name - PC87360_SYSCTL_FAN1_STATUS;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ results[0] = FAN_STATUS_FROM_REG(data->fan_status[nr]);
++ *nrels_mag = 1;
++ }
++}
++
++void pc87365_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ int nr = ctl_name - PC87365_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr], data->in_vref);
++ results[1] = IN_FROM_REG(data->in_max[nr], data->in_vref);
++ if (nr < 11) {
++ *nrels_mag = 3;
++ } else {
++ results[2] = IN_FROM_REG(data->in_crit[nr-11],
++ data->in_vref);
++ *nrels_mag = 4;
++ }
++ results[(*nrels_mag)-1] = IN_FROM_REG(data->in[nr],
++ data->in_vref);
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0],
++ data->in_vref);
++ pc87360_write_value(data, LD_IN, nr,
++ PC87365_REG_IN_MIN,
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1],
++ data->in_vref);
++ pc87360_write_value(data, LD_IN, nr,
++ PC87365_REG_IN_MAX,
++ data->in_max[nr]);
++ }
++ if (*nrels_mag >= 3 && nr >= 11) {
++ data->in_crit[nr-11] = IN_TO_REG(results[2],
++ data->in_vref);
++ pc87360_write_value(data, LD_IN, nr,
++ PC87365_REG_TEMP_CRIT,
++ data->in_crit[nr-11]);
++ }
++ }
++}
++
++void pc87365_in_status(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ int nr = ctl_name - PC87365_SYSCTL_IN0_STATUS;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ results[0] = data->in_status[nr];
++ *nrels_mag = 1;
++ }
++}
++
++void pc87365_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ results[0] = vid_from_reg(data->vid & 0x1f, data->vrm);
++ *nrels_mag = 1;
++ }
++}
++
++void pc87365_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1)
++ data->vrm = results[0];
++ }
++}
++
++void pc87365_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ int nr = ctl_name - PC87365_SYSCTL_TEMP1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_max[nr]);
++ results[1] = TEMP_FROM_REG(data->temp_min[nr]);
++ results[2] = TEMP_FROM_REG(data->temp_crit[nr]);
++ results[3] = TEMP_FROM_REG(data->temp[nr]);
++ *nrels_mag = 4;
++ }
++ else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (nr >= data->tempnr)
++ return;
++ if (*nrels_mag >= 1) {
++ data->temp_max[nr] = TEMP_TO_REG(results[0]);
++ pc87360_write_value(data, LD_TEMP, nr,
++ PC87365_REG_TEMP_MAX,
++ data->temp_max[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_min[nr] = TEMP_TO_REG(results[1]);
++ pc87360_write_value(data, LD_TEMP, nr,
++ PC87365_REG_TEMP_MIN,
++ data->temp_min[nr]);
++ }
++ if (*nrels_mag >= 3) {
++ data->temp_crit[nr] = TEMP_TO_REG(results[2]);
++ pc87360_write_value(data, LD_TEMP, nr,
++ PC87365_REG_TEMP_CRIT,
++ data->temp_crit[nr]);
++ }
++ }
++}
++
++void pc87365_temp_status(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pc87360_data *data = client->data;
++ int nr = ctl_name - PC87365_SYSCTL_TEMP1_STATUS;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pc87360_update_client(client);
++ results[0] = data->temp_status[nr];
++ *nrels_mag = 1;
++ }
++}
++
++
++static int __init pc87360_init(void)
++{
++ int i;
++
++ printk(KERN_INFO "pc87360.o version %s (%s)\n", LM_VERSION, LM_DATE);
++
++ if (pc87360_find(&devid, extra_isa)) {
++ printk(KERN_WARNING "pc87360.o: PC8736x not detected, "
++ "module not inserted.\n");
++ return -ENODEV;
++ }
++
++ /* Arbitrarily pick one of the addresses */
++ for (i = 0; i < 3; i++) {
++ if (extra_isa[i] != 0x0000) {
++ normal_isa[0] = extra_isa[i];
++ break;
++ }
++ }
++
++ if (normal_isa[0] == 0x0000) {
++ printk(KERN_WARNING "pc87360.o: No active logical device, "
++ "module not inserted.\n");
++ return -ENODEV;
++
++ }
++
++ return i2c_add_driver(&pc87360_driver);
++}
++
++static void __exit pc87360_exit(void)
++{
++ i2c_del_driver(&pc87360_driver);
++}
++
++
++MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
++MODULE_DESCRIPTION("PC8736x hardware monitor");
++MODULE_LICENSE("GPL");
++
++module_init(pc87360_init);
++module_exit(pc87360_exit);
+--- linux-old/drivers/sensors/pcf8574.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/pcf8574.c Mon Dec 13 20:18:51 2004
+@@ -0,0 +1,309 @@
++/*
++ pcf8574.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2000 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>,
++ Dan Eaton <dan.eaton@rocketlogix.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* A few notes about the PCF8574:
++
++* The PCF8574 is an 8-bit I/O expander for the I2C bus produced by
++ Philips Semiconductors. It is designed to provide a byte I2C
++ interface to up to 8 separate devices.
++
++* The PCF8574 appears as a very simple SMBus device which can be
++ read from or written to with SMBUS byte read/write accesses.
++
++* Because of the general purpose nature of this device, it will most
++ likely be necessary to customize the /proc interface to suit the
++ specific application.
++
++ --Dan
++
++*/
++
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x20, 0x27, 0x38, 0x3f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_2(pcf8574, pcf8574a);
++
++/* The PCF8574 registers */
++
++/* (No registers. [Wow! This thing is SIMPLE!] ) */
++
++/* Initial values */
++#define PCF8574_INIT 255 /* All outputs on (input mode) */
++
++/* Each client has this additional data */
++struct pcf8574_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++
++ u8 read, write; /* Register values */
++};
++
++static int pcf8574_attach_adapter(struct i2c_adapter *adapter);
++static int pcf8574_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int pcf8574_detach_client(struct i2c_client *client);
++
++static void pcf8574_read(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void pcf8574_write(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void pcf8574_update_client(struct i2c_client *client);
++static void pcf8574_init_client(struct i2c_client *client);
++
++/* This is the driver that will be inserted */
++static struct i2c_driver pcf8574_driver = {
++ .owner = THIS_MODULE,
++ .name = "PCF8574 sensor chip driver",
++ .id = I2C_DRIVERID_PCF8574,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = pcf8574_attach_adapter,
++ .detach_client = pcf8574_detach_client,
++};
++
++
++/* -- SENSORS SYSCTL START -- */
++#define PCF8574_SYSCTL_READ 1000
++#define PCF8574_SYSCTL_WRITE 1001
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected PCF8574. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table pcf8574_dir_table_template[] = {
++ {PCF8574_SYSCTL_READ, "read", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &pcf8574_read},
++ {PCF8574_SYSCTL_WRITE, "write", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &pcf8574_write},
++ {0}
++};
++
++static int pcf8574_id = 0;
++
++static int pcf8574_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, pcf8574_detect);
++}
++
++/* This function is called by i2c_detect */
++int pcf8574_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct pcf8574_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("pcf8574.o: pcf8574_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet. */
++ if (!(data = kmalloc(sizeof(struct pcf8574_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &pcf8574_driver;
++ new_client->flags = 0;
++
++ /* Now, we would do the remaining detection. But the PCF8574 is plainly
++ impossible to detect! Stupid chip. */
++
++ /* Determine the chip type */
++ if (kind <= 0) {
++ if (address >= 0x38 && address <= 0x3f)
++ kind = pcf8574a;
++ else
++ kind = pcf8574;
++ }
++
++ if (kind == pcf8574a) {
++ type_name = "pcf8574a";
++ client_name = "PCF8574A chip";
++ } else {
++ type_name = "pcf8574a";
++ client_name = "PCF8574A chip";
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = pcf8574_id++;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR1;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ pcf8574_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR2;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the PCF8574 chip */
++ pcf8574_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR2:
++ i2c_detach_client(new_client);
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int pcf8574_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct pcf8574_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk("pcf8574.o: Client deregistration failed, "
++ "client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++/* Called when we have found a new PCF8574. */
++static void pcf8574_init_client(struct i2c_client *client)
++{
++ struct pcf8574_data *data = client->data;
++ data->write = PCF8574_INIT;
++ i2c_smbus_write_byte(client, data->write);
++}
++
++
++static void pcf8574_update_client(struct i2c_client *client)
++{
++ struct pcf8574_data *data = client->data;
++
++ down(&data->update_lock);
++
++#ifdef DEBUG
++ printk("Starting pcf8574 update\n");
++#endif
++
++ data->read = i2c_smbus_read_byte(client);
++
++ up(&data->update_lock);
++}
++
++
++void pcf8574_read(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct pcf8574_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pcf8574_update_client(client);
++ results[0] = data->read;
++ *nrels_mag = 1;
++ }
++}
++void pcf8574_write(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct pcf8574_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->write;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->write = results[0];
++ i2c_smbus_write_byte(client, data->write);
++ }
++ }
++}
++
++
++static int __init sm_pcf8574_init(void)
++{
++ printk("pcf8574.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&pcf8574_driver);
++}
++
++static void __exit sm_pcf8574_exit(void)
++{
++ i2c_del_driver(&pcf8574_driver);
++}
++
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>, "
++ "Philip Edelbrock <phil@netroedge.com>, "
++ "Dan Eaton <dan.eaton@rocketlogix.com> and "
++ "Aurelien Jarno <aurelien@aurel32.net>");
++MODULE_DESCRIPTION("PCF8574 driver");
++
++module_init(sm_pcf8574_init);
++module_exit(sm_pcf8574_exit);
+--- linux-old/drivers/sensors/pcf8591.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/pcf8591.c Mon Dec 13 20:18:51 2004
+@@ -0,0 +1,448 @@
++/*
++ pcf8591.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2001 Aurelien Jarno <aurelien@aurel32.net>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x48, 0x4f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(pcf8591);
++
++/* The PCF8591 control byte */
++/* 7 6 5 4 3 2 1 0 */
++/* | 0 |AOEF| AIP | 0 |AINC| AICH | */
++
++#define PCF8591_CONTROL_BYTE_AOEF 0x40 /* Analog Output Enable Flag */
++ /* (analog output active if 1) */
++
++#define PCF8591_CONTROL_BYTE_AIP 0x30 /* Analog Input Programming */
++ /* 0x00 = four single ended inputs */
++ /* 0x10 = three differential inputs */
++ /* 0x20 = single ended and differential mixed */
++ /* 0x30 = two differential inputs */
++
++#define PCF8591_CONTROL_BYTE_AINC 0x04 /* Autoincrement Flag */
++ /* (switch on if 1) */
++
++#define PCF8591_CONTROL_BYTE_AICH 0x03 /* Analog Output Enable Flag */
++ /* 0x00 = channel 0 */
++ /* 0x01 = channel 1 */
++ /* 0x02 = channel 2 */
++ /* 0x03 = channel 3 */
++
++
++/* Initial values */
++#define PCF8591_INIT_CONTROL_BYTE (PCF8591_CONTROL_BYTE_AOEF | PCF8591_CONTROL_BYTE_AINC)
++ /* DAC out enabled, four single ended inputs, autoincrement */
++
++#define PCF8591_INIT_AOUT 0 /* DAC out = 0 */
++
++
++/* Conversions. */
++#define REG_TO_SIGNED(reg) (reg & 0x80)?(reg - 256):(reg)
++ /* Convert signed 8 bit value to signed value */
++
++
++struct pcf8591_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 control_byte;
++ u8 ch[4];
++ u8 aout;
++};
++
++static int pcf8591_attach_adapter(struct i2c_adapter *adapter);
++static int pcf8591_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int pcf8591_detach_client(struct i2c_client *client);
++
++static void pcf8591_update_client(struct i2c_client *client);
++static void pcf8591_init_client(struct i2c_client *client);
++
++static void pcf8591_ain_conf(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void pcf8591_ain(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void pcf8591_aout_enable(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void pcf8591_aout(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver pcf8591_driver = {
++ .owner = THIS_MODULE,
++ .name = "PCF8591 sensor chip driver",
++ .id = I2C_DRIVERID_PCF8591,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = pcf8591_attach_adapter,
++ .detach_client = pcf8591_detach_client,
++};
++
++static int pcf8591_id = 0;
++
++/* The /proc/sys entries */
++
++/* -- SENSORS SYSCTL START -- */
++#define PCF8591_SYSCTL_AIN_CONF 1000 /* Analog input configuration */
++#define PCF8591_SYSCTL_CH0 1001 /* Input channel 1 */
++#define PCF8591_SYSCTL_CH1 1002 /* Input channel 2 */
++#define PCF8591_SYSCTL_CH2 1003 /* Input channel 3 */
++#define PCF8591_SYSCTL_CH3 1004 /* Input channel 4 */
++#define PCF8591_SYSCTL_AOUT_ENABLE 1005 /* Analog output enable flag */
++#define PCF8591_SYSCTL_AOUT 1006 /* Analog output */
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected PCF8591. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table pcf8591_dir_table_template[] = {
++ {PCF8591_SYSCTL_AIN_CONF, "ain_conf", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &pcf8591_ain_conf},
++ {PCF8591_SYSCTL_CH0, "ch0", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &pcf8591_ain},
++ {PCF8591_SYSCTL_CH1, "ch1", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &pcf8591_ain},
++ {PCF8591_SYSCTL_CH2, "ch2", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &pcf8591_ain},
++ {PCF8591_SYSCTL_CH3, "ch3", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &pcf8591_ain},
++ {PCF8591_SYSCTL_AOUT_ENABLE, "aout_enable", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &pcf8591_aout_enable},
++ {PCF8591_SYSCTL_AOUT, "aout", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &pcf8591_aout},
++ {0}
++};
++
++
++/* This function is called when:
++ * pcf8591_driver is inserted (when this module is loaded), for each
++ available adapter
++ * when a new adapter is inserted (and pcf8591_driver is still present) */
++static int pcf8591_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, pcf8591_detect);
++}
++
++/* This function is called by i2c_detect */
++int pcf8591_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct pcf8591_data *data;
++ int err = 0;
++
++ const char *type_name = "";
++ const char *client_name = "";
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ (KERN_ERR "pcf8591.o: pcf8591_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE
++ | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet. */
++ if (!(data = kmalloc(sizeof(struct pcf8591_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &pcf8591_driver;
++ new_client->flags = 0;
++
++ /* Now, we would do the remaining detection. But the PCF8591 is plainly
++ impossible to detect! Stupid chip. */
++
++ /* Determine the chip type - only one kind supported! */
++ if (kind <= 0)
++ kind = pcf8591;
++
++ type_name = "pcf8591";
++ client_name = "PCF8591 chip";
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = pcf8591_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ pcf8591_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the PCF8591 chip */
++ pcf8591_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int pcf8591_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct pcf8591_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ (KERN_ERR "pcf8591.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++/* Called when we have found a new PCF8591. */
++static void pcf8591_init_client(struct i2c_client *client)
++{
++ struct pcf8591_data *data = client->data;
++ data->control_byte = PCF8591_INIT_CONTROL_BYTE;
++ data->aout = PCF8591_INIT_AOUT;
++
++ i2c_smbus_write_byte_data(client, data->control_byte, data->aout);
++}
++
++static void pcf8591_update_client(struct i2c_client *client)
++{
++ struct pcf8591_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk(KERN_DEBUG "Starting pcf8591 update\n");
++#endif
++
++ i2c_smbus_write_byte(client, data->control_byte);
++ i2c_smbus_read_byte(client); /* The first byte transmitted contains the */
++ /* conversion code of the previous read cycled */
++ /* FLUSH IT ! */
++
++
++ /* Number of byte to read to signed depend on the analog input mode */
++ data->ch[0] = i2c_smbus_read_byte(client);
++ data->ch[1] = i2c_smbus_read_byte(client);
++ /* In all case, read at least two values */
++
++ if ((data->control_byte & PCF8591_CONTROL_BYTE_AIP) != 0x30)
++ data->ch[2] = i2c_smbus_read_byte(client);
++ /* Read the third value if not in "two differential inputs" mode */
++
++ if ((data->control_byte & PCF8591_CONTROL_BYTE_AIP) == 0x00)
++ data->ch[3] = i2c_smbus_read_byte(client);
++ /* Read the fourth value only in "four single ended inputs" mode */
++
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field. */
++void pcf8591_ain_conf(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pcf8591_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = (data->control_byte & PCF8591_CONTROL_BYTE_AIP) >> 4;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (results[0] >= 0 && results[0] <= 3)
++ {
++ data->control_byte &= ~PCF8591_CONTROL_BYTE_AIP;
++ data->control_byte |= (results[0] << 4);
++ i2c_smbus_write_byte(client, data->control_byte);
++ data->valid = 0;
++ }
++ }
++ }
++}
++
++void pcf8591_ain(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pcf8591_data *data = client->data;
++ int nr = ctl_name - PCF8591_SYSCTL_CH0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ pcf8591_update_client(client);
++
++ /* Number of data to show and conversion to signed depend on */
++ /* the analog input mode */
++
++ switch(nr) {
++ case 0:
++ if (((data->control_byte & PCF8591_CONTROL_BYTE_AIP) == 0)
++ | ((data->control_byte & PCF8591_CONTROL_BYTE_AIP) == 2))
++ results[0] = data->ch[0]; /* single ended */
++ else
++ results[0] = REG_TO_SIGNED(data->ch[0]);/* differential */
++ break;
++ case 1:
++ if (((data->control_byte & PCF8591_CONTROL_BYTE_AIP) == 0)
++ | ((data->control_byte & PCF8591_CONTROL_BYTE_AIP) == 2))
++ results[0] = data->ch[1]; /* single ended */
++ else
++ results[0] = REG_TO_SIGNED(data->ch[1]);/* differential */
++ break;
++ case 2:
++ if ((data->control_byte & PCF8591_CONTROL_BYTE_AIP) == 3)
++ results[0] = 0; /* channel not used */
++ else if ((data->control_byte & PCF8591_CONTROL_BYTE_AIP) == 0)
++ results[0] = data->ch[2]; /* single ended */
++ else
++ results[0] = REG_TO_SIGNED(data->ch[2]);/* differential */
++ break;
++ case 3:
++ if (((data->control_byte & PCF8591_CONTROL_BYTE_AIP) == 0)
++ | ((data->control_byte & PCF8591_CONTROL_BYTE_AIP) == 2))
++ results[0] = data->ch[3]; /* single ended */
++ else
++ results[0] = 0; /* channel not used */
++ break;
++ }
++ *nrels_mag = 1;
++ }
++}
++
++void pcf8591_aout_enable(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pcf8591_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = !(!(data->control_byte & PCF8591_CONTROL_BYTE_AOEF));
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (results[0])
++ data->control_byte |= PCF8591_CONTROL_BYTE_AOEF;
++ else
++ data->control_byte &= ~PCF8591_CONTROL_BYTE_AOEF;
++
++ i2c_smbus_write_byte(client, data->control_byte);
++ }
++ }
++}
++
++void pcf8591_aout(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct pcf8591_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->aout;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (results[0] >= 0 && results[0] <= 255) /* ignore values outside DAC range */
++ {
++ data->aout = results[0];
++ i2c_smbus_write_byte_data(client, data->control_byte, data->aout);
++ }
++ }
++ }
++}
++
++static int __init sm_pcf8591_init(void)
++{
++ printk(KERN_INFO "pcf8591.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&pcf8591_driver);
++}
++
++static void __exit sm_pcf8591_exit(void)
++{
++ i2c_del_driver(&pcf8591_driver);
++}
++
++
++
++MODULE_AUTHOR("Aurelien Jarno <aurelien@aurel32.net>");
++MODULE_DESCRIPTION("PCF8591 driver");
++MODULE_LICENSE("GPL");
++
++module_init(sm_pcf8591_init);
++module_exit(sm_pcf8591_exit);
+--- linux-old/drivers/sensors/sis5595.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/sis5595.c Mon Dec 13 20:18:52 2004
+@@ -0,0 +1,735 @@
++/*
++ sis5595.c - Part of lm_sensors, Linux kernel modules
++ for hardware monitoring
++
++ Copyright (c) 1998 - 2001 Frodo Looijaard <frodol@dds.nl>,
++ Kyösti Mälkki <kmalkki@cc.hut.fi>, and
++ Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ Supports following revisions:
++ Version PCI ID PCI Revision
++ 1 1039/0008 AF or less
++ 2 1039/0008 B0 or greater
++
++ Note: these chips contain a 0008 device which is incompatible with the
++ 5595. We recognize these by the presence of the listed
++ "blacklist" PCI ID and refuse to load.
++
++ NOT SUPPORTED PCI ID BLACKLIST PCI ID
++ 540 0008 0540
++ 550 0008 0550
++ 5513 0008 5511
++ 5581 0008 5597
++ 5582 0008 5597
++ 5597 0008 5597
++ 5598 0008 5597/5598
++ 630 0008 0630
++ 645 0008 0645
++ 730 0008 0730
++ 735 0008 0735
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/ioport.h>
++#include <linux/pci.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* If force_addr is set to anything different from 0, we forcibly enable
++ the device at the given address. */
++static int force_addr = 0;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Initialize the base address of the sensors");
++
++/* Addresses to scan.
++ Note that we can't determine the ISA address until we have initialized
++ our module */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0x0000, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(sis5595);
++
++static int blacklist[] = {
++ PCI_DEVICE_ID_SI_540,
++ PCI_DEVICE_ID_SI_550,
++ PCI_DEVICE_ID_SI_630,
++ PCI_DEVICE_ID_SI_730,
++ PCI_DEVICE_ID_SI_5511, /* 5513 chip has the 0008 device but
++ that ID shows up in other chips so we
++ use the 5511 ID for recognition */
++ PCI_DEVICE_ID_SI_5597,
++ PCI_DEVICE_ID_SI_5598,
++ 0x645,
++ 0x735,
++ 0 };
++/*
++ SiS southbridge has a LM78-like chip integrated on the same IC.
++ This driver is a customized copy of lm78.c
++*/
++
++/* Many SIS5595 constants specified below */
++
++/* Length of ISA address segment */
++#define SIS5595_EXTENT 8
++/* PCI Config Registers */
++#define SIS5595_REVISION_REG 0x08
++#define SIS5595_BASE_REG 0x68
++#define SIS5595_PIN_REG 0x7A
++#define SIS5595_ENABLE_REG 0x7B
++
++/* Where are the ISA address/data registers relative to the base address */
++#define SIS5595_ADDR_REG_OFFSET 5
++#define SIS5595_DATA_REG_OFFSET 6
++
++/* The SIS5595 registers */
++#define SIS5595_REG_IN_MAX(nr) (0x2b + (nr) * 2)
++#define SIS5595_REG_IN_MIN(nr) (0x2c + (nr) * 2)
++#define SIS5595_REG_IN(nr) (0x20 + (nr))
++
++#define SIS5595_REG_FAN_MIN(nr) (0x3a + (nr))
++#define SIS5595_REG_FAN(nr) (0x27 + (nr))
++
++/* On the first version of the chip, the temp registers are separate.
++ On the second version,
++ TEMP pin is shared with IN4, configured in PCI register 0x7A.
++ The registers are the same as well.
++ OVER and HYST are really MAX and MIN. */
++
++#define REV2MIN 0xb0
++#define SIS5595_REG_TEMP (( data->revision) >= REV2MIN) ? \
++ SIS5595_REG_IN(4) : 0x27
++#define SIS5595_REG_TEMP_OVER (( data->revision) >= REV2MIN) ? \
++ SIS5595_REG_IN_MAX(4) : 0x39
++#define SIS5595_REG_TEMP_HYST (( data->revision) >= REV2MIN) ? \
++ SIS5595_REG_IN_MIN(4) : 0x3a
++
++#define SIS5595_REG_CONFIG 0x40
++#define SIS5595_REG_ALARM1 0x41
++#define SIS5595_REG_ALARM2 0x42
++#define SIS5595_REG_FANDIV 0x47
++
++/* Conversions. Limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val) * 10 + 8)/16),0,255))
++#define IN_FROM_REG(val) (((val) * 16 + 5) / 10)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==255?0:1350000/((val)*(div)))
++
++/* Version 1 datasheet temp=.83*reg + 52.12 */
++#define TEMP_FROM_REG(val) (((((val)>=0x80?(val)-0x100:(val))*83)+5212)/10)
++/* inverse 1.20*val - 62.77 */
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)<0?\
++ ((((val)*12)-6327)/100):\
++ ((((val)*12)-6227)/100)),0,255))
++
++#define ALARMS_FROM_REG(val) (val)
++
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
++
++/* For the SIS5595, we need to keep some data in memory. That
++ data is pointed to by sis5595_list[NR]->data. The structure itself is
++ dynamically allocated, at the time when the new sis5595 client is
++ allocated. */
++struct sis5595_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++ char maxins; /* == 3 if temp enabled, otherwise == 4 */
++ u8 revision; /* Reg. value */
++
++ u8 in[5]; /* Register value */
++ u8 in_max[5]; /* Register value */
++ u8 in_min[5]; /* Register value */
++ u8 fan[2]; /* Register value */
++ u8 fan_min[2]; /* Register value */
++ u8 temp; /* Register value */
++ u8 temp_over; /* Register value - really max */
++ u8 temp_hyst; /* Register value - really min */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ u16 alarms; /* Register encoding, combined */
++};
++
++static struct pci_dev *s_bridge; /* pointer to the (only) sis5595 */
++
++static int sis5595_attach_adapter(struct i2c_adapter *adapter);
++static int sis5595_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int sis5595_detach_client(struct i2c_client *client);
++
++static int sis5595_read_value(struct i2c_client *client, u8 register);
++static int sis5595_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void sis5595_update_client(struct i2c_client *client);
++static void sis5595_init_client(struct i2c_client *client);
++static int sis5595_find_sis(int *address);
++
++
++static void sis5595_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void sis5595_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void sis5595_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void sis5595_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void sis5595_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int sis5595_id = 0;
++
++/* The driver. I choose to use type i2c_driver, as at is identical to both
++ smbus_driver and isa_driver, and clients could be of either kind */
++static struct i2c_driver sis5595_driver = {
++ .owner = THIS_MODULE,
++ .name = "SiS 5595",
++ .id = I2C_DRIVERID_SIS5595,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = sis5595_attach_adapter,
++ .detach_client = sis5595_detach_client,
++};
++
++/* The /proc/sys entries */
++
++/* -- SENSORS SYSCTL START -- */
++#define SIS5595_SYSCTL_IN0 1000 /* Volts * 100 */
++#define SIS5595_SYSCTL_IN1 1001
++#define SIS5595_SYSCTL_IN2 1002
++#define SIS5595_SYSCTL_IN3 1003
++#define SIS5595_SYSCTL_IN4 1004
++#define SIS5595_SYSCTL_FAN1 1101 /* Rotations/min */
++#define SIS5595_SYSCTL_FAN2 1102
++#define SIS5595_SYSCTL_TEMP 1200 /* Degrees Celcius * 10 */
++#define SIS5595_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define SIS5595_SYSCTL_ALARMS 2001 /* bitvector */
++
++#define SIS5595_ALARM_IN0 0x01
++#define SIS5595_ALARM_IN1 0x02
++#define SIS5595_ALARM_IN2 0x04
++#define SIS5595_ALARM_IN3 0x08
++#define SIS5595_ALARM_BTI 0x20
++#define SIS5595_ALARM_FAN1 0x40
++#define SIS5595_ALARM_FAN2 0x80
++#define SIS5595_ALARM_IN4 0x8000
++#define SIS5595_ALARM_TEMP 0x8000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected SIS5595. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table sis5595_dir_table_template[] = {
++ {SIS5595_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_in},
++ {SIS5595_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_in},
++ {SIS5595_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_in},
++ {SIS5595_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_in},
++ {SIS5595_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_in},
++ {SIS5595_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_fan},
++ {SIS5595_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_fan},
++ {SIS5595_SYSCTL_TEMP, "temp", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_temp},
++ {SIS5595_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_fan_div},
++ {SIS5595_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &sis5595_alarms},
++ {0}
++};
++
++/* This is called when the module is loaded */
++static int sis5595_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, sis5595_detect);
++}
++
++/* Locate SiS bridge and correct base address for SIS5595 */
++static int sis5595_find_sis(int *address)
++{
++ u16 val;
++ int *i;
++
++ if (!pci_present())
++ return -ENODEV;
++
++ if (!(s_bridge =
++ pci_find_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_503,
++ NULL)))
++ return -ENODEV;
++
++ /* Look for imposters */
++ for(i = blacklist; *i != 0; i++) {
++ if (pci_find_device(PCI_VENDOR_ID_SI, *i, NULL)) {
++ printk("sis5595.o: Error: Looked for SIS5595 but found unsupported device %.4X\n", *i);
++ return -ENODEV;
++ }
++ }
++
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_word(s_bridge, SIS5595_BASE_REG, &val))
++ return -ENODEV;
++
++ *address = val & ~(SIS5595_EXTENT - 1);
++ if (*address == 0 && force_addr == 0) {
++ printk("sis5595.o: base address not set - upgrade BIOS or use force_addr=0xaddr\n");
++ return -ENODEV;
++ }
++ if (force_addr)
++ *address = force_addr; /* so detect will get called */
++
++ return 0;
++}
++
++int sis5595_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct sis5595_data *data;
++ int err = 0;
++ const char *type_name = "sis5595";
++ const char *client_name = "SIS5595 chip";
++ char val;
++ u16 a;
++
++ /* Make sure we are probing the ISA bus!! */
++ if (!i2c_is_isa_adapter(adapter)) {
++ printk
++ ("sis5595.o: sis5595_detect called for an I2C bus adapter?!?\n");
++ return 0;
++ }
++
++ if(force_addr)
++ address = force_addr & ~(SIS5595_EXTENT - 1);
++ if (check_region(address, SIS5595_EXTENT)) {
++ printk("sis5595.o: region 0x%x already in use!\n", address);
++ return -ENODEV;
++ }
++ if(force_addr) {
++ printk("sis5595.o: forcing ISA address 0x%04X\n", address);
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_write_config_word(s_bridge, SIS5595_BASE_REG, address))
++ return -ENODEV;
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_word(s_bridge, SIS5595_BASE_REG, &a))
++ return -ENODEV;
++ if ((a & ~(SIS5595_EXTENT - 1)) != address) {
++ /* doesn't work for some chips? */
++ printk("sis5595.o: force address failed\n");
++ return -ENODEV;
++ }
++ }
++
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_byte(s_bridge, SIS5595_ENABLE_REG, &val))
++ return -ENODEV;
++ if((val & 0x80) == 0) {
++ printk("sis5595.o: enabling sensors\n");
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_write_config_byte(s_bridge, SIS5595_ENABLE_REG,
++ val | 0x80))
++ return -ENODEV;
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_byte(s_bridge, SIS5595_ENABLE_REG, &val))
++ return -ENODEV;
++ if((val & 0x80) == 0) { /* doesn't work for some chips! */
++ printk("sis5595.o: sensors enable failed - not supported?\n");
++ return -ENODEV;
++ }
++ }
++
++ if (!(data = kmalloc(sizeof(struct sis5595_data), GFP_KERNEL))) {
++ return -ENOMEM;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ init_MUTEX(&data->lock);
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &sis5595_driver;
++ new_client->flags = 0;
++
++ /* Reserve the ISA region */
++ request_region(address, SIS5595_EXTENT, type_name);
++
++ /* Check revision and pin registers to determine whether 3 or 4 voltages */
++ pci_read_config_byte(s_bridge, SIS5595_REVISION_REG, &(data->revision));
++ if(data->revision < REV2MIN) {
++ data->maxins = 3;
++ } else {
++ pci_read_config_byte(s_bridge, SIS5595_PIN_REG, &val);
++ if(val & 0x80)
++ /* 3 voltages, 1 temp */
++ data->maxins = 3;
++ else
++ /* 4 voltages, no temps */
++ data->maxins = 4;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = sis5595_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry((struct i2c_client *) new_client,
++ type_name,
++ sis5595_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the SIS5595 chip */
++ sis5595_init_client(new_client);
++ return 0;
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ release_region(address, SIS5595_EXTENT);
++ kfree(data);
++ return err;
++}
++
++static int sis5595_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct sis5595_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("sis5595.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ release_region(client->addr, SIS5595_EXTENT);
++ kfree(client->data);
++
++ return 0;
++}
++
++
++/* ISA access must be locked explicitly.
++ There are some ugly typecasts here, but the good news is - they should
++ nowhere else be necessary! */
++static int sis5595_read_value(struct i2c_client *client, u8 reg)
++{
++ int res;
++
++ down(&(((struct sis5595_data *) (client->data))->lock));
++ outb_p(reg, client->addr + SIS5595_ADDR_REG_OFFSET);
++ res = inb_p(client->addr + SIS5595_DATA_REG_OFFSET);
++ up(&(((struct sis5595_data *) (client->data))->lock));
++ return res;
++}
++
++static int sis5595_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ down(&(((struct sis5595_data *) (client->data))->lock));
++ outb_p(reg, client->addr + SIS5595_ADDR_REG_OFFSET);
++ outb_p(value, client->addr + SIS5595_DATA_REG_OFFSET);
++ up(&(((struct sis5595_data *) (client->data))->lock));
++ return 0;
++}
++
++/* Called when we have found a new SIS5595. */
++static void sis5595_init_client(struct i2c_client *client)
++{
++ u8 reg;
++
++ /* Start monitoring */
++ reg = i2c_smbus_read_byte_data(client, SIS5595_REG_CONFIG);
++ sis5595_write_value(client, SIS5595_REG_CONFIG, (reg|0x01)&0x7F);
++}
++
++static void sis5595_update_client(struct i2c_client *client)
++{
++ struct sis5595_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++ for (i = 0; i <= data->maxins; i++) {
++ data->in[i] =
++ sis5595_read_value(client, SIS5595_REG_IN(i));
++ data->in_min[i] =
++ sis5595_read_value(client,
++ SIS5595_REG_IN_MIN(i));
++ data->in_max[i] =
++ sis5595_read_value(client,
++ SIS5595_REG_IN_MAX(i));
++ }
++ for (i = 1; i <= 2; i++) {
++ data->fan[i - 1] =
++ sis5595_read_value(client, SIS5595_REG_FAN(i));
++ data->fan_min[i - 1] =
++ sis5595_read_value(client,
++ SIS5595_REG_FAN_MIN(i));
++ }
++ if(data->maxins == 3) {
++ data->temp =
++ sis5595_read_value(client, SIS5595_REG_TEMP);
++ data->temp_over =
++ sis5595_read_value(client, SIS5595_REG_TEMP_OVER);
++ data->temp_hyst =
++ sis5595_read_value(client, SIS5595_REG_TEMP_HYST);
++ }
++ i = sis5595_read_value(client, SIS5595_REG_FANDIV);
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = i >> 6;
++ data->alarms =
++ sis5595_read_value(client, SIS5595_REG_ALARM1) |
++ (sis5595_read_value(client, SIS5595_REG_ALARM2) << 8);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++
++/* Return 0 for in4 and disallow writes if pin used for temp */
++void sis5595_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct sis5595_data *data = client->data;
++ int nr = ctl_name - SIS5595_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ if(nr <= 3 || data->maxins == 4) {
++ sis5595_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ } else {
++ results[0] = 0;
++ results[1] = 0;
++ results[2] = 0;
++ }
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if(nr <= 3 || data->maxins == 4) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0]);
++ sis5595_write_value(client,
++ SIS5595_REG_IN_MIN(nr), data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1]);
++ sis5595_write_value(client,
++ SIS5595_REG_IN_MAX(nr), data->in_max[nr]);
++ }
++ }
++ }
++}
++
++void sis5595_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct sis5595_data *data = client->data;
++ int nr = ctl_name - SIS5595_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ sis5595_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ results[1] = FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = FAN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->
++ fan_div[nr-1]));
++ sis5595_write_value(client,
++ SIS5595_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++
++/* Return 0 for temp and disallow writes if pin used for in4 */
++void sis5595_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct sis5595_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ if(data->maxins == 3) {
++ sis5595_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over);
++ results[1] = TEMP_FROM_REG(data->temp_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ } else {
++ results[0] = 0;
++ results[1] = 0;
++ results[2] = 0;
++ }
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if(data->maxins == 3) {
++ if (*nrels_mag >= 1) {
++ data->temp_over = TEMP_TO_REG(results[0]);
++ sis5595_write_value(client,
++ SIS5595_REG_TEMP_OVER, data->temp_over);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst = TEMP_TO_REG(results[1]);
++ sis5595_write_value(client,
++ SIS5595_REG_TEMP_HYST, data->temp_hyst);
++ }
++ }
++ }
++}
++
++void sis5595_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct sis5595_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ sis5595_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void sis5595_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct sis5595_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ sis5595_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = sis5595_read_value(client, SIS5595_REG_FANDIV);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | (data->fan_div[1] << 6);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan_div[0] << 4);
++ sis5595_write_value(client, SIS5595_REG_FANDIV, old);
++ }
++ }
++}
++
++static int __init sm_sis5595_init(void)
++{
++ int addr;
++
++ printk("sis5595.o version %s (%s)\n", LM_VERSION, LM_DATE);
++
++ if (sis5595_find_sis(&addr)) {
++ printk("sis5595.o: SIS5595 not detected, module not inserted.\n");
++ return -ENODEV;
++ }
++ normal_isa[0] = addr;
++
++ return i2c_add_driver(&sis5595_driver);
++}
++
++static void __exit sm_sis5595_exit(void)
++{
++ i2c_del_driver(&sis5595_driver);
++}
++
++
++
++MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>");
++MODULE_DESCRIPTION("SiS 5595 Sensor device");
++
++module_init(sm_sis5595_init);
++module_exit(sm_sis5595_exit);
+--- linux-old/drivers/sensors/smsc47m1.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/smsc47m1.c Mon Dec 13 20:18:52 2004
+@@ -0,0 +1,515 @@
++/*
++ smsc47m1.c - Part of lm_sensors, Linux kernel modules
++ for hardware monitoring
++
++ Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++static int force_addr = 0;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Initialize the base address of the sensors");
++
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0x0000, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++SENSORS_INSMOD_1(smsc47m1);
++
++/* modified from kernel/include/traps.c */
++#define REG 0x2e /* The register to read/write */
++#define DEV 0x07 /* Register: Logical device select */
++#define VAL 0x2f /* The value to read/write */
++#define PME 0x0a /* The device with the fan registers in it */
++#define DEVID 0x20 /* Register: Device ID */
++
++static inline void
++superio_outb(int reg, int val)
++{
++ outb(reg, REG);
++ outb(val, VAL);
++}
++
++static inline int
++superio_inb(int reg)
++{
++ outb(reg, REG);
++ return inb(VAL);
++}
++
++static inline void
++superio_select(void)
++{
++ outb(DEV, REG);
++ outb(PME, VAL);
++}
++
++static inline void
++superio_enter(void)
++{
++ outb(0x55, REG);
++}
++
++static inline void
++superio_exit(void)
++{
++ outb(0xAA, REG);
++}
++
++/*
++ * SMSC LPC47M10x (device id 0x59), LPC47M14x (device id 0x5F) and
++ * LPC47B27x (device id 0x51) have fan control.
++ * The 47M15x and 47M192 chips "with hardware monitoring block"
++ * can do much more besides (device id 0x60).
++ */
++#define SMSC_DEVID_MATCH(id) ((id) == 0x51 || (id) == 0x59 || (id) == 0x5F)
++
++#define SMSC_ACT_REG 0x30
++#define SMSC_BASE_REG 0x60
++
++#define SMSC_EXTENT 0x80
++
++#define SMSC47M1_REG_ALARM1 0x04
++#define SMSC47M1_REG_TPIN2 0x33
++#define SMSC47M1_REG_TPIN1 0x34
++#define SMSC47M1_REG_PPIN(nr) (0x37 - (nr))
++#define SMSC47M1_REG_PWM(nr) (0x55 + (nr))
++#define SMSC47M1_REG_FANDIV 0x58
++#define SMSC47M1_REG_FAN(nr) (0x58 + (nr))
++#define SMSC47M1_REG_FAN_MIN(nr) (0x5a + (nr))
++
++static inline u8 MIN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 0;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT(192 - ((983040 + rpm * div / 2) / (rpm * div)),
++ 0, 191);
++}
++
++#define MIN_FROM_REG(val,div) ((val)>=192?0: \
++ 983040/((192-(val))*(div)))
++#define FAN_FROM_REG(val,div,preload) ((val)==0?-1:(val)==255?0: \
++ 983040/(((val)-preload)*(div)))
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
++/* reg is 6 middle bits; /proc is 8 bits */
++#define PWM_FROM_REG(val) (((val) << 1) & 0xfc)
++#define PWM_TO_REG(val) (((SENSORS_LIMIT((val), 0, 255)) >> 1) & 0x7e)
++
++struct smsc47m1_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 fan[2]; /* Register value */
++ u8 fan_min[2]; /* Register value */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ u8 alarms; /* Register encoding */
++ u8 pwm[2]; /* Register value (bit 7 is enable) */
++};
++
++
++static int smsc47m1_attach_adapter(struct i2c_adapter *adapter);
++static int smsc47m1_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int smsc47m1_detach_client(struct i2c_client *client);
++
++static int smsc47m1_read_value(struct i2c_client *client, u8 register);
++static int smsc47m1_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void smsc47m1_update_client(struct i2c_client *client);
++static void smsc47m1_init_client(struct i2c_client *client);
++static int smsc47m1_find(int *address);
++
++
++static void smsc47m1_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void smsc47m1_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void smsc47m1_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void smsc47m1_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int smsc47m1_id = 0;
++
++static struct i2c_driver smsc47m1_driver = {
++ .owner = THIS_MODULE,
++ .name = "SMSC 47M1xx fan monitor",
++ .id = I2C_DRIVERID_SMSC47M1,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = smsc47m1_attach_adapter,
++ .detach_client = smsc47m1_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++#define SMSC47M1_SYSCTL_FAN1 1101 /* Rotations/min */
++#define SMSC47M1_SYSCTL_FAN2 1102
++#define SMSC47M1_SYSCTL_PWM1 1401
++#define SMSC47M1_SYSCTL_PWM2 1402
++#define SMSC47M1_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define SMSC47M1_SYSCTL_ALARMS 2004 /* bitvector */
++
++#define SMSC47M1_ALARM_FAN1 0x0001
++#define SMSC47M1_ALARM_FAN2 0x0002
++
++/* -- SENSORS SYSCTL END -- */
++
++static ctl_table smsc47m1_dir_table_template[] = {
++ {SMSC47M1_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &smsc47m1_fan},
++ {SMSC47M1_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &smsc47m1_fan},
++ {SMSC47M1_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &smsc47m1_fan_div},
++ {SMSC47M1_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &smsc47m1_alarms},
++ {SMSC47M1_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &smsc47m1_pwm},
++ {SMSC47M1_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &smsc47m1_pwm},
++ {0}
++};
++
++static int smsc47m1_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, smsc47m1_detect);
++}
++
++static int smsc47m1_find(int *address)
++{
++ u16 val;
++
++ superio_enter();
++ val= superio_inb(DEVID);
++ if (!SMSC_DEVID_MATCH(val)) {
++ superio_exit();
++ return -ENODEV;
++ }
++
++ superio_select();
++ val = (superio_inb(SMSC_BASE_REG) << 8) |
++ superio_inb(SMSC_BASE_REG + 1);
++ *address = val & ~(SMSC_EXTENT - 1);
++ if (*address == 0 && force_addr == 0) {
++ printk("smsc47m1.o: base address not set - use force_addr=0xaddr\n");
++ superio_exit();
++ return -ENODEV;
++ }
++ if (force_addr)
++ *address = force_addr; /* so detect will get called */
++
++ superio_exit();
++ return 0;
++}
++
++int smsc47m1_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct smsc47m1_data *data;
++ int err = 0;
++ const char *type_name = "smsc47m1";
++ const char *client_name = "47M1xx chip";
++
++ if (!i2c_is_isa_adapter(adapter)) {
++ return 0;
++ }
++
++ if(force_addr)
++ address = force_addr & ~(SMSC_EXTENT - 1);
++ if (check_region(address, SMSC_EXTENT)) {
++ printk("smsc47m1.o: region 0x%x already in use!\n", address);
++ return -ENODEV;
++ }
++ if(force_addr) {
++ printk("smsc47m1.o: forcing ISA address 0x%04X\n", address);
++ superio_enter();
++ superio_select();
++ superio_outb(SMSC_BASE_REG, address >> 8);
++ superio_outb(SMSC_BASE_REG+1, address & 0xff);
++ superio_exit();
++ }
++
++ if (!(data = kmalloc(sizeof(struct smsc47m1_data), GFP_KERNEL))) {
++ return -ENOMEM;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ init_MUTEX(&data->lock);
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &smsc47m1_driver;
++ new_client->flags = 0;
++
++ request_region(address, SMSC_EXTENT, "smsc47m1-fans");
++ strcpy(new_client->name, client_name);
++
++ new_client->id = smsc47m1_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ if ((i = i2c_register_entry((struct i2c_client *) new_client,
++ type_name,
++ smsc47m1_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ smsc47m1_init_client(new_client);
++ return 0;
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ release_region(address, SMSC_EXTENT);
++ kfree(data);
++ return err;
++}
++
++static int smsc47m1_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct smsc47m1_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("smsc47m1.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ release_region(client->addr, SMSC_EXTENT);
++ kfree(client->data);
++
++ return 0;
++}
++
++static int smsc47m1_read_value(struct i2c_client *client, u8 reg)
++{
++ int res;
++
++ down(&(((struct smsc47m1_data *) (client->data))->lock));
++ res = inb_p(client->addr + reg);
++ up(&(((struct smsc47m1_data *) (client->data))->lock));
++ return res;
++}
++
++static int smsc47m1_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ down(&(((struct smsc47m1_data *) (client->data))->lock));
++ outb_p(value, client->addr + reg);
++ up(&(((struct smsc47m1_data *) (client->data))->lock));
++ return 0;
++}
++
++static void smsc47m1_init_client(struct i2c_client *client)
++{
++ /* configure pins for tach function */
++ smsc47m1_write_value(client, SMSC47M1_REG_TPIN1, 0x05);
++ smsc47m1_write_value(client, SMSC47M1_REG_TPIN2, 0x05);
++}
++
++static void smsc47m1_update_client(struct i2c_client *client)
++{
++ struct smsc47m1_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++ for (i = 1; i <= 2; i++) {
++ data->fan[i - 1] =
++ smsc47m1_read_value(client, SMSC47M1_REG_FAN(i));
++ data->fan_min[i - 1] =
++ smsc47m1_read_value(client, SMSC47M1_REG_FAN_MIN(i));
++ data->pwm[i - 1] =
++ smsc47m1_read_value(client, SMSC47M1_REG_PWM(i));
++ }
++
++ i = smsc47m1_read_value(client, SMSC47M1_REG_FANDIV);
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = i >> 6;
++ data->alarms =
++ smsc47m1_read_value(client, SMSC47M1_REG_ALARM1) >> 6;
++ if(data->alarms)
++ smsc47m1_write_value(client, SMSC47M1_REG_ALARM1, 0xc0);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++void smsc47m1_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct smsc47m1_data *data = client->data;
++ int nr = ctl_name - SMSC47M1_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ smsc47m1_update_client(client);
++ results[0] = MIN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ results[1] = FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]),
++ data->fan_min[nr - 1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = MIN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->
++ fan_div[nr-1]));
++ smsc47m1_write_value(client, SMSC47M1_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++
++void smsc47m1_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct smsc47m1_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ smsc47m1_update_client(client);
++ results[0] = data->alarms;
++ *nrels_mag = 1;
++ }
++}
++
++void smsc47m1_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct smsc47m1_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ smsc47m1_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = smsc47m1_read_value(client, SMSC47M1_REG_FANDIV);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | (data->fan_div[1] << 6);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan_div[0] << 4);
++ smsc47m1_write_value(client, SMSC47M1_REG_FANDIV, old);
++ }
++ }
++}
++
++void smsc47m1_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct smsc47m1_data *data = client->data;
++ int nr = 1 + ctl_name - SMSC47M1_SYSCTL_PWM1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ smsc47m1_update_client(client);
++ results[0] = PWM_FROM_REG(data->pwm[nr - 1]);
++ results[1] = data->pwm[nr - 1] & 0x01;
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->pwm[nr - 1] &= 0x81;
++ data->pwm[nr - 1] |= PWM_TO_REG(results[0]);
++ if (*nrels_mag >= 2) {
++ if(results[1] && (data->pwm[nr-1] & 0x01)) {
++ /* enable PWM */
++/* hope BIOS did it already
++ smsc47m1_write_value(client,
++ SMSC47M1_REG_PPIN(nr), 0x04);
++*/
++ data->pwm[nr - 1] &= 0xfe;
++ } else if((!results[1]) && (!(data->pwm[nr-1] & 0x01))) {
++ /* disable PWM */
++ data->pwm[nr - 1] |= 0x01;
++ }
++ }
++ smsc47m1_write_value(client, SMSC47M1_REG_PWM(nr),
++ data->pwm[nr - 1]);
++ }
++ }
++}
++
++static int __init sm_smsc47m1_init(void)
++{
++ int addr;
++
++ printk("smsc47m1.o version %s (%s)\n", LM_VERSION, LM_DATE);
++
++ if (smsc47m1_find(&addr)) {
++ printk("smsc47m1.o: SMSC 47M1xx not detected, module not inserted.\n");
++ return -ENODEV;
++ }
++ normal_isa[0] = addr;
++
++ return i2c_add_driver(&smsc47m1_driver);
++}
++
++static void __exit sm_smsc47m1_exit(void)
++{
++ i2c_del_driver(&smsc47m1_driver);
++}
++
++
++
++MODULE_AUTHOR("Mark D. Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("SMSC 47M1xx Fan sensors");
++MODULE_LICENSE("GPL");
++
++module_init(sm_smsc47m1_init);
++module_exit(sm_smsc47m1_exit);
+--- linux-old/drivers/sensors/thmc50.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/thmc50.c Mon Dec 13 20:18:52 2004
+@@ -0,0 +1,496 @@
++/*
++ thmc50.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl> and
++ Philip Edelbrock <phil@netroedge.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++#define DEBUG 1
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++MODULE_LICENSE("GPL");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x2D, 0x2E, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(thmc50);
++
++/* Many THMC50 constants specified below */
++
++/* The THMC50 registers */
++#define THMC50_REG_TEMP 0x27
++#define THMC50_REG_CONF 0x40
++#define THMC50_REG_TEMP_HYST 0x3A
++#define THMC50_REG_TEMP_OS 0x39
++
++#define THMC50_REG_TEMP_TRIP 0x13
++#define THMC50_REG_TEMP_REMOTE_TRIP 0x14
++#define THMC50_REG_TEMP_DEFAULT_TRIP 0x17
++#define THMC50_REG_TEMP_REMOTE_DEFAULT_TRIP 0x18
++#define THMC50_REG_ANALOG_OUT 0x19
++#define THMC50_REG_REMOTE_TEMP 0x26
++#define THMC50_REG_REMOTE_TEMP_HYST 0x38
++#define THMC50_REG_REMOTE_TEMP_OS 0x37
++
++#define THMC50_REG_INTER 0x41
++#define THMC50_REG_INTER_MIRROR 0x4C
++#define THMC50_REG_INTER_MASK 0x43
++
++#define THMC50_REG_COMPANY_ID 0x3E
++#define THMC50_REG_DIE_CODE 0x3F
++
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++#define TEMP_FROM_REG(val) ((val>127)?val - 0x0100:val)
++#define TEMP_TO_REG(val) ((val<0)?0x0100+val:val)
++
++/* Each client has this additional data */
++struct thmc50_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u16 temp, temp_os, temp_hyst,
++ remote_temp, remote_temp_os, remote_temp_hyst,
++ inter, inter_mask, die_code, analog_out; /* Register values */
++};
++
++static int thmc50_attach_adapter(struct i2c_adapter *adapter);
++static int thmc50_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void thmc50_init_client(struct i2c_client *client);
++static int thmc50_detach_client(struct i2c_client *client);
++
++static int thmc50_read_value(struct i2c_client *client, u8 reg);
++static int thmc50_write_value(struct i2c_client *client, u8 reg,
++ u16 value);
++static void thmc50_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void thmc50_remote_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag,
++ long *results);
++static void thmc50_inter(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void thmc50_inter_mask(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void thmc50_die_code(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void thmc50_analog_out(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void thmc50_update_client(struct i2c_client *client);
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver thmc50_driver = {
++ .owner = THIS_MODULE,
++ .name = "THMC50 sensor chip driver",
++ .id = I2C_DRIVERID_THMC50,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = thmc50_attach_adapter,
++ .detach_client = thmc50_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++
++#define THMC50_SYSCTL_TEMP 1200 /* Degrees Celcius */
++#define THMC50_SYSCTL_REMOTE_TEMP 1201 /* Degrees Celcius */
++#define THMC50_SYSCTL_INTER 1202
++#define THMC50_SYSCTL_INTER_MASK 1203
++#define THMC50_SYSCTL_DIE_CODE 1204
++#define THMC50_SYSCTL_ANALOG_OUT 1205
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected THMC50. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table thmc50_dir_table_template[] = {
++ {THMC50_SYSCTL_TEMP, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &thmc50_temp},
++ {THMC50_SYSCTL_REMOTE_TEMP, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &thmc50_remote_temp},
++ {THMC50_SYSCTL_INTER, "inter", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &thmc50_inter},
++ {THMC50_SYSCTL_INTER_MASK, "inter_mask", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &thmc50_inter_mask},
++ {THMC50_SYSCTL_DIE_CODE, "die_code", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &thmc50_die_code},
++ {THMC50_SYSCTL_ANALOG_OUT, "analog_out", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &thmc50_analog_out},
++ {0}
++};
++
++
++static int thmc50_id = 0;
++
++static int thmc50_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, thmc50_detect);
++}
++
++/* This function is called by i2c_detect */
++int thmc50_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int company, i;
++ struct i2c_client *new_client;
++ struct thmc50_data *data;
++ int err = 0;
++ const char *type_name, *client_name;
++
++#ifdef DEBUG
++ printk("thmc50.o: Probing for THMC50 at 0x%2X on bus %d\n",
++ address, adapter->id);
++#endif
++
++ /* Make sure we aren't probing the ISA bus!! This is just a safety check
++ at this moment; i2c_detect really won't call us. */
++#ifdef DEBUG
++ if (i2c_is_isa_adapter(adapter)) {
++ printk
++ ("thmc50.o: thmc50_detect called for an ISA bus adapter?!?\n");
++ return 0;
++ }
++#endif
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto ERROR0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access thmc50_{read,write}_value. */
++ if (!(data = kmalloc(sizeof(struct thmc50_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &thmc50_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++ company =
++ i2c_smbus_read_byte_data(new_client, THMC50_REG_COMPANY_ID);
++
++ if (company != 0x49) {
++#ifdef DEBUG
++ printk
++ ("thmc50.o: Detect of THMC50 failed (reg 3E: 0x%X)\n",
++ company);
++#endif
++ goto ERROR1;
++ }
++
++ /* Determine the chip type - only one kind supported! */
++ kind = thmc50;
++
++ if (kind == thmc50) {
++ type_name = "thmc50";
++ client_name = "THMC50 chip";
++ } else {
++#ifdef DEBUG
++ printk("thmc50.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ goto ERROR1;
++ }
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++
++ new_client->id = thmc50_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ thmc50_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ thmc50_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int thmc50_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct thmc50_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("thmc50.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++}
++
++
++/* All registers are word-sized, except for the configuration register.
++ THMC50 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int thmc50_read_value(struct i2c_client *client, u8 reg)
++{
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++/* All registers are word-sized, except for the configuration register.
++ THMC50 uses a high-byte first convention, which is exactly opposite to
++ the usual practice. */
++static int thmc50_write_value(struct i2c_client *client, u8 reg, u16 value)
++{
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++static void thmc50_init_client(struct i2c_client *client)
++{
++ thmc50_write_value(client, THMC50_REG_CONF, 1);
++}
++
++static void thmc50_update_client(struct i2c_client *client)
++{
++ struct thmc50_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting thmc50 update\n");
++#endif
++
++ data->temp = thmc50_read_value(client, THMC50_REG_TEMP);
++ data->temp_os =
++ thmc50_read_value(client, THMC50_REG_TEMP_OS);
++ data->temp_hyst =
++ thmc50_read_value(client, THMC50_REG_TEMP_HYST);
++ data->remote_temp =
++ thmc50_read_value(client, THMC50_REG_REMOTE_TEMP);
++ data->remote_temp_os =
++ thmc50_read_value(client, THMC50_REG_REMOTE_TEMP_OS);
++ data->remote_temp_hyst =
++ thmc50_read_value(client, THMC50_REG_REMOTE_TEMP_HYST);
++ data->inter = thmc50_read_value(client, THMC50_REG_INTER);
++ data->inter_mask =
++ thmc50_read_value(client, THMC50_REG_INTER_MASK);
++ data->die_code =
++ thmc50_read_value(client, THMC50_REG_DIE_CODE);
++ data->analog_out =
++ thmc50_read_value(client, THMC50_REG_ANALOG_OUT);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++void thmc50_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct thmc50_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ thmc50_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_os);
++ results[1] = TEMP_FROM_REG(data->temp_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_os = TEMP_TO_REG(results[0]);
++ thmc50_write_value(client, THMC50_REG_TEMP_OS,
++ data->temp_os);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst = TEMP_TO_REG(results[1]);
++ thmc50_write_value(client, THMC50_REG_TEMP_HYST,
++ data->temp_hyst);
++ }
++ }
++}
++
++
++void thmc50_remote_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct thmc50_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ thmc50_update_client(client);
++ results[0] = TEMP_FROM_REG(data->remote_temp_os);
++ results[1] = TEMP_FROM_REG(data->remote_temp_hyst);
++ results[2] = TEMP_FROM_REG(data->remote_temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->remote_temp_os = TEMP_TO_REG(results[0]);
++ thmc50_write_value(client,
++ THMC50_REG_REMOTE_TEMP_OS,
++ data->remote_temp_os);
++ }
++ if (*nrels_mag >= 2) {
++ data->remote_temp_hyst = TEMP_TO_REG(results[1]);
++ thmc50_write_value(client,
++ THMC50_REG_REMOTE_TEMP_HYST,
++ data->remote_temp_hyst);
++ }
++ }
++}
++
++
++void thmc50_inter(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct thmc50_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ thmc50_update_client(client);
++ results[0] = data->inter;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ printk("thmc50.o: No writes to Interrupt register!\n");
++ }
++}
++
++
++void thmc50_inter_mask(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct thmc50_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ thmc50_update_client(client);
++ results[0] = data->inter_mask;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->inter_mask = results[0];
++ thmc50_write_value(client, THMC50_REG_INTER_MASK,
++ data->inter_mask);
++ }
++ }
++}
++
++
++void thmc50_die_code(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct thmc50_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ thmc50_update_client(client);
++ results[0] = data->die_code;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ printk("thmc50.o: No writes to Die-Code register!\n");
++ }
++}
++
++
++void thmc50_analog_out(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct thmc50_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ thmc50_update_client(client);
++ results[0] = data->analog_out;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->analog_out = results[0];
++ thmc50_write_value(client, THMC50_REG_ANALOG_OUT,
++ data->analog_out);
++ }
++ }
++}
++
++
++
++
++static int __init sm_thmc50_init(void)
++{
++ printk("thmc50.o version %s (%s)\n", LM_VERSION, LM_DATE);
++
++ return i2c_add_driver(&thmc50_driver);
++}
++
++static void __exit sm_thmc50_exit(void)
++{
++ i2c_del_driver(&thmc50_driver);
++}
++
++
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("THMC50 driver");
++
++module_init(sm_thmc50_init);
++module_exit(sm_thmc50_exit);
+--- linux-old/drivers/sensors/via686a.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/via686a.c Mon Dec 13 20:18:52 2004
+@@ -0,0 +1,849 @@
++/*
++ via686a.c - Part of lm_sensors, Linux kernel modules
++ for hardware monitoring
++
++ Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
++ Kyösti Mälkki <kmalkki@cc.hut.fi>,
++ Mark Studebaker <mdsxyz123@yahoo.com>,
++ and Bob Dougherty <bobd@stanford.edu>
++ (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
++ <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ Supports the Via VT82C686A, VT82C686B south bridges.
++ Reports all as a 686A.
++ See doc/chips/via686a for details.
++ Warning - only supports a single device.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/pci.h>
++#include <linux/delay.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++
++/* If force_addr is set to anything different from 0, we forcibly enable
++ the device at the given address. */
++static int force_addr = 0;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Initialize the base address of the sensors");
++
++/* Addresses to scan.
++ Note that we can't determine the ISA address until we have initialized
++ our module */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0x0000, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(via686a);
++
++/*
++ The Via 686a southbridge has a LM78-like chip integrated on the same IC.
++ This driver is a customized copy of lm78.c
++*/
++
++/* Many VIA686A constants specified below */
++
++/* Length of ISA address segment */
++#define VIA686A_EXTENT 0x80
++#define VIA686A_BASE_REG 0x70
++#define VIA686A_ENABLE_REG 0x74
++
++/* The VIA686A registers */
++/* ins numbered 0-4 */
++#define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
++#define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
++#define VIA686A_REG_IN(nr) (0x22 + (nr))
++
++/* fans numbered 1-2 */
++#define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
++#define VIA686A_REG_FAN(nr) (0x28 + (nr))
++
++// the following values are as speced by VIA:
++static const u8 regtemp[] = { 0x20, 0x21, 0x1f };
++static const u8 regover[] = { 0x39, 0x3d, 0x1d };
++static const u8 reghyst[] = { 0x3a, 0x3e, 0x1e };
++
++/* temps numbered 1-3 */
++#define VIA686A_REG_TEMP(nr) (regtemp[(nr) - 1])
++#define VIA686A_REG_TEMP_OVER(nr) (regover[(nr) - 1])
++#define VIA686A_REG_TEMP_HYST(nr) (reghyst[(nr) - 1])
++#define VIA686A_REG_TEMP_LOW1 0x4b // bits 7-6
++#define VIA686A_REG_TEMP_LOW23 0x49 // 2 = bits 5-4, 3 = bits 7-6
++
++#define VIA686A_REG_ALARM1 0x41
++#define VIA686A_REG_ALARM2 0x42
++#define VIA686A_REG_FANDIV 0x47
++#define VIA686A_REG_CONFIG 0x40
++// The following register sets temp interrupt mode (bits 1-0 for temp1,
++// 3-2 for temp2, 5-4 for temp3). Modes are:
++// 00 interrupt stays as long as value is out-of-range
++// 01 interrupt is cleared once register is read (default)
++// 10 comparator mode- like 00, but ignores hysteresis
++// 11 same as 00
++#define VIA686A_REG_TEMP_MODE 0x4b
++// We'll just assume that you want to set all 3 simultaneously:
++#define VIA686A_TEMP_MODE_MASK 0x3F
++#define VIA686A_TEMP_MODE_CONTINUOUS (0x00)
++
++/* Conversions. Limit checking is only done on the TO_REG
++ variants. */
++
++/********* VOLTAGE CONVERSIONS (Bob Dougherty) ********/
++// From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
++// voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
++// voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
++// voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
++// voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
++// voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
++// in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
++// That is:
++// volts = (25*regVal+133)*factor
++// regVal = (volts/factor-133)/25
++// (These conversions were contributed by Jonathan Teh Soon Yew
++// <j.teh@iname.com>)
++static inline u8 IN_TO_REG(long val, int inNum)
++{
++ /* To avoid floating point, we multiply constants by 10 (100 for +12V).
++ Rounding is done (120500 is actually 133000 - 12500).
++ Remember that val is expressed in 0.01V/bit, which is why we divide
++ by an additional 1000 (10000 for +12V): 100 for val and 10 (100)
++ for the constants. */
++ if (inNum <= 1)
++ return (u8)
++ SENSORS_LIMIT((val * 21024 - 120500) / 25000, 0, 255);
++ else if (inNum == 2)
++ return (u8)
++ SENSORS_LIMIT((val * 15737 - 120500) / 25000, 0, 255);
++ else if (inNum == 3)
++ return (u8)
++ SENSORS_LIMIT((val * 10108 - 120500) / 25000, 0, 255);
++ else
++ return (u8)
++ SENSORS_LIMIT((val * 41714 - 1205000) / 250000, 0, 255);
++}
++
++static inline long IN_FROM_REG(u8 val, int inNum)
++{
++ /* To avoid floating point, we multiply constants by 10 (100 for +12V).
++ We also multiply them by 100 because we want 0.01V/bit for the
++ output value. Rounding is done. */
++ if (inNum <= 1)
++ return (long) ((25000 * val + 133000 + 21024 / 2) / 21024);
++ else if (inNum == 2)
++ return (long) ((25000 * val + 133000 + 15737 / 2) / 15737);
++ else if (inNum == 3)
++ return (long) ((25000 * val + 133000 + 10108 / 2) / 10108);
++ else
++ return (long) ((250000 * val + 1330000 + 41714 / 2) / 41714);
++}
++
++/********* FAN RPM CONVERSIONS ********/
++// Higher register values = slower fans (the fan's strobe gates a counter).
++// But this chip saturates back at 0, not at 255 like all the other chips.
++// So, 0 means 0 RPM
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 0;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div)))
++
++/******** TEMP CONVERSIONS (Bob Dougherty) *********/
++// linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
++// if(temp<169)
++// return double(temp)*0.427-32.08;
++// else if(temp>=169 && temp<=202)
++// return double(temp)*0.582-58.16;
++// else
++// return double(temp)*0.924-127.33;
++//
++// A fifth-order polynomial fits the unofficial data (provided by Alex van
++// Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
++// numbers on my machine (ie. they agree with what my BIOS tells me).
++// Here's the fifth-order fit to the 8-bit data:
++// temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
++// 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
++//
++// (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
++// finding my typos in this formula!)
++//
++// Alas, none of the elegant function-fit solutions will work because we
++// aren't allowed to use floating point in the kernel and doing it with
++// integers doesn't rpovide enough precision. So we'll do boring old
++// look-up table stuff. The unofficial data (see below) have effectively
++// 7-bit resolution (they are rounded to the nearest degree). I'm assuming
++// that the transfer function of the device is monotonic and smooth, so a
++// smooth function fit to the data will allow us to get better precision.
++// I used the 5th-order poly fit described above and solved for
++// VIA register values 0-255. I *10 before rounding, so we get tenth-degree
++// precision. (I could have done all 1024 values for our 10-bit readings,
++// but the function is very linear in the useful range (0-80 deg C), so
++// we'll just use linear interpolation for 10-bit readings.) So, tempLUT
++// is the temp at via register values 0-255:
++static const long tempLUT[] =
++ { -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
++ -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
++ -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
++ -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
++ -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
++ -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
++ -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
++ 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
++ 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
++ 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
++ 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
++ 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
++ 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
++ 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
++ 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
++ 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
++ 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
++ 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
++ 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
++ 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
++ 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
++ 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
++};
++
++/* the original LUT values from Alex van Kaam <darkside@chello.nl>
++ (for via register values 12-240):
++{-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
++-30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
++-15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
++-3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
++12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
++22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
++33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
++45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
++61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
++85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
++*/
++
++// Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
++// an extra term for a good fit to these inverse data!) and then
++// solving for each temp value from -50 to 110 (the useable range for
++// this chip). Here's the fit:
++// viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
++// - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
++// Note that n=161:
++static const u8 viaLUT[] =
++ { 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
++ 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
++ 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
++ 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
++ 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
++ 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
++ 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
++ 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
++ 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
++ 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
++ 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
++ 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
++ 239, 240
++};
++
++/* Converting temps to (8-bit) hyst and over registers
++ No interpolation here.
++ The +50 is because the temps start at -50 */
++static inline u8 TEMP_TO_REG(long val)
++{
++ return viaLUT[val <= -500 ? 0 : val >= 1100 ? 160 :
++ (val < 0 ? val - 5 : val + 5) / 10 + 50];
++}
++
++/* for 8-bit temperature hyst and over registers */
++#define TEMP_FROM_REG(val) (tempLUT[(val)])
++
++/* for 10-bit temperature readings */
++// You might _think_ this is too long to inline, but's it's really only
++// called once...
++static inline long TEMP_FROM_REG10(u16 val)
++{
++ // the temp values are already *10, so we don't need to do that.
++ long temp;
++ u16 eightBits = val >> 2;
++ u16 twoBits = val & 3;
++
++ /* no interpolation for these */
++ if (twoBits == 0 || eightBits == 255)
++ return (long) tempLUT[eightBits];
++
++ /* do some linear interpolation */
++ temp = (4 - twoBits) * tempLUT[eightBits]
++ + twoBits * tempLUT[eightBits + 1];
++ /* achieve rounding */
++ return (temp < 0 ? temp - 2 : temp + 2) / 4;
++}
++
++#define ALARMS_FROM_REG(val) (val)
++
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
++
++/* For the VIA686A, we need to keep some data in memory.
++ The structure is dynamically allocated, at the same time when a new
++ via686a client is allocated. */
++struct via686a_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[5]; /* Register value */
++ u8 in_max[5]; /* Register value */
++ u8 in_min[5]; /* Register value */
++ u8 fan[2]; /* Register value */
++ u8 fan_min[2]; /* Register value */
++ u16 temp[3]; /* Register value 10 bit */
++ u8 temp_over[3]; /* Register value */
++ u8 temp_hyst[3]; /* Register value */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ u16 alarms; /* Register encoding, combined */
++};
++
++static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
++
++static int via686a_attach_adapter(struct i2c_adapter *adapter);
++static int via686a_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int via686a_detach_client(struct i2c_client *client);
++
++static int via686a_read_value(struct i2c_client *client, u8 register);
++static void via686a_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void via686a_update_client(struct i2c_client *client);
++static void via686a_init_client(struct i2c_client *client);
++
++
++static void via686a_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void via686a_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void via686a_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void via686a_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void via686a_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int via686a_id = 0;
++
++/* The driver. I choose to use type i2c_driver, as at is identical to both
++ smbus_driver and isa_driver, and clients could be of either kind */
++static struct i2c_driver via686a_driver = {
++ .owner = THIS_MODULE,
++ .name = "VIA 686A",
++ .id = I2C_DRIVERID_VIA686A,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = via686a_attach_adapter,
++ .detach_client = via686a_detach_client,
++};
++
++
++
++/* The /proc/sys entries */
++
++/* -- SENSORS SYSCTL START -- */
++#define VIA686A_SYSCTL_IN0 1000
++#define VIA686A_SYSCTL_IN1 1001
++#define VIA686A_SYSCTL_IN2 1002
++#define VIA686A_SYSCTL_IN3 1003
++#define VIA686A_SYSCTL_IN4 1004
++#define VIA686A_SYSCTL_FAN1 1101
++#define VIA686A_SYSCTL_FAN2 1102
++#define VIA686A_SYSCTL_TEMP 1200
++#define VIA686A_SYSCTL_TEMP2 1201
++#define VIA686A_SYSCTL_TEMP3 1202
++#define VIA686A_SYSCTL_FAN_DIV 2000
++#define VIA686A_SYSCTL_ALARMS 2001
++
++#define VIA686A_ALARM_IN0 0x01
++#define VIA686A_ALARM_IN1 0x02
++#define VIA686A_ALARM_IN2 0x04
++#define VIA686A_ALARM_IN3 0x08
++#define VIA686A_ALARM_TEMP 0x10
++#define VIA686A_ALARM_FAN1 0x40
++#define VIA686A_ALARM_FAN2 0x80
++#define VIA686A_ALARM_IN4 0x100
++#define VIA686A_ALARM_TEMP2 0x800
++#define VIA686A_ALARM_CHAS 0x1000
++#define VIA686A_ALARM_TEMP3 0x8000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected VIA686A. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table via686a_dir_table_template[] = {
++ {VIA686A_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &via686a_in},
++ {VIA686A_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &via686a_in},
++ {VIA686A_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &via686a_in},
++ {VIA686A_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &via686a_in},
++ {VIA686A_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &via686a_in},
++ {VIA686A_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &via686a_fan},
++ {VIA686A_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &via686a_fan},
++ {VIA686A_SYSCTL_TEMP, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &via686a_temp},
++ {VIA686A_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &via686a_temp},
++ {VIA686A_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &via686a_temp},
++ {VIA686A_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &via686a_fan_div},
++ {VIA686A_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &via686a_alarms},
++ {0}
++};
++
++static inline int via686a_read_value(struct i2c_client *client, u8 reg)
++{
++ return (inb_p(client->addr + reg));
++}
++
++static inline void via686a_write_value(struct i2c_client *client, u8 reg,
++ u8 value)
++{
++ outb_p(value, client->addr + reg);
++}
++
++/* This is called when the module is loaded */
++static int via686a_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, via686a_detect);
++}
++
++int via686a_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct via686a_data *data;
++ int err = 0;
++ const char *type_name = "via686a";
++ u16 val;
++
++ /* Make sure we are probing the ISA bus!! */
++ if (!i2c_is_isa_adapter(adapter)) {
++ printk
++ ("via686a.o: via686a_detect called for an I2C bus adapter?!?\n");
++ return 0;
++ }
++
++ /* 8231 requires multiple of 256, we enforce that on 686 as well */
++ if(force_addr)
++ address = force_addr & 0xFF00;
++ if (check_region(address, VIA686A_EXTENT)) {
++ printk("via686a.o: region 0x%x already in use!\n",
++ address);
++ return -ENODEV;
++ }
++
++ if(force_addr) {
++ printk("via686a.o: forcing ISA address 0x%04X\n", address);
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_write_config_word(s_bridge, VIA686A_BASE_REG, address))
++ return -ENODEV;
++ }
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_word(s_bridge, VIA686A_ENABLE_REG, &val))
++ return -ENODEV;
++ if (!(val & 0x0001)) {
++ printk("via686a.o: enabling sensors\n");
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_write_config_word(s_bridge, VIA686A_ENABLE_REG,
++ val | 0x0001))
++ return -ENODEV;
++ }
++
++ if (!(data = kmalloc(sizeof(struct via686a_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ init_MUTEX(&data->lock);
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &via686a_driver;
++ new_client->flags = 0;
++
++ /* Reserve the ISA region */
++ request_region(address, VIA686A_EXTENT, "via686a-sensors");
++
++ /* Fill in the remaining client fields and put into the global list */
++ strcpy(new_client->name, "Via 686A Integrated Sensors");
++
++ new_client->id = via686a_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry((struct i2c_client *) new_client,
++ type_name,
++ via686a_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the VIA686A chip */
++ via686a_init_client(new_client);
++ return 0;
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ release_region(address, VIA686A_EXTENT);
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int via686a_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct via686a_data *)
++ (client->data))->sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("via686a.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ release_region(client->addr, VIA686A_EXTENT);
++ kfree(client->data);
++
++ return 0;
++}
++
++/* Called when we have found a new VIA686A. */
++static void via686a_init_client(struct i2c_client *client)
++{
++ u8 reg;
++
++ /* Start monitoring */
++ reg = via686a_read_value(client, VIA686A_REG_CONFIG);
++ via686a_write_value(client, VIA686A_REG_CONFIG, (reg|0x01)&0x7F);
++
++ /* Configure temp interrupt mode for continuous-interrupt operation */
++ via686a_write_value(client, VIA686A_REG_TEMP_MODE,
++ via686a_read_value(client, VIA686A_REG_TEMP_MODE) &
++ !(VIA686A_TEMP_MODE_MASK | VIA686A_TEMP_MODE_CONTINUOUS));
++}
++
++static void via686a_update_client(struct i2c_client *client)
++{
++ struct via686a_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if (time_after(jiffies - data->last_updated, HZ + HZ / 2) ||
++ time_before(jiffies, data->last_updated) || !data->valid) {
++
++ for (i = 0; i <= 4; i++) {
++ data->in[i] =
++ via686a_read_value(client, VIA686A_REG_IN(i));
++ data->in_min[i] = via686a_read_value(client,
++ VIA686A_REG_IN_MIN
++ (i));
++ data->in_max[i] =
++ via686a_read_value(client, VIA686A_REG_IN_MAX(i));
++ }
++ for (i = 1; i <= 2; i++) {
++ data->fan[i - 1] =
++ via686a_read_value(client, VIA686A_REG_FAN(i));
++ data->fan_min[i - 1] = via686a_read_value(client,
++ VIA686A_REG_FAN_MIN(i));
++ }
++ for (i = 1; i <= 3; i++) {
++ data->temp[i - 1] = via686a_read_value(client,
++ VIA686A_REG_TEMP(i)) << 2;
++ data->temp_over[i - 1] =
++ via686a_read_value(client,
++ VIA686A_REG_TEMP_OVER(i));
++ data->temp_hyst[i - 1] =
++ via686a_read_value(client,
++ VIA686A_REG_TEMP_HYST(i));
++ }
++ /* add in lower 2 bits
++ temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
++ temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
++ temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
++ */
++ data->temp[0] |= (via686a_read_value(client,
++ VIA686A_REG_TEMP_LOW1)
++ & 0xc0) >> 6;
++ data->temp[1] |=
++ (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) &
++ 0x30) >> 4;
++ data->temp[2] |=
++ (via686a_read_value(client, VIA686A_REG_TEMP_LOW23) &
++ 0xc0) >> 6;
++
++ i = via686a_read_value(client, VIA686A_REG_FANDIV);
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = i >> 6;
++ data->alarms =
++ via686a_read_value(client,
++ VIA686A_REG_ALARM1) |
++ (via686a_read_value(client, VIA686A_REG_ALARM2) << 8);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++static void via686a_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct via686a_data *data = client->data;
++ int nr = ctl_name - VIA686A_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ via686a_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr], nr);
++ results[1] = IN_FROM_REG(data->in_max[nr], nr);
++ results[2] = IN_FROM_REG(data->in[nr], nr);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0], nr);
++ via686a_write_value(client, VIA686A_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1], nr);
++ via686a_write_value(client, VIA686A_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void via686a_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct via686a_data *data = client->data;
++ int nr = ctl_name - VIA686A_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ via686a_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->fan_div
++ [nr - 1]));
++ results[1] = FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = FAN_TO_REG(results[0],
++ DIV_FROM_REG(data->
++ fan_div[nr -1]));
++ via686a_write_value(client,
++ VIA686A_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++void via686a_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct via686a_data *data = client->data;
++ int nr = ctl_name - VIA686A_SYSCTL_TEMP;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ via686a_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over[nr]);
++ results[1] = TEMP_FROM_REG(data->temp_hyst[nr]);
++ results[2] = TEMP_FROM_REG10(data->temp[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_over[nr] = TEMP_TO_REG(results[0]);
++ via686a_write_value(client,
++ VIA686A_REG_TEMP_OVER(nr + 1),
++ data->temp_over[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst[nr] = TEMP_TO_REG(results[1]);
++ via686a_write_value(client,
++ VIA686A_REG_TEMP_HYST(nr + 1),
++ data->temp_hyst[nr]);
++ }
++ }
++}
++
++void via686a_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct via686a_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ via686a_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void via686a_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct via686a_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ via686a_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = via686a_read_value(client, VIA686A_REG_FANDIV);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | (data->fan_div[1] << 6);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan_div[0] << 4);
++ via686a_write_value(client, VIA686A_REG_FANDIV,
++ old);
++ }
++ }
++}
++
++
++static struct pci_device_id via686a_pci_ids[] __devinitdata = {
++ {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
++ { 0, }
++};
++
++static int __devinit via686a_pci_probe(struct pci_dev *dev,
++ const struct pci_device_id *id)
++{
++ u16 val;
++ int addr = 0;
++
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_word(dev, VIA686A_BASE_REG, &val))
++ return -ENODEV;
++
++ addr = val & ~(VIA686A_EXTENT - 1);
++ if (addr == 0 && force_addr == 0) {
++ printk("via686a.o: base address not set - upgrade BIOS or use force_addr=0xaddr\n");
++ return -ENODEV;
++ }
++ if (force_addr)
++ addr = force_addr; /* so detect will get called */
++
++ if (!addr) {
++ printk("via686a.o: No Via 686A sensors found.\n");
++ return -ENODEV;
++ }
++ normal_isa[0] = addr;
++ s_bridge = dev;
++ return i2c_add_driver(&via686a_driver);
++}
++
++static void __devexit via686a_pci_remove(struct pci_dev *dev)
++{
++ i2c_del_driver(&via686a_driver);
++}
++
++static struct pci_driver via686a_pci_driver = {
++ .name = "via686a",
++ .id_table = via686a_pci_ids,
++ .probe = via686a_pci_probe,
++ .remove = __devexit_p(via686a_pci_remove),
++};
++
++static int __init sm_via686a_init(void)
++{
++ printk("via686a.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return pci_module_init(&via686a_pci_driver);
++}
++
++static void __exit sm_via686a_exit(void)
++{
++ pci_unregister_driver(&via686a_pci_driver);
++}
++
++MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
++ "Mark Studebaker <mdsxyz123@yahoo.com> "
++ "and Bob Dougherty <bobd@stanford.edu>");
++MODULE_DESCRIPTION("VIA 686A Sensor device");
++MODULE_LICENSE("GPL");
++
++module_init(sm_via686a_init);
++module_exit(sm_via686a_exit);
+--- linux-old/drivers/sensors/vt1211.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/vt1211.c Mon Dec 13 20:18:53 2004
+@@ -0,0 +1,823 @@
++/*
++ vt1211.c - Part of lm_sensors, Linux kernel modules
++ for hardware monitoring
++
++ Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* Supports VIA VT1211 Super I/O sensors via ISA (LPC) accesses only. */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++
++static int force_addr = 0;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Initialize the base address of the sensors");
++
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0x0000, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++SENSORS_INSMOD_1(vt1211);
++
++/* modified from kernel/include/traps.c */
++#define REG 0x2e /* The register to read/write */
++#define DEV 0x07 /* Register: Logical device select */
++#define VAL 0x2f /* The value to read/write */
++#define PME 0x0b /* The device with the hardware monitor */
++#define DEVID 0x20 /* Register: Device ID */
++
++static inline void
++superio_outb(int reg, int val)
++{
++ outb(reg, REG);
++ outb(val, VAL);
++}
++
++static inline int
++superio_inb(int reg)
++{
++ outb(reg, REG);
++ return inb(VAL);
++}
++
++static inline void
++superio_select(void)
++{
++ outb(DEV, REG);
++ outb(PME, VAL);
++}
++
++static inline void
++superio_enter(void)
++{
++ outb(0x87, REG);
++ outb(0x87, REG);
++}
++
++static inline void
++superio_exit(void)
++{
++ outb(0xAA, REG);
++}
++
++#define VT1211_DEVID 0x3c
++#define VT1211_ACT_REG 0x30
++#define VT1211_BASE_REG 0x60
++
++#define VT1211_EXTENT 0x80
++
++/* pwm numbered 1-2 */
++#define VT1211_REG_PWM(nr) (0x5f + (nr))
++#define VT1211_REG_PWM_CTL 0x51
++
++/* The VT1211 registers */
++/* We define the sensors as follows. Somewhat convoluted to minimize
++ changes from via686a.
++ Sensor Voltage Mode Temp Mode
++ -------- ------------ ---------
++ Reading 1 temp3
++ Reading 3 temp1 not in vt1211
++ UCH1/Reading2 in0 temp2
++ UCH2 in1 temp4
++ UCH3 in2 temp5
++ UCH4 in3 temp6
++ UCH5 in4 temp7
++ 3.3V in5
++ -12V in6 not in vt1211
++*/
++
++/* ins numbered 0-6 */
++#define VT1211_REG_IN_MAX(nr) ((nr)==0 ? 0x3d : 0x29 + ((nr) * 2))
++#define VT1211_REG_IN_MIN(nr) ((nr)==0 ? 0x3e : 0x2a + ((nr) * 2))
++#define VT1211_REG_IN(nr) (0x21 + (nr))
++
++/* fans numbered 1-2 */
++#define VT1211_REG_FAN_MIN(nr) (0x3a + (nr))
++#define VT1211_REG_FAN(nr) (0x28 + (nr))
++
++static const u8 regtemp[] = { 0x20, 0x21, 0x1f, 0x22, 0x23, 0x24, 0x25 };
++static const u8 regover[] = { 0x39, 0x3d, 0x1d, 0x2b, 0x2d, 0x2f, 0x31 };
++static const u8 reghyst[] = { 0x3a, 0x3e, 0x1e, 0x2c, 0x2e, 0x30, 0x32 };
++
++/* temps numbered 1-7 */
++#define VT1211_REG_TEMP(nr) (regtemp[(nr) - 1])
++#define VT1211_REG_TEMP_OVER(nr) (regover[(nr) - 1])
++#define VT1211_REG_TEMP_HYST(nr) (reghyst[(nr) - 1])
++#define VT1211_REG_TEMP_LOW3 0x4b /* bits 7-6 */
++#define VT1211_REG_TEMP_LOW2 0x49 /* bits 5-4 */
++#define VT1211_REG_TEMP_LOW47 0x4d
++
++#define VT1211_REG_CONFIG 0x40
++#define VT1211_REG_ALARM1 0x41
++#define VT1211_REG_ALARM2 0x42
++#define VT1211_REG_VID 0x45
++#define VT1211_REG_FANDIV 0x47
++#define VT1211_REG_UCH_CONFIG 0x4a
++#define VT1211_REG_TEMP1_CONFIG 0x4b
++#define VT1211_REG_TEMP2_CONFIG 0x4c
++
++/* temps 1-7; voltages 0-6 */
++#define ISTEMP(i, ch_config) ((i) == 1 ? 1 : \
++ (i) == 3 ? 1 : \
++ (i) == 2 ? ((ch_config) >> 1) & 0x01 : \
++ ((ch_config) >> ((i)-1)) & 0x01)
++#define ISVOLT(i, ch_config) ((i) > 4 ? 1 : !(((ch_config) >> ((i)+2)) & 0x01))
++
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
++#define PWM_FROM_REG(val) (val)
++#define PWM_TO_REG(val) SENSORS_LIMIT((val), 0, 255)
++
++#define TEMP_FROM_REG(val) ((val)*10)
++#define TEMP_FROM_REG10(val) (((val)*10)/4)
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)<0?(((val)-5)/10):\
++ ((val)+5)/10),0,255))
++#define IN_FROM_REG(val) /*(((val)*10+5)/10)*/ (val)
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val) * 10 + 5)/10),0,255))
++
++
++/********* FAN RPM CONVERSIONS ********/
++/* But this chip saturates back at 0, not at 255 like all the other chips.
++ So, 0 means 0 RPM */
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 0;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1310720 + rpm * div / 2) / (rpm * div), 1, 255);
++}
++
++#define MIN_TO_REG(a,b) FAN_TO_REG(a,b)
++#define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1310720/((val)*(div)))
++
++struct vt1211_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[7]; /* Register value */
++ u8 in_max[7]; /* Register value */
++ u8 in_min[7]; /* Register value */
++ u16 temp[7]; /* Register value 10 bit */
++ u8 temp_over[7]; /* Register value */
++ u8 temp_hyst[7]; /* Register value */
++ u8 fan[2]; /* Register value */
++ u8 fan_min[2]; /* Register value */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ u16 alarms; /* Register encoding */
++ u8 pwm[2]; /* Register value */
++ u8 pwm_ctl; /* Register value */
++ u8 vid; /* Register encoding */
++ u8 vrm;
++ u8 uch_config;
++};
++
++static int vt1211_attach_adapter(struct i2c_adapter *adapter);
++static int vt1211_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int vt1211_detach_client(struct i2c_client *client);
++
++static inline int vt_rdval(struct i2c_client *client, u8 register);
++static inline void vt1211_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void vt1211_update_client(struct i2c_client *client);
++static void vt1211_init_client(struct i2c_client *client);
++static int vt1211_find(int *address);
++
++
++static void vt1211_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt1211_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt1211_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt1211_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt1211_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt1211_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt1211_vrm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt1211_uch(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt1211_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int vt1211_id = 0;
++
++static struct i2c_driver vt1211_driver = {
++ .owner = THIS_MODULE,
++ .name = "VT1211 sensors driver",
++ .id = I2C_DRIVERID_VT1211,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = vt1211_attach_adapter,
++ .detach_client = vt1211_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++#define VT1211_SYSCTL_IN0 1000
++#define VT1211_SYSCTL_IN1 1001
++#define VT1211_SYSCTL_IN2 1002
++#define VT1211_SYSCTL_IN3 1003
++#define VT1211_SYSCTL_IN4 1004
++#define VT1211_SYSCTL_IN5 1005
++#define VT1211_SYSCTL_IN6 1006
++#define VT1211_SYSCTL_FAN1 1101
++#define VT1211_SYSCTL_FAN2 1102
++#define VT1211_SYSCTL_TEMP 1200
++#define VT1211_SYSCTL_TEMP2 1201
++#define VT1211_SYSCTL_TEMP3 1202
++#define VT1211_SYSCTL_TEMP4 1203
++#define VT1211_SYSCTL_TEMP5 1204
++#define VT1211_SYSCTL_TEMP6 1205
++#define VT1211_SYSCTL_TEMP7 1206
++#define VT1211_SYSCTL_VID 1300
++#define VT1211_SYSCTL_PWM1 1401
++#define VT1211_SYSCTL_PWM2 1402
++#define VT1211_SYSCTL_VRM 1600
++#define VT1211_SYSCTL_UCH 1700
++#define VT1211_SYSCTL_FAN_DIV 2000
++#define VT1211_SYSCTL_ALARMS 2001
++
++#define VT1211_ALARM_IN1 0x01
++#define VT1211_ALARM_IN2 0x02
++#define VT1211_ALARM_IN5 0x04
++#define VT1211_ALARM_IN3 0x08
++#define VT1211_ALARM_TEMP 0x10
++#define VT1211_ALARM_FAN1 0x40
++#define VT1211_ALARM_FAN2 0x80
++#define VT1211_ALARM_IN4 0x100
++#define VT1211_ALARM_IN6 0x200
++#define VT1211_ALARM_TEMP2 0x800
++#define VT1211_ALARM_CHAS 0x1000
++#define VT1211_ALARM_TEMP3 0x8000
++/* duplicates */
++#define VT1211_ALARM_IN0 VT1211_ALARM_TEMP
++#define VT1211_ALARM_TEMP4 VT1211_ALARM_IN1
++#define VT1211_ALARM_TEMP5 VT1211_ALARM_IN2
++#define VT1211_ALARM_TEMP6 VT1211_ALARM_IN3
++#define VT1211_ALARM_TEMP7 VT1211_ALARM_IN4
++
++/* -- SENSORS SYSCTL END -- */
++
++static ctl_table vt1211_dir_table_template[] = {
++ {VT1211_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_in},
++ {VT1211_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_in},
++ {VT1211_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_in},
++ {VT1211_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_in},
++ {VT1211_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_in},
++ {VT1211_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_in},
++/*
++ datasheet says these are reserved
++ {VT1211_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_in},
++ {VT1211_SYSCTL_TEMP, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_temp},
++*/
++ {VT1211_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt1211_temp},
++ {VT1211_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt1211_temp},
++ {VT1211_SYSCTL_TEMP4, "temp4", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt1211_temp},
++ {VT1211_SYSCTL_TEMP5, "temp5", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt1211_temp},
++ {VT1211_SYSCTL_TEMP6, "temp6", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt1211_temp},
++ {VT1211_SYSCTL_TEMP7, "temp7", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt1211_temp},
++ {VT1211_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_fan},
++ {VT1211_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_fan},
++ {VT1211_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_fan_div},
++ {VT1211_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_alarms},
++ {VT1211_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_pwm},
++ {VT1211_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_pwm},
++ {VT1211_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_vid},
++ {VT1211_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_vrm},
++ {VT1211_SYSCTL_UCH, "uch_config", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt1211_uch},
++ {0}
++};
++
++static int vt1211_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, vt1211_detect);
++}
++
++static int vt1211_find(int *address)
++{
++ u16 val;
++
++ superio_enter();
++ val= superio_inb(DEVID);
++ if(VT1211_DEVID != val) {
++ superio_exit();
++ return -ENODEV;
++ }
++
++ superio_select();
++ val = (superio_inb(VT1211_BASE_REG) << 8) |
++ superio_inb(VT1211_BASE_REG + 1);
++ *address = val & ~(VT1211_EXTENT - 1);
++ if (*address == 0 && force_addr == 0) {
++ printk("vt1211.o: base address not set - use force_addr=0xaddr\n");
++ superio_exit();
++ return -ENODEV;
++ }
++ if (force_addr)
++ *address = force_addr; /* so detect will get called */
++
++ superio_exit();
++ return 0;
++}
++
++int vt1211_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct vt1211_data *data;
++ int err = 0;
++ u8 val;
++ const char *type_name = "vt1211";
++ const char *client_name = "VT1211 chip";
++
++ if (!i2c_is_isa_adapter(adapter)) {
++ return 0;
++ }
++
++ if(force_addr)
++ address = force_addr & ~(VT1211_EXTENT - 1);
++ if (check_region(address, VT1211_EXTENT)) {
++ printk("vt1211.o: region 0x%x already in use!\n", address);
++ return -ENODEV;
++ }
++ if(force_addr) {
++ printk("vt1211.o: forcing ISA address 0x%04X\n", address);
++ superio_enter();
++ superio_select();
++ superio_outb(VT1211_BASE_REG, address >> 8);
++ superio_outb(VT1211_BASE_REG+1, address & 0xff);
++ superio_exit();
++ }
++
++ superio_enter();
++ superio_select();
++ if((val = 0x01 & superio_inb(VT1211_ACT_REG)) == 0)
++ superio_outb(VT1211_ACT_REG, 1);
++ superio_exit();
++
++ if (!(data = kmalloc(sizeof(struct vt1211_data), GFP_KERNEL))) {
++ return -ENOMEM;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ init_MUTEX(&data->lock);
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &vt1211_driver;
++ new_client->flags = 0;
++
++ request_region(address, VT1211_EXTENT, "vt1211-sensors");
++ strcpy(new_client->name, client_name);
++
++ new_client->id = vt1211_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ if ((i = i2c_register_entry((struct i2c_client *) new_client,
++ type_name,
++ vt1211_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ vt1211_init_client(new_client);
++ return 0;
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ release_region(address, VT1211_EXTENT);
++ kfree(data);
++ return err;
++}
++
++static int vt1211_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct vt1211_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("vt1211.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ release_region(client->addr, VT1211_EXTENT);
++ kfree(client->data);
++
++ return 0;
++}
++
++static inline int vt_rdval(struct i2c_client *client, u8 reg)
++{
++ return (inb_p(client->addr + reg));
++}
++
++static inline void vt1211_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ outb_p(value, client->addr + reg);
++}
++
++static void vt1211_init_client(struct i2c_client *client)
++{
++ struct vt1211_data *data = client->data;
++
++ data->vrm = DEFAULT_VRM;
++ /* set "default" interrupt mode for alarms, which isn't the default */
++ vt1211_write_value(client, VT1211_REG_TEMP1_CONFIG, 0);
++ vt1211_write_value(client, VT1211_REG_TEMP2_CONFIG, 0);
++}
++
++static void vt1211_update_client(struct i2c_client *client)
++{
++ struct vt1211_data *data = client->data;
++ int i, j;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++ data->uch_config = vt_rdval(client, VT1211_REG_UCH_CONFIG);
++ for (i = 0; i <= 5; i++) {
++ if(ISVOLT(i, data->uch_config)) {
++ data->in[i] = vt_rdval(client, VT1211_REG_IN(i));
++ data->in_min[i] = vt_rdval(client,
++ VT1211_REG_IN_MIN(i));
++ data->in_max[i] = vt_rdval(client,
++ VT1211_REG_IN_MAX(i));
++ } else {
++ data->in[i] = 0;
++ data->in_min[i] = 0;
++ data->in_max[i] = 0;
++ }
++ }
++ for (i = 1; i <= 2; i++) {
++ data->fan[i - 1] = vt_rdval(client, VT1211_REG_FAN(i));
++ data->fan_min[i - 1] = vt_rdval(client,
++ VT1211_REG_FAN_MIN(i));
++ }
++ for (i = 2; i <= 7; i++) {
++ if(ISTEMP(i, data->uch_config)) {
++ data->temp[i - 1] = vt_rdval(client,
++ VT1211_REG_TEMP(i)) << 2;
++ switch(i) {
++ case 1:
++ /* ? */
++ j = 0;
++ break;
++ case 2:
++ j = (vt_rdval(client,
++ VT1211_REG_TEMP_LOW2) &
++ 0x30) >> 4;
++ break;
++ case 3:
++ j = (vt_rdval(client,
++ VT1211_REG_TEMP_LOW3) &
++ 0xc0) >> 6;
++ break;
++ case 4:
++ case 5:
++ case 6:
++ case 7:
++ default:
++ j = (vt_rdval(client,
++ VT1211_REG_TEMP_LOW47) >>
++ ((i-4)*2)) & 0x03;
++ break;
++
++ }
++ data->temp[i - 1] |= j;
++ data->temp_over[i - 1] = vt_rdval(client,
++ VT1211_REG_TEMP_OVER(i));
++ data->temp_hyst[i - 1] = vt_rdval(client,
++ VT1211_REG_TEMP_HYST(i));
++ } else {
++ data->temp[i - 1] = 0;
++ data->temp_over[i - 1] = 0;
++ data->temp_hyst[i - 1] = 0;
++ }
++ }
++
++ for (i = 1; i <= 2; i++) {
++ data->fan[i - 1] = vt_rdval(client, VT1211_REG_FAN(i));
++ data->fan_min[i - 1] = vt_rdval(client,
++ VT1211_REG_FAN_MIN(i));
++ data->pwm[i - 1] = vt_rdval(client, VT1211_REG_PWM(i));
++ }
++
++ data->pwm_ctl = vt_rdval(client, VT1211_REG_PWM_CTL);
++ i = vt_rdval(client, VT1211_REG_FANDIV);
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = i >> 6;
++ data->alarms = vt_rdval(client, VT1211_REG_ALARM1) |
++ (vt_rdval(client, VT1211_REG_ALARM2) << 8);
++ data->vid= vt_rdval(client, VT1211_REG_VID) & 0x1f;
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++void vt1211_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt1211_data *data = client->data;
++ int nr = ctl_name - VT1211_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt1211_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0]);
++ vt1211_write_value(client, VT1211_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1]);
++ vt1211_write_value(client, VT1211_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void vt1211_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt1211_data *data = client->data;
++ int nr = ctl_name - VT1211_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt1211_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->fan_div
++ [nr - 1]));
++ results[1] = FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = MIN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->
++ fan_div[nr-1]));
++ vt1211_write_value(client, VT1211_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++
++void vt1211_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt1211_data *data = client->data;
++ int nr = ctl_name - VT1211_SYSCTL_TEMP;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt1211_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over[nr]);
++ results[1] = TEMP_FROM_REG(data->temp_hyst[nr]);
++ results[2] = TEMP_FROM_REG10(data->temp[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_over[nr] = TEMP_TO_REG(results[0]);
++ vt1211_write_value(client,
++ VT1211_REG_TEMP_OVER(nr + 1),
++ data->temp_over[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst[nr] = TEMP_TO_REG(results[1]);
++ vt1211_write_value(client,
++ VT1211_REG_TEMP_HYST(nr + 1),
++ data->temp_hyst[nr]);
++ }
++ }
++}
++
++void vt1211_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt1211_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt1211_update_client(client);
++ results[0] = data->alarms;
++ *nrels_mag = 1;
++ }
++}
++
++void vt1211_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct vt1211_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt1211_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = vt_rdval(client, VT1211_REG_FANDIV);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | (data->fan_div[1] << 6);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan_div[0] << 4);
++ vt1211_write_value(client, VT1211_REG_FANDIV, old);
++ }
++ }
++}
++
++void vt1211_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt1211_data *data = client->data;
++ int nr = 1 + ctl_name - VT1211_SYSCTL_PWM1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt1211_update_client(client);
++ results[0] = PWM_FROM_REG(data->pwm[nr - 1]);
++ results[1] = (data->pwm_ctl >> (3 + (4 * (nr - 1)))) & 1;
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->pwm[nr - 1] = PWM_TO_REG(results[0]);
++ if (*nrels_mag >= 2) {
++ if(results[1]) {
++ data->pwm_ctl |=
++ (0x08 << (4 * (nr - 1)));
++ vt1211_write_value(client,
++ VT1211_REG_PWM_CTL,
++ data->pwm_ctl);
++ } else {
++ data->pwm_ctl &=
++ ~ (0x08 << (4 * (nr - 1)));
++ vt1211_write_value(client,
++ VT1211_REG_PWM_CTL,
++ data->pwm_ctl);
++ }
++ }
++ vt1211_write_value(client, VT1211_REG_PWM(nr),
++ data->pwm[nr - 1]);
++ }
++ }
++}
++
++void vt1211_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt1211_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt1211_update_client(client);
++ results[0] = vid_from_reg(data->vid, data->vrm);
++ *nrels_mag = 1;
++ }
++}
++
++void vt1211_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt1211_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1)
++ data->vrm = results[0];
++ }
++}
++
++void vt1211_uch(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt1211_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->uch_config & 0x7c;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->uch_config = (data->uch_config & 0x83)|(results[0] & 0x7c);
++ vt1211_write_value(client, VT1211_REG_UCH_CONFIG,
++ data->uch_config);
++ }
++ }
++}
++
++static int __init sm_vt1211_init(void)
++{
++ int addr;
++
++ printk("vt1211.o version %s (%s)\n", LM_VERSION, LM_DATE);
++
++ if (vt1211_find(&addr)) {
++ printk("vt1211.o: VT1211 not detected, module not inserted.\n");
++ return -ENODEV;
++ }
++ normal_isa[0] = addr;
++
++ return i2c_add_driver(&vt1211_driver);
++}
++
++static void __exit sm_vt1211_exit(void)
++{
++ i2c_del_driver(&vt1211_driver);
++}
++
++
++
++MODULE_AUTHOR("Mark D. Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("VT1211 sensors");
++MODULE_LICENSE("GPL");
++
++module_init(sm_vt1211_init);
++module_exit(sm_vt1211_exit);
+--- linux-old/drivers/sensors/vt8231.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/vt8231.c Mon Dec 13 20:18:53 2004
+@@ -0,0 +1,794 @@
++/*
++ vt8231.c - Part of lm_sensors, Linux kernel modules
++ for hardware monitoring
++
++ Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* Supports VIA VT8231 South Bridge embedded sensors */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/ioport.h>
++#include <linux/pci.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++
++
++static int force_addr = 0;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Initialize the base address of the sensors");
++
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0x0000, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++SENSORS_INSMOD_1(vt8231);
++
++#define VIA686A_EXTENT 0x80
++#define VIA686A_BASE_REG 0x70
++#define VIA686A_ENABLE_REG 0x74
++
++/* pwm numbered 1-2 */
++#define VT8231_REG_PWM(nr) (0x5f + (nr))
++#define VT8231_REG_PWM_CTL 0x51
++
++/* The VT8231 registers */
++/* We define the sensors as follows. Somewhat convoluted to minimize
++ changes from via686a.
++ Sensor Voltage Mode Temp Mode
++ -------- ------------ ---------
++ Reading 1 temp3
++ Reading 3 temp1 not in vt8231
++ UCH1/Reading2 in0 temp2
++ UCH2 in1 temp4
++ UCH3 in2 temp5
++ UCH4 in3 temp6
++ UCH5 in4 temp7
++ 3.3V in5
++ -12V in6 not in vt8231
++*/
++
++/* ins numbered 0-6 */
++#define VT8231_REG_IN_MAX(nr) ((nr)==0 ? 0x3d : 0x29 + ((nr) * 2))
++#define VT8231_REG_IN_MIN(nr) ((nr)==0 ? 0x3e : 0x2a + ((nr) * 2))
++#define VT8231_REG_IN(nr) (0x21 + (nr))
++
++/* fans numbered 1-2 */
++#define VT8231_REG_FAN_MIN(nr) (0x3a + (nr))
++#define VT8231_REG_FAN(nr) (0x28 + (nr))
++
++static const u8 regtemp[] = { 0x20, 0x21, 0x1f, 0x22, 0x23, 0x24, 0x25 };
++static const u8 regover[] = { 0x39, 0x3d, 0x1d, 0x2b, 0x2d, 0x2f, 0x31 };
++static const u8 reghyst[] = { 0x3a, 0x3e, 0x1e, 0x2c, 0x2e, 0x30, 0x32 };
++
++/* temps numbered 1-7 */
++#define VT8231_REG_TEMP(nr) (regtemp[(nr) - 1])
++#define VT8231_REG_TEMP_OVER(nr) (regover[(nr) - 1])
++#define VT8231_REG_TEMP_HYST(nr) (reghyst[(nr) - 1])
++#define VT8231_REG_TEMP_LOW3 0x4b /* bits 7-6 */
++#define VT8231_REG_TEMP_LOW2 0x49 /* bits 5-4 */
++#define VT8231_REG_TEMP_LOW47 0x4d
++
++#define VT8231_REG_CONFIG 0x40
++#define VT8231_REG_ALARM1 0x41
++#define VT8231_REG_ALARM2 0x42
++#define VT8231_REG_VID 0x45
++#define VT8231_REG_FANDIV 0x47
++#define VT8231_REG_UCH_CONFIG 0x4a
++#define VT8231_REG_TEMP1_CONFIG 0x4b
++#define VT8231_REG_TEMP2_CONFIG 0x4c
++
++/* temps 1-7; voltages 0-6 */
++#define ISTEMP(i, ch_config) ((i) == 1 ? 1 : \
++ (i) == 3 ? 1 : \
++ (i) == 2 ? ((ch_config) >> 1) & 0x01 : \
++ ((ch_config) >> ((i)-1)) & 0x01)
++#define ISVOLT(i, ch_config) ((i) > 4 ? 1 : !(((ch_config) >> ((i)+2)) & 0x01))
++
++#define DIV_FROM_REG(val) (1 << (val))
++#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
++#define PWM_FROM_REG(val) (val)
++#define PWM_TO_REG(val) SENSORS_LIMIT((val), 0, 255)
++
++#define TEMP_FROM_REG(val) ((val)*10)
++#define TEMP_FROM_REG10(val) (((val)*10)/4)
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)<0?(((val)-5)/10):\
++ ((val)+5)/10),0,255))
++#define IN_FROM_REG(val) /*(((val)*10+5)/10)*/ (val)
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val) * 10 + 5)/10),0,255))
++
++
++/********* FAN RPM CONVERSIONS ********/
++/* But this chip saturates back at 0, not at 255 like all the other chips.
++ So, 0 means 0 RPM */
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 0;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1310720 + rpm * div / 2) / (rpm * div), 1, 255);
++}
++
++#define MIN_TO_REG(a,b) FAN_TO_REG(a,b)
++#define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1310720/((val)*(div)))
++
++struct vt8231_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 in[7]; /* Register value */
++ u8 in_max[7]; /* Register value */
++ u8 in_min[7]; /* Register value */
++ u16 temp[7]; /* Register value 10 bit */
++ u8 temp_over[7]; /* Register value */
++ u8 temp_hyst[7]; /* Register value */
++ u8 fan[2]; /* Register value */
++ u8 fan_min[2]; /* Register value */
++ u8 fan_div[2]; /* Register encoding, shifted right */
++ u16 alarms; /* Register encoding */
++ u8 pwm[2]; /* Register value */
++ u8 pwm_ctl; /* Register value */
++ u8 vid; /* Register encoding */
++ u8 vrm;
++ u8 uch_config;
++};
++
++static int vt8231_attach_adapter(struct i2c_adapter *adapter);
++static int vt8231_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int vt8231_detach_client(struct i2c_client *client);
++
++static inline int vt_rdval(struct i2c_client *client, u8 register);
++static inline void vt8231_write_value(struct i2c_client *client, u8 register,
++ u8 value);
++static void vt8231_update_client(struct i2c_client *client);
++static void vt8231_init_client(struct i2c_client *client);
++static int vt8231_find(int *address);
++
++
++static void vt8231_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt8231_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt8231_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt8231_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt8231_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt8231_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt8231_vrm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt8231_uch(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void vt8231_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int vt8231_id = 0;
++
++static struct i2c_driver vt8231_driver = {
++ .owner = THIS_MODULE,
++ .name = "VT8231 sensors driver",
++ .id = I2C_DRIVERID_VT8231,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = vt8231_attach_adapter,
++ .detach_client = vt8231_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++#define VT8231_SYSCTL_IN0 1000
++#define VT8231_SYSCTL_IN1 1001
++#define VT8231_SYSCTL_IN2 1002
++#define VT8231_SYSCTL_IN3 1003
++#define VT8231_SYSCTL_IN4 1004
++#define VT8231_SYSCTL_IN5 1005
++#define VT8231_SYSCTL_IN6 1006
++#define VT8231_SYSCTL_FAN1 1101
++#define VT8231_SYSCTL_FAN2 1102
++#define VT8231_SYSCTL_TEMP 1200
++#define VT8231_SYSCTL_TEMP2 1201
++#define VT8231_SYSCTL_TEMP3 1202
++#define VT8231_SYSCTL_TEMP4 1203
++#define VT8231_SYSCTL_TEMP5 1204
++#define VT8231_SYSCTL_TEMP6 1205
++#define VT8231_SYSCTL_TEMP7 1206
++#define VT8231_SYSCTL_VID 1300
++#define VT8231_SYSCTL_PWM1 1401
++#define VT8231_SYSCTL_PWM2 1402
++#define VT8231_SYSCTL_VRM 1600
++#define VT8231_SYSCTL_UCH 1700
++#define VT8231_SYSCTL_FAN_DIV 2000
++#define VT8231_SYSCTL_ALARMS 2001
++
++#define VT8231_ALARM_IN1 0x01
++#define VT8231_ALARM_IN2 0x02
++#define VT8231_ALARM_IN5 0x04
++#define VT8231_ALARM_IN3 0x08
++#define VT8231_ALARM_TEMP 0x10
++#define VT8231_ALARM_FAN1 0x40
++#define VT8231_ALARM_FAN2 0x80
++#define VT8231_ALARM_IN4 0x100
++#define VT8231_ALARM_IN6 0x200
++#define VT8231_ALARM_TEMP2 0x800
++#define VT8231_ALARM_CHAS 0x1000
++#define VT8231_ALARM_TEMP3 0x8000
++/* duplicates */
++#define VT8231_ALARM_IN0 VT8231_ALARM_TEMP
++#define VT8231_ALARM_TEMP4 VT8231_ALARM_IN1
++#define VT8231_ALARM_TEMP5 VT8231_ALARM_IN2
++#define VT8231_ALARM_TEMP6 VT8231_ALARM_IN3
++#define VT8231_ALARM_TEMP7 VT8231_ALARM_IN4
++
++/* -- SENSORS SYSCTL END -- */
++
++static ctl_table vt8231_dir_table_template[] = {
++ {VT8231_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_in},
++ {VT8231_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_in},
++ {VT8231_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_in},
++ {VT8231_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_in},
++ {VT8231_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_in},
++ {VT8231_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_in},
++/*
++ not in 8231
++ {VT8231_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_in},
++ {VT8231_SYSCTL_TEMP, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_temp},
++*/
++ {VT8231_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt8231_temp},
++ {VT8231_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt8231_temp},
++ {VT8231_SYSCTL_TEMP4, "temp4", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt8231_temp},
++ {VT8231_SYSCTL_TEMP5, "temp5", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt8231_temp},
++ {VT8231_SYSCTL_TEMP6, "temp6", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt8231_temp},
++ {VT8231_SYSCTL_TEMP7, "temp7", NULL, 0, 0644, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &vt8231_temp},
++ {VT8231_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_fan},
++ {VT8231_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_fan},
++ {VT8231_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_fan_div},
++ {VT8231_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_alarms},
++ {VT8231_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_pwm},
++ {VT8231_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_pwm},
++ {VT8231_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_vid},
++ {VT8231_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_vrm},
++ {VT8231_SYSCTL_UCH, "uch_config", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &vt8231_uch},
++ {0}
++};
++
++static struct pci_dev *s_bridge;
++
++static int vt8231_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, vt8231_detect);
++}
++
++/* Locate chip and get correct base address */
++static int vt8231_find(int *address)
++{
++ u16 val;
++
++ if (!pci_present())
++ return -ENODEV;
++
++ if (!(s_bridge = pci_find_device(PCI_VENDOR_ID_VIA,
++ 0x8235, NULL)))
++ return -ENODEV;
++
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_word(s_bridge, VIA686A_BASE_REG, &val))
++ return -ENODEV;
++ *address = val & ~(VIA686A_EXTENT - 1);
++ if (*address == 0 && force_addr == 0) {
++ printk("vt8231.o: base address not set - upgrade BIOS or use force_addr=0xaddr\n");
++ return -ENODEV;
++ }
++ if (force_addr)
++ *address = force_addr; /* so detect will get called */
++
++ return 0;
++}
++
++int vt8231_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct vt8231_data *data;
++ int err = 0;
++ const char *type_name = "vt8231";
++ u16 val;
++
++ if (!i2c_is_isa_adapter(adapter)) {
++ return 0;
++ }
++
++ /* 8231 requires multiple of 256 */
++ if(force_addr)
++ address = force_addr & 0xFF00;
++ if (check_region(address, VIA686A_EXTENT)) {
++ printk("vt8231.o: region 0x%x already in use!\n",
++ address);
++ return -ENODEV;
++ }
++
++ if(force_addr) {
++ printk("vt8231.o: forcing ISA address 0x%04X\n", address);
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_write_config_word(s_bridge, VIA686A_BASE_REG, address))
++ return -ENODEV;
++ }
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_read_config_word(s_bridge, VIA686A_ENABLE_REG, &val))
++ return -ENODEV;
++ if (!(val & 0x0001)) {
++ printk("vt8231.o: enabling sensors\n");
++ if (PCIBIOS_SUCCESSFUL !=
++ pci_write_config_word(s_bridge, VIA686A_ENABLE_REG,
++ val | 0x0001))
++ return -ENODEV;
++ }
++
++ if (!(data = kmalloc(sizeof(struct vt8231_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ init_MUTEX(&data->lock);
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &vt8231_driver;
++ new_client->flags = 0;
++
++ /* Reserve the ISA region */
++ request_region(address, VIA686A_EXTENT, "vt8231-sensors");
++
++ /* Fill in the remaining client fields and put into the global list */
++ strcpy(new_client->name, "Via 8231 Integrated Sensors");
++
++ new_client->id = vt8231_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry((struct i2c_client *) new_client,
++ type_name,
++ vt8231_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR4;
++ }
++ data->sysctl_id = i;
++
++ vt8231_init_client(new_client);
++ return 0;
++
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ release_region(address, VIA686A_EXTENT);
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int vt8231_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct vt8231_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("vt8231.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ release_region(client->addr, VIA686A_EXTENT);
++ kfree(client->data);
++
++ return 0;
++}
++
++
++static inline int vt_rdval(struct i2c_client *client, u8 reg)
++{
++ return (inb_p(client->addr + reg));
++}
++
++static inline void vt8231_write_value(struct i2c_client *client, u8 reg, u8 value)
++{
++ outb_p(value, client->addr + reg);
++}
++
++static void vt8231_init_client(struct i2c_client *client)
++{
++ struct vt8231_data *data = client->data;
++
++ data->vrm = DEFAULT_VRM;
++ /* set "default" interrupt mode for alarms, which isn't the default */
++ vt8231_write_value(client, VT8231_REG_TEMP1_CONFIG, 0);
++ vt8231_write_value(client, VT8231_REG_TEMP2_CONFIG, 0);
++}
++
++static void vt8231_update_client(struct i2c_client *client)
++{
++ struct vt8231_data *data = client->data;
++ int i, j;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++ data->uch_config = vt_rdval(client, VT8231_REG_UCH_CONFIG);
++ for (i = 0; i <= 5; i++) {
++ if(ISVOLT(i, data->uch_config)) {
++ data->in[i] = vt_rdval(client, VT8231_REG_IN(i));
++ data->in_min[i] = vt_rdval(client,
++ VT8231_REG_IN_MIN(i));
++ data->in_max[i] = vt_rdval(client,
++ VT8231_REG_IN_MAX(i));
++ } else {
++ data->in[i] = 0;
++ data->in_min[i] = 0;
++ data->in_max[i] = 0;
++ }
++ }
++ for (i = 1; i <= 2; i++) {
++ data->fan[i - 1] = vt_rdval(client, VT8231_REG_FAN(i));
++ data->fan_min[i - 1] = vt_rdval(client,
++ VT8231_REG_FAN_MIN(i));
++ }
++ for (i = 2; i <= 7; i++) {
++ if(ISTEMP(i, data->uch_config)) {
++ data->temp[i - 1] = vt_rdval(client,
++ VT8231_REG_TEMP(i)) << 2;
++ switch(i) {
++ case 1:
++ /* ? */
++ j = 0;
++ break;
++ case 2:
++ j = (vt_rdval(client,
++ VT8231_REG_TEMP_LOW2) &
++ 0x30) >> 4;
++ break;
++ case 3:
++ j = (vt_rdval(client,
++ VT8231_REG_TEMP_LOW3) &
++ 0xc0) >> 6;
++ break;
++ case 4:
++ case 5:
++ case 6:
++ case 7:
++ default:
++ j = (vt_rdval(client,
++ VT8231_REG_TEMP_LOW47) >>
++ ((i-4)*2)) & 0x03;
++ break;
++
++ }
++ data->temp[i - 1] |= j;
++ data->temp_over[i - 1] = vt_rdval(client,
++ VT8231_REG_TEMP_OVER(i));
++ data->temp_hyst[i - 1] = vt_rdval(client,
++ VT8231_REG_TEMP_HYST(i));
++ } else {
++ data->temp[i - 1] = 0;
++ data->temp_over[i - 1] = 0;
++ data->temp_hyst[i - 1] = 0;
++ }
++ }
++
++ for (i = 1; i <= 2; i++) {
++ data->fan[i - 1] = vt_rdval(client, VT8231_REG_FAN(i));
++ data->fan_min[i - 1] = vt_rdval(client,
++ VT8231_REG_FAN_MIN(i));
++ data->pwm[i - 1] = vt_rdval(client, VT8231_REG_PWM(i));
++ }
++
++ data->pwm_ctl = vt_rdval(client, VT8231_REG_PWM_CTL);
++ i = vt_rdval(client, VT8231_REG_FANDIV);
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = i >> 6;
++ data->alarms = vt_rdval(client, VT8231_REG_ALARM1) |
++ (vt_rdval(client, VT8231_REG_ALARM2) << 8);
++ data->vid= vt_rdval(client, VT8231_REG_VID) & 0x1f;
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++void vt8231_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt8231_data *data = client->data;
++ int nr = ctl_name - VT8231_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt8231_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0]);
++ vt8231_write_value(client, VT8231_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1]);
++ vt8231_write_value(client, VT8231_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void vt8231_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt8231_data *data = client->data;
++ int nr = ctl_name - VT8231_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt8231_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->fan_div
++ [nr - 1]));
++ results[1] = FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] = MIN_TO_REG(results[0],
++ DIV_FROM_REG
++ (data->
++ fan_div[nr-1]));
++ vt8231_write_value(client, VT8231_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++
++void vt8231_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt8231_data *data = client->data;
++ int nr = ctl_name - VT8231_SYSCTL_TEMP;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt8231_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over[nr]);
++ results[1] = TEMP_FROM_REG(data->temp_hyst[nr]);
++ results[2] = TEMP_FROM_REG10(data->temp[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_over[nr] = TEMP_TO_REG(results[0]);
++ vt8231_write_value(client,
++ VT8231_REG_TEMP_OVER(nr + 1),
++ data->temp_over[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst[nr] = TEMP_TO_REG(results[1]);
++ vt8231_write_value(client,
++ VT8231_REG_TEMP_HYST(nr + 1),
++ data->temp_hyst[nr]);
++ }
++ }
++}
++
++void vt8231_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt8231_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt8231_update_client(client);
++ results[0] = data->alarms;
++ *nrels_mag = 1;
++ }
++}
++
++void vt8231_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct vt8231_data *data = client->data;
++ int old;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt8231_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = vt_rdval(client, VT8231_REG_FANDIV);
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] = DIV_TO_REG(results[1]);
++ old = (old & 0x3f) | (data->fan_div[1] << 6);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] = DIV_TO_REG(results[0]);
++ old = (old & 0xcf) | (data->fan_div[0] << 4);
++ vt8231_write_value(client, VT8231_REG_FANDIV, old);
++ }
++ }
++}
++
++void vt8231_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt8231_data *data = client->data;
++ int nr = 1 + ctl_name - VT8231_SYSCTL_PWM1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt8231_update_client(client);
++ results[0] = PWM_FROM_REG(data->pwm[nr - 1]);
++ results[1] = (data->pwm_ctl >> (3 + (4 * (nr - 1)))) & 1;
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->pwm[nr - 1] = PWM_TO_REG(results[0]);
++ if (*nrels_mag >= 2) {
++ if(results[1]) {
++ data->pwm_ctl |=
++ (0x08 << (4 * (nr - 1)));
++ vt8231_write_value(client,
++ VT8231_REG_PWM_CTL,
++ data->pwm_ctl);
++ } else {
++ data->pwm_ctl &=
++ ~ (0x08 << (4 * (nr - 1)));
++ vt8231_write_value(client,
++ VT8231_REG_PWM_CTL,
++ data->pwm_ctl);
++ }
++ }
++ vt8231_write_value(client, VT8231_REG_PWM(nr),
++ data->pwm[nr - 1]);
++ }
++ }
++}
++
++void vt8231_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt8231_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ vt8231_update_client(client);
++ results[0] = vid_from_reg(data->vid, data->vrm);
++ *nrels_mag = 1;
++ }
++}
++
++void vt8231_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt8231_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1)
++ data->vrm = results[0];
++ }
++}
++
++void vt8231_uch(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct vt8231_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->uch_config & 0x7c;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->uch_config = (data->uch_config & 0x83)|(results[0] & 0x7c);
++ vt8231_write_value(client, VT8231_REG_UCH_CONFIG,
++ data->uch_config);
++ }
++ }
++}
++
++static int __init sm_vt8231_init(void)
++{
++ int addr;
++
++ printk("vt8231.o version %s (%s)\n", LM_VERSION, LM_DATE);
++
++ if (vt8231_find(&addr)) {
++ printk("vt8231.o: VT8231 not detected, module not inserted.\n");
++ return -ENODEV;
++ }
++ normal_isa[0] = addr;
++
++ return i2c_add_driver(&vt8231_driver);}
++
++static void __exit sm_vt8231_exit(void)
++{
++ i2c_del_driver(&vt8231_driver);
++}
++
++
++
++MODULE_AUTHOR("Mark D. Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("VT8231 sensors");
++MODULE_LICENSE("GPL");
++
++module_init(sm_vt8231_init);
++module_exit(sm_vt8231_exit);
+--- linux-old/drivers/sensors/w83627hf.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/w83627hf.c Mon Dec 13 20:18:53 2004
+@@ -0,0 +1,1422 @@
++/*
++ w83627hf.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>,
++ and Mark Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ Supports following chips:
++
++ Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
++ w83627hf 9 3 2 3 0x20 0x5ca3 no yes(LPC)
++ w83627thf 7 3 3 3 0x90 0x5ca3 no yes(LPC)
++ w83637hf 7 3 3 3 0x80 0x5ca3 no yes(LPC)
++ w83697hf 8 2 2 2 0x60 0x5ca3 no yes(LPC)
++
++ For other winbond chips, and for i2c support in the above chips,
++ use w83781d.c.
++
++ Note: automatic ("cruise") fan control for 697, 637 & 627thf not
++ supported yet.
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++#include "lm75.h"
++
++static int force_addr;
++MODULE_PARM(force_addr, "i");
++MODULE_PARM_DESC(force_addr,
++ "Initialize the base address of the sensors");
++static int force_i2c = 0x1f;
++MODULE_PARM(force_i2c, "i");
++MODULE_PARM_DESC(force_i2c,
++ "Initialize the i2c address of the sensors");
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_4(w83627hf, w83627thf, w83697hf, w83637hf);
++
++static int init = 1;
++MODULE_PARM(init, "i");
++MODULE_PARM_DESC(init, "Set to zero to bypass chip initialization");
++
++/* modified from kernel/include/traps.c */
++#define REG 0x2e /* The register to read/write */
++#define DEV 0x07 /* Register: Logical device select */
++#define VAL 0x2f /* The value to read/write */
++
++/* logical device numbers for superio_select (below) */
++#define W83627HF_LD_FDC 0x00
++#define W83627HF_LD_PRT 0x01
++#define W83627HF_LD_UART1 0x02
++#define W83627HF_LD_UART2 0x03
++#define W83627HF_LD_KBC 0x05
++#define W83627HF_LD_CIR 0x06 /* w83627hf only */
++#define W83627HF_LD_GAME 0x07
++#define W83627HF_LD_MIDI 0x07
++#define W83627HF_LD_GPIO1 0x07
++#define W83627HF_LD_GPIO5 0x07 /* w83627thf only */
++#define W83627HF_LD_GPIO2 0x08
++#define W83627HF_LD_GPIO3 0x09
++#define W83627HF_LD_GPIO4 0x09 /* w83627thf only */
++#define W83627HF_LD_ACPI 0x0a
++#define W83627HF_LD_HWM 0x0b
++
++#define DEVID 0x20 /* Register: Device ID */
++
++#define W83627THF_GPIO5_IOSR 0xf3 /* w83627thf only */
++#define W83627THF_GPIO5_DR 0xf4 /* w83627thf only */
++#define W83627THF_GPIO5_INVR 0xf5 /* w83627thf only */
++
++static inline void
++superio_outb(int reg, int val)
++{
++ outb(reg, REG);
++ outb(val, VAL);
++}
++
++static inline int
++superio_inb(int reg)
++{
++ outb(reg, REG);
++ return inb(VAL);
++}
++
++static inline void
++superio_select(int ld)
++{
++ outb(DEV, REG);
++ outb(ld, VAL);
++}
++
++static inline void
++superio_enter(void)
++{
++ outb(0x87, REG);
++ outb(0x87, REG);
++}
++
++static inline void
++superio_exit(void)
++{
++ outb(0xAA, REG);
++}
++
++#define W627_DEVID 0x52
++#define W627THF_DEVID 0x82
++#define W697_DEVID 0x60
++#define W637_DEVID 0x70
++#define WINB_ACT_REG 0x30
++#define WINB_BASE_REG 0x60
++/* Constants specified below */
++
++/* Length of ISA address segment */
++#define WINB_EXTENT 8
++
++/* Where are the ISA address/data registers relative to the base address */
++#define W83781D_ADDR_REG_OFFSET 5
++#define W83781D_DATA_REG_OFFSET 6
++
++/* The W83781D registers */
++/* The W83782D registers for nr=7,8 are in bank 5 */
++#define W83781D_REG_IN_MAX(nr) ((nr < 7) ? (0x2b + (nr) * 2) : \
++ (0x554 + (((nr) - 7) * 2)))
++#define W83781D_REG_IN_MIN(nr) ((nr < 7) ? (0x2c + (nr) * 2) : \
++ (0x555 + (((nr) - 7) * 2)))
++#define W83781D_REG_IN(nr) ((nr < 7) ? (0x20 + (nr)) : \
++ (0x550 + (nr) - 7))
++
++#define W83781D_REG_FAN_MIN(nr) (0x3a + (nr))
++#define W83781D_REG_FAN(nr) (0x27 + (nr))
++
++#define W83781D_REG_TEMP2 0x0150
++#define W83781D_REG_TEMP3 0x0250
++#define W83781D_REG_TEMP2_HYST 0x153
++#define W83781D_REG_TEMP3_HYST 0x253
++#define W83781D_REG_TEMP2_CONFIG 0x152
++#define W83781D_REG_TEMP3_CONFIG 0x252
++#define W83781D_REG_TEMP2_OVER 0x155
++#define W83781D_REG_TEMP3_OVER 0x255
++
++#define W83781D_REG_TEMP 0x27
++#define W83781D_REG_TEMP_OVER 0x39
++#define W83781D_REG_TEMP_HYST 0x3A
++#define W83781D_REG_BANK 0x4E
++
++#define W83781D_REG_CONFIG 0x40
++#define W83781D_REG_ALARM1 0x41
++#define W83781D_REG_ALARM2 0x42
++#define W83781D_REG_ALARM3 0x450
++
++#define W83781D_REG_IRQ 0x4C
++#define W83781D_REG_BEEP_CONFIG 0x4D
++#define W83781D_REG_BEEP_INTS1 0x56
++#define W83781D_REG_BEEP_INTS2 0x57
++#define W83781D_REG_BEEP_INTS3 0x453
++
++#define W83781D_REG_VID_FANDIV 0x47
++
++#define W83781D_REG_CHIPID 0x49
++#define W83781D_REG_WCHIPID 0x58
++#define W83781D_REG_CHIPMAN 0x4F
++#define W83781D_REG_PIN 0x4B
++
++#define W83781D_REG_VBAT 0x5D
++
++#define W83627HF_REG_PWM1 0x5A
++#define W83627HF_REG_PWM2 0x5B
++#define W83627HF_REG_PWMCLK12 0x5C
++
++#define W83627THF_REG_PWM1 0x01 /* 697HF and 637HF too */
++#define W83627THF_REG_PWM2 0x03 /* 697HF and 637HF too */
++#define W83627THF_REG_PWM3 0x11 /* 637HF too */
++
++#define W83627THF_REG_VRM_OVT_CFG 0x18 /* 637HF too */
++
++static const u8 regpwm_627hf[] = { W83627HF_REG_PWM1, W83627HF_REG_PWM2 };
++static const u8 regpwm[] = { W83627THF_REG_PWM1, W83627THF_REG_PWM2,
++ W83627THF_REG_PWM3 };
++#define W836X7HF_REG_PWM(type, nr) (((type) == w83627hf) ? \
++ regpwm_627hf[(nr) - 1] : regpwm[(nr) - 1])
++
++#define W83781D_REG_I2C_ADDR 0x48
++#define W83781D_REG_I2C_SUBADDR 0x4A
++
++/* Sensor selection */
++#define W83781D_REG_SCFG1 0x5D
++static const u8 BIT_SCFG1[] = { 0x02, 0x04, 0x08 };
++#define W83781D_REG_SCFG2 0x59
++static const u8 BIT_SCFG2[] = { 0x10, 0x20, 0x40 };
++#define W83781D_DEFAULT_BETA 3435
++
++/* Conversions. Limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val) * 10 + 8)/16),0,255))
++#define IN_FROM_REG(val) (((val) * 16 + 5) / 10)
++
++#define IN_TO_REG_VRM9(val) \
++ (SENSORS_LIMIT((((val) * 1000 - 70000 + 244) / 488), 0, 255))
++#define IN_FROM_REG_VRM9(reg) (((reg) * 488 + 70000 + 500) / 1000)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define TEMP_MIN (-1280)
++#define TEMP_MAX ( 1270)
++
++/* TEMP: 1/10 degrees C (-128C to +127C)
++ REG: 1C/bit, two's complement */
++static u8 TEMP_TO_REG(int temp)
++{
++ int ntemp = SENSORS_LIMIT(temp, TEMP_MIN, TEMP_MAX);
++ ntemp += (ntemp<0 ? -5 : 5);
++ return (u8)(ntemp / 10);
++}
++
++static int TEMP_FROM_REG(u8 reg)
++{
++ return (s8)reg * 10;
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==255?0:1350000/((val)*(div)))
++
++#define PWM_TO_REG(val) (SENSORS_LIMIT((val),0,255))
++#define BEEPS_TO_REG(val) ((val) & 0xffffff)
++
++#define BEEP_ENABLE_TO_REG(val) ((val)?1:0)
++#define BEEP_ENABLE_FROM_REG(val) ((val)?1:0)
++
++#define DIV_FROM_REG(val) (1 << (val))
++
++static inline u8 DIV_TO_REG(long val)
++{
++ int i;
++ val = SENSORS_LIMIT(val, 1, 128) >> 1;
++ for (i = 0; i < 6; i++) {
++ if (val == 0)
++ break;
++ val >>= 1;
++ }
++ return ((u8) i);
++}
++
++/* For each registered chip, we need to keep some data in memory. That
++ data is pointed to by w83627hf_list[NR]->data. The structure itself is
++ dynamically allocated, at the same time when a new client is allocated. */
++struct w83627hf_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ struct i2c_client *lm75; /* for secondary I2C addresses */
++ /* pointer to array of 2 subclients */
++
++ u8 in[9]; /* Register value */
++ u8 in_max[9]; /* Register value */
++ u8 in_min[9]; /* Register value */
++ u8 fan[3]; /* Register value */
++ u8 fan_min[3]; /* Register value */
++ u8 temp;
++ u8 temp_over; /* Register value */
++ u8 temp_hyst; /* Register value */
++ u16 temp_add[2]; /* Register value */
++ u16 temp_add_over[2]; /* Register value */
++ u16 temp_add_hyst[2]; /* Register value */
++ u8 fan_div[3]; /* Register encoding, shifted right */
++ u8 vid; /* Register encoding, combined */
++ u32 alarms; /* Register encoding, combined */
++ u32 beeps; /* Register encoding, combined */
++ u8 beep_enable; /* Boolean */
++ u8 pwm[3]; /* Register value */
++ u8 pwmenable[3]; /* bool */
++ u16 sens[3]; /* 782D/783S only.
++ 1 = pentium diode; 2 = 3904 diode;
++ 3000-5000 = thermistor beta.
++ Default = 3435.
++ Other Betas unimplemented */
++ u8 vrm;
++ u8 vrm_ovt; /* Register value, 627thf & 637hf only */
++};
++
++
++static int w83627hf_attach_adapter(struct i2c_adapter *adapter);
++static int w83627hf_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int w83627hf_detach_client(struct i2c_client *client);
++
++static int w83627hf_read_value(struct i2c_client *client, u16 register);
++static int w83627hf_write_value(struct i2c_client *client, u16 register,
++ u16 value);
++static void w83627hf_update_client(struct i2c_client *client);
++static void w83627hf_init_client(struct i2c_client *client);
++
++
++static void w83627hf_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_temp_add(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_vrm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_beep(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83627hf_sens(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++
++static int w83627hf_id = 0;
++
++static struct i2c_driver w83627hf_driver = {
++ .owner = THIS_MODULE,
++ .name = "W83627HF sensor driver",
++ .id = I2C_DRIVERID_W83627HF,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = w83627hf_attach_adapter,
++ .detach_client = w83627hf_detach_client,
++};
++
++/* The /proc/sys entries */
++/* WARNING these are copied from w83781d.c and have not been renamed.
++ Note that the 627hf and 697hf are supported by both drivers.
++ Do not make incompatible changes here or we will have errors
++ in the generated file ../include/sensors.h !!!
++*/
++/* -- SENSORS SYSCTL START -- */
++
++#define W83781D_SYSCTL_IN0 1000 /* Volts * 100 */
++#define W83781D_SYSCTL_IN1 1001
++#define W83781D_SYSCTL_IN2 1002
++#define W83781D_SYSCTL_IN3 1003
++#define W83781D_SYSCTL_IN4 1004
++#define W83781D_SYSCTL_IN5 1005
++#define W83781D_SYSCTL_IN6 1006
++#define W83781D_SYSCTL_IN7 1007
++#define W83781D_SYSCTL_IN8 1008
++#define W83781D_SYSCTL_FAN1 1101 /* Rotations/min */
++#define W83781D_SYSCTL_FAN2 1102
++#define W83781D_SYSCTL_FAN3 1103
++#define W83781D_SYSCTL_TEMP1 1200 /* Degrees Celcius * 10 */
++#define W83781D_SYSCTL_TEMP2 1201 /* Degrees Celcius * 10 */
++#define W83781D_SYSCTL_TEMP3 1202 /* Degrees Celcius * 10 */
++#define W83781D_SYSCTL_VID 1300 /* Volts * 1000 */
++#define W83781D_SYSCTL_VRM 1301
++#define W83781D_SYSCTL_PWM1 1401
++#define W83781D_SYSCTL_PWM2 1402
++#define W83781D_SYSCTL_PWM3 1403
++#define W83781D_SYSCTL_SENS1 1501 /* 1, 2, or Beta (3000-5000) */
++#define W83781D_SYSCTL_SENS2 1502
++#define W83781D_SYSCTL_SENS3 1503
++#define W83781D_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define W83781D_SYSCTL_ALARMS 2001 /* bitvector */
++#define W83781D_SYSCTL_BEEP 2002 /* bitvector */
++
++#define W83781D_ALARM_IN0 0x0001
++#define W83781D_ALARM_IN1 0x0002
++#define W83781D_ALARM_IN2 0x0004
++#define W83781D_ALARM_IN3 0x0008
++#define W83781D_ALARM_IN4 0x0100
++#define W83781D_ALARM_IN5 0x0200
++#define W83781D_ALARM_IN6 0x0400
++#define W83782D_ALARM_IN7 0x10000
++#define W83782D_ALARM_IN8 0x20000
++#define W83781D_ALARM_FAN1 0x0040
++#define W83781D_ALARM_FAN2 0x0080
++#define W83781D_ALARM_FAN3 0x0800
++#define W83781D_ALARM_TEMP1 0x0010
++#define W83781D_ALARM_TEMP23 0x0020 /* 781D only */
++#define W83781D_ALARM_TEMP2 0x0020 /* 782D/783S */
++#define W83781D_ALARM_TEMP3 0x2000 /* 782D only */
++#define W83781D_ALARM_CHAS 0x1000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected chip. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++
++/* without pwm3-4 */
++static ctl_table w83627hf_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan},
++ {W83781D_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_temp_add},
++ {W83781D_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_temp_add},
++ {W83781D_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_vid},
++ {W83781D_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_vrm},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_beep},
++ {W83781D_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_pwm},
++ {W83781D_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_pwm},
++ {W83781D_SYSCTL_SENS1, "sensor1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_sens},
++ {W83781D_SYSCTL_SENS2, "sensor2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_sens},
++ {W83781D_SYSCTL_SENS3, "sensor3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_sens},
++ {0}
++};
++
++/* similar to w83782d but no fan3, no vid */
++static ctl_table w83697hf_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ /* no in1 to maintain compatibility with 781d and 782d. */
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_temp_add},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_beep},
++ {W83781D_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_pwm},
++ {W83781D_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_pwm},
++ {W83781D_SYSCTL_SENS1, "sensor1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_sens},
++ {W83781D_SYSCTL_SENS2, "sensor2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_sens},
++ {0}
++};
++
++/* no in5 and in6 */
++/* We use this one for W83637HF too */
++static ctl_table w83627thf_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan},
++ {W83781D_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_temp_add},
++ {W83781D_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_temp_add},
++ {W83781D_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_vid},
++ {W83781D_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_vrm},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_beep},
++ {W83781D_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_pwm},
++ {W83781D_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_pwm},
++ {W83781D_SYSCTL_PWM3, "pwm3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_pwm},
++ {W83781D_SYSCTL_SENS1, "sensor1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_sens},
++ {W83781D_SYSCTL_SENS2, "sensor2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_sens},
++ {W83781D_SYSCTL_SENS3, "sensor3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83627hf_sens},
++ {0}
++};
++
++
++/* This function is called when:
++ * w83627hf_driver is inserted (when this module is loaded), for each
++ available adapter
++ * when a new adapter is inserted (and w83627hf_driver is still present) */
++static int w83627hf_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, w83627hf_detect);
++}
++
++static int w83627hf_find(int *address)
++{
++ u16 val;
++
++ superio_enter();
++ val= superio_inb(DEVID);
++ if(val != W627_DEVID && val !=W627THF_DEVID && val != W697_DEVID && val != W637_DEVID) {
++ superio_exit();
++ return -ENODEV;
++ }
++
++ superio_select(W83627HF_LD_HWM);
++ val = (superio_inb(WINB_BASE_REG) << 8) |
++ superio_inb(WINB_BASE_REG + 1);
++ *address = val & ~(WINB_EXTENT - 1);
++ if (*address == 0 && force_addr == 0) {
++ printk("w83627hf.o: base address not set - use force_addr=0xaddr\n");
++ superio_exit();
++ return -ENODEV;
++ }
++ if (force_addr)
++ *address = force_addr; /* so detect will get called */
++
++ superio_exit();
++ return 0;
++}
++
++int w83627hf_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i, val;
++ struct i2c_client *new_client;
++ struct w83627hf_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++ if (!i2c_is_isa_adapter(adapter))
++ return 0;
++
++ if(force_addr)
++ address = force_addr & ~(WINB_EXTENT - 1);
++ if (check_region(address, WINB_EXTENT)) {
++ printk("w83627hf.o: region 0x%x already in use!\n", address);
++ return -ENODEV;
++ }
++ if(force_addr) {
++ printk("w83627hf.o: forcing ISA address 0x%04X\n", address);
++ superio_enter();
++ superio_select(W83627HF_LD_HWM);
++ superio_outb(WINB_BASE_REG, address >> 8);
++ superio_outb(WINB_BASE_REG+1, address & 0xff);
++ superio_exit();
++ }
++
++ superio_enter();
++ val= superio_inb(DEVID);
++ if(val == W627_DEVID)
++ kind = w83627hf;
++ else if(val == W697_DEVID)
++ kind = w83697hf;
++ else if(val == W627THF_DEVID)
++ kind = w83627thf;
++ else if(val == W637_DEVID)
++ kind = w83637hf;
++
++ superio_select(W83627HF_LD_HWM);
++ if((val = 0x01 & superio_inb(WINB_ACT_REG)) == 0)
++ superio_outb(WINB_ACT_REG, 1);
++ superio_exit();
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access w83627hf_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct w83627hf_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ init_MUTEX(&data->lock);
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &w83627hf_driver;
++ new_client->flags = 0;
++
++
++ if (kind == w83627hf) {
++ type_name = "w83627hf";
++ client_name = "W83627HF chip";
++ } else if (kind == w83627thf) {
++ type_name = "w83627thf";
++ client_name = "W83627THF chip";
++ } else if (kind == w83697hf) {
++ type_name = "w83697hf";
++ client_name = "W83697HF chip";
++ } else if (kind == w83637hf) {
++ type_name = "w83637hf";
++ client_name = "W83637HF chip";
++ } else {
++ goto ERROR1;
++ }
++
++ request_region(address, WINB_EXTENT, type_name);
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++ new_client->id = w83627hf_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ data->lm75 = NULL;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ (kind == w83697hf) ?
++ w83697hf_dir_table_template :
++ (kind == w83627hf) ?
++ w83627hf_dir_table_template :
++ /* w83627thf table also used for 637 */
++ w83627thf_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR7;
++ }
++ data->sysctl_id = i;
++
++ /* Initialize the chip */
++ w83627hf_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR7:
++ i2c_detach_client(new_client);
++ ERROR3:
++ release_region(address, WINB_EXTENT);
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int w83627hf_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct w83627hf_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ (KERN_ERR "w83627hf.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ release_region(client->addr, WINB_EXTENT);
++ kfree(client->data);
++
++ return 0;
++}
++
++
++/*
++ ISA access must always be locked explicitly!
++ We ignore the W83781D BUSY flag at this moment - it could lead to deadlocks,
++ would slow down the W83781D access and should not be necessary.
++ There are some ugly typecasts here, but the good news is - they should
++ nowhere else be necessary! */
++static int w83627hf_read_value(struct i2c_client *client, u16 reg)
++{
++ int res, word_sized;
++
++ down(&(((struct w83627hf_data *) (client->data))->lock));
++ word_sized = (((reg & 0xff00) == 0x100)
++ || ((reg & 0xff00) == 0x200))
++ && (((reg & 0x00ff) == 0x50)
++ || ((reg & 0x00ff) == 0x53)
++ || ((reg & 0x00ff) == 0x55));
++ if (reg & 0xff00) {
++ outb_p(W83781D_REG_BANK,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ outb_p(reg >> 8,
++ client->addr + W83781D_DATA_REG_OFFSET);
++ }
++ outb_p(reg & 0xff, client->addr + W83781D_ADDR_REG_OFFSET);
++ res = inb_p(client->addr + W83781D_DATA_REG_OFFSET);
++ if (word_sized) {
++ outb_p((reg & 0xff) + 1,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ res =
++ (res << 8) + inb_p(client->addr +
++ W83781D_DATA_REG_OFFSET);
++ }
++ if (reg & 0xff00) {
++ outb_p(W83781D_REG_BANK,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ outb_p(0, client->addr + W83781D_DATA_REG_OFFSET);
++ }
++ up(&(((struct w83627hf_data *) (client->data))->lock));
++ return res;
++}
++
++static int w83627thf_read_gpio5(struct i2c_client *client)
++{
++ int res, inv;
++
++ down(&(((struct w83627hf_data *) (client->data))->lock));
++ superio_enter();
++ superio_select(W83627HF_LD_GPIO5);
++ res = superio_inb(W83627THF_GPIO5_DR);
++ inv = superio_inb(W83627THF_GPIO5_INVR);
++ superio_exit();
++ up(&(((struct w83627hf_data *) (client->data))->lock));
++ return res;
++}
++
++static int w83627hf_write_value(struct i2c_client *client, u16 reg, u16 value)
++{
++ int word_sized;
++
++ down(&(((struct w83627hf_data *) (client->data))->lock));
++ word_sized = (((reg & 0xff00) == 0x100)
++ || ((reg & 0xff00) == 0x200))
++ && (((reg & 0x00ff) == 0x53)
++ || ((reg & 0x00ff) == 0x55));
++ if (reg & 0xff00) {
++ outb_p(W83781D_REG_BANK,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ outb_p(reg >> 8,
++ client->addr + W83781D_DATA_REG_OFFSET);
++ }
++ outb_p(reg & 0xff, client->addr + W83781D_ADDR_REG_OFFSET);
++ if (word_sized) {
++ outb_p(value >> 8,
++ client->addr + W83781D_DATA_REG_OFFSET);
++ outb_p((reg & 0xff) + 1,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ }
++ outb_p(value & 0xff,
++ client->addr + W83781D_DATA_REG_OFFSET);
++ if (reg & 0xff00) {
++ outb_p(W83781D_REG_BANK,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ outb_p(0, client->addr + W83781D_DATA_REG_OFFSET);
++ }
++ up(&(((struct w83627hf_data *) (client->data))->lock));
++ return 0;
++}
++
++/* Called when we have found a new W83781D. It should set limits, etc. */
++static void w83627hf_init_client(struct i2c_client *client)
++{
++ struct w83627hf_data *data = client->data;
++ int i;
++ int type = data->type;
++ u8 tmp;
++
++ /* Minimize conflicts with other winbond i2c-only clients... */
++ /* disable i2c subclients... how to disable main i2c client?? */
++ /* force i2c address to relatively uncommon address */
++ w83627hf_write_value(client, W83781D_REG_I2C_SUBADDR, 0x89);
++ w83627hf_write_value(client, W83781D_REG_I2C_ADDR, force_i2c);
++
++ /* Read VID only once */
++ if (w83627hf == data->type || w83637hf == data->type) {
++ int lo = w83627hf_read_value(client, W83781D_REG_VID_FANDIV);
++ int hi = w83627hf_read_value(client, W83781D_REG_CHIPID);
++ data->vid = (lo & 0x0f) | ((hi & 0x01) << 4);
++ } else if (w83627thf == data->type) {
++ data->vid = w83627thf_read_gpio5(client) & 0x1f;
++ }
++
++ /* Read VRM & OVT Config only once */
++ if (w83627thf == data->type || w83637hf == data->type)
++ data->vrm_ovt =
++ w83627hf_read_value(client, W83627THF_REG_VRM_OVT_CFG);
++ else
++ data->vrm_ovt = 0;
++
++ /* Choose VRM based on "VRM & OVT" register */
++ data->vrm = (data->vrm_ovt & 0x01) ? 90 : 82;
++
++ tmp = w83627hf_read_value(client, W83781D_REG_SCFG1);
++ for (i = 1; i <= 3; i++) {
++ if (!(tmp & BIT_SCFG1[i - 1])) {
++ data->sens[i - 1] = W83781D_DEFAULT_BETA;
++ } else {
++ if (w83627hf_read_value
++ (client,
++ W83781D_REG_SCFG2) & BIT_SCFG2[i - 1])
++ data->sens[i - 1] = 1;
++ else
++ data->sens[i - 1] = 2;
++ }
++ if ((type == w83697hf) && (i == 2))
++ break;
++ }
++
++ data->pwmenable[0] = 1;
++ data->pwmenable[1] = 1;
++ data->pwmenable[2] = 1;
++
++ if(init) {
++ if (type == w83627hf) {
++ /* enable PWM2 control (can't hurt since PWM reg
++ should have been reset to 0xff) */
++ w83627hf_write_value(client, W83627HF_REG_PWMCLK12, 0x19);
++ }
++ /* enable comparator mode for temp2 and temp3 so
++ alarm indication will work correctly */
++ i = w83627hf_read_value(client, W83781D_REG_IRQ);
++ if (!(i & 0x40))
++ w83627hf_write_value(client, W83781D_REG_IRQ,
++ i | 0x40);
++ }
++
++ /* Start monitoring */
++ w83627hf_write_value(client, W83781D_REG_CONFIG,
++ (w83627hf_read_value(client,
++ W83781D_REG_CONFIG) & 0xf7)
++ | 0x01);
++}
++
++static void w83627hf_update_client(struct i2c_client *client)
++{
++ struct w83627hf_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++ for (i = 0; i <= 8; i++) {
++ /* skip missing sensors */
++ if (((data->type == w83697hf) && (i == 1)) ||
++ ((data->type == w83627thf || data->type == w83637hf) &&
++ (i == 4 || i == 5)))
++ continue;
++ data->in[i] =
++ w83627hf_read_value(client, W83781D_REG_IN(i));
++ data->in_min[i] =
++ w83627hf_read_value(client,
++ W83781D_REG_IN_MIN(i));
++ data->in_max[i] =
++ w83627hf_read_value(client,
++ W83781D_REG_IN_MAX(i));
++ }
++ for (i = 1; i <= 3; i++) {
++ data->fan[i - 1] =
++ w83627hf_read_value(client, W83781D_REG_FAN(i));
++ data->fan_min[i - 1] =
++ w83627hf_read_value(client,
++ W83781D_REG_FAN_MIN(i));
++ }
++ for (i = 1; i <= 3; i++) {
++ u8 tmp = w83627hf_read_value(client,
++ W836X7HF_REG_PWM(data->type, i));
++ if (data->type == w83627thf)
++ tmp &= 0xf0; /* bits 0-3 are reserved in 627THF */
++ data->pwm[i - 1] = tmp;
++ if(i == 2 && (data->type == w83627hf || data->type == w83697hf))
++ break;
++ }
++
++ data->temp = w83627hf_read_value(client, W83781D_REG_TEMP);
++ data->temp_over =
++ w83627hf_read_value(client, W83781D_REG_TEMP_OVER);
++ data->temp_hyst =
++ w83627hf_read_value(client, W83781D_REG_TEMP_HYST);
++ data->temp_add[0] =
++ w83627hf_read_value(client, W83781D_REG_TEMP2);
++ data->temp_add_over[0] =
++ w83627hf_read_value(client, W83781D_REG_TEMP2_OVER);
++ data->temp_add_hyst[0] =
++ w83627hf_read_value(client, W83781D_REG_TEMP2_HYST);
++ if (data->type != w83697hf) {
++ data->temp_add[1] =
++ w83627hf_read_value(client, W83781D_REG_TEMP3);
++ data->temp_add_over[1] =
++ w83627hf_read_value(client, W83781D_REG_TEMP3_OVER);
++ data->temp_add_hyst[1] =
++ w83627hf_read_value(client, W83781D_REG_TEMP3_HYST);
++ }
++
++ i = w83627hf_read_value(client, W83781D_REG_VID_FANDIV);
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = (i >> 6) & 0x03;
++ if (data->type != w83697hf) {
++ data->fan_div[2] = (w83627hf_read_value(client,
++ W83781D_REG_PIN) >> 6) & 0x03;
++ }
++ i = w83627hf_read_value(client, W83781D_REG_VBAT);
++ data->fan_div[0] |= (i >> 3) & 0x04;
++ data->fan_div[1] |= (i >> 4) & 0x04;
++ if (data->type != w83697hf)
++ data->fan_div[2] |= (i >> 5) & 0x04;
++ data->alarms =
++ w83627hf_read_value(client, W83781D_REG_ALARM1) |
++ (w83627hf_read_value(client, W83781D_REG_ALARM2) << 8) |
++ (w83627hf_read_value(client, W83781D_REG_ALARM3) << 16);
++ i = w83627hf_read_value(client, W83781D_REG_BEEP_INTS2);
++ data->beep_enable = i >> 7;
++ data->beeps = ((i & 0x7f) << 8) |
++ w83627hf_read_value(client, W83781D_REG_BEEP_INTS1) |
++ w83627hf_read_value(client, W83781D_REG_BEEP_INTS3) << 16;
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++void w83627hf_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ int nr = ctl_name - W83781D_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83627hf_update_client(client);
++
++ if (nr == 0 && (data->vrm_ovt & 0x01)) {
++ /* use VRM9 calculation */
++ results[0] = IN_FROM_REG_VRM9(data->in_min[0]);
++ results[1] = IN_FROM_REG_VRM9(data->in_max[0]);
++ results[2] = IN_FROM_REG_VRM9(data->in[0]);
++
++ } else {
++ /* use VRM8 (standard) calculation */
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ }
++
++ *nrels_mag = 3;
++
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (nr == 0 && (data->vrm_ovt & 0x01))
++ /* use VRM9 calculation */
++ data->in_min[0] = IN_TO_REG_VRM9(results[0]);
++ else
++ /* use VRM8 (standard) calculation */
++ data->in_min[nr] = IN_TO_REG(results[0]);
++
++ w83627hf_write_value(client, W83781D_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ if (nr == 0 && (data->vrm_ovt & 0x01))
++ /* use VRM9 calculation */
++ data->in_min[0] = IN_TO_REG_VRM9(results[1]);
++ else
++ /* use VRM8 (standard) calculation */
++ data->in_max[nr] = IN_TO_REG(results[1]);
++
++ w83627hf_write_value(client, W83781D_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void w83627hf_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ int nr = ctl_name - W83781D_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83627hf_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ results[1] = FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] =
++ FAN_TO_REG(results[0],
++ DIV_FROM_REG(data->fan_div[nr-1]));
++ w83627hf_write_value(client,
++ W83781D_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++void w83627hf_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83627hf_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over);
++ results[1] = TEMP_FROM_REG(data->temp_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_over = TEMP_TO_REG(results[0]);
++ w83627hf_write_value(client, W83781D_REG_TEMP_OVER,
++ data->temp_over);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst = TEMP_TO_REG(results[1]);
++ w83627hf_write_value(client, W83781D_REG_TEMP_HYST,
++ data->temp_hyst);
++ }
++ }
++}
++
++void w83627hf_temp_add(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ int nr = ctl_name - W83781D_SYSCTL_TEMP2;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83627hf_update_client(client);
++ results[0] =
++ LM75_TEMP_FROM_REG(data->temp_add_over[nr]);
++ results[1] =
++ LM75_TEMP_FROM_REG(data->temp_add_hyst[nr]);
++ results[2] = LM75_TEMP_FROM_REG(data->temp_add[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_add_over[nr] =
++ LM75_TEMP_TO_REG(results[0]);
++ w83627hf_write_value(client,
++ nr ? W83781D_REG_TEMP3_OVER :
++ W83781D_REG_TEMP2_OVER,
++ data->temp_add_over[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_add_hyst[nr] =
++ LM75_TEMP_TO_REG(results[1]);
++ w83627hf_write_value(client,
++ nr ? W83781D_REG_TEMP3_HYST :
++ W83781D_REG_TEMP2_HYST,
++ data->temp_add_hyst[nr]);
++ }
++ }
++}
++
++void w83627hf_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83627hf_update_client(client);
++ results[0] = vid_from_reg(data->vid, data->vrm);
++ *nrels_mag = 1;
++ }
++}
++
++void w83627hf_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1)
++ data->vrm = results[0];
++ }
++}
++
++void w83627hf_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83627hf_update_client(client);
++ results[0] = data->alarms;
++ *nrels_mag = 1;
++ }
++}
++
++void w83627hf_beep(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ int val;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83627hf_update_client(client);
++ results[0] = BEEP_ENABLE_FROM_REG(data->beep_enable);
++ results[1] = data->beeps;
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 2) {
++ data->beeps = BEEPS_TO_REG(results[1]);
++ w83627hf_write_value(client, W83781D_REG_BEEP_INTS1,
++ data->beeps & 0xff);
++ w83627hf_write_value(client,
++ W83781D_REG_BEEP_INTS3,
++ ((data-> beeps) >> 16) &
++ 0xff);
++ val = (data->beeps >> 8) & 0x7f;
++ } else if (*nrels_mag >= 1)
++ val =
++ w83627hf_read_value(client,
++ W83781D_REG_BEEP_INTS2) &
++ 0x7f;
++ if (*nrels_mag >= 1) {
++ data->beep_enable = BEEP_ENABLE_TO_REG(results[0]);
++ w83627hf_write_value(client, W83781D_REG_BEEP_INTS2,
++ val | data->beep_enable << 7);
++ }
++ }
++}
++
++/* w83697hf only has two fans */
++void w83627hf_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ int old, old2, old3 = 0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83627hf_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ if (data->type == w83697hf) {
++ *nrels_mag = 2;
++ } else {
++ results[2] = DIV_FROM_REG(data->fan_div[2]);
++ *nrels_mag = 3;
++ }
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = w83627hf_read_value(client, W83781D_REG_VID_FANDIV);
++ /* w83627hf doesn't have extended divisor bits */
++ old3 =
++ w83627hf_read_value(client, W83781D_REG_VBAT);
++ if (*nrels_mag >= 3 && data->type != w83697hf) {
++ data->fan_div[2] =
++ DIV_TO_REG(results[2]);
++ old2 = w83627hf_read_value(client, W83781D_REG_PIN);
++ old2 =
++ (old2 & 0x3f) | ((data->fan_div[2] & 0x03) << 6);
++ w83627hf_write_value(client, W83781D_REG_PIN, old2);
++ old3 =
++ (old3 & 0x7f) |
++ ((data->fan_div[2] & 0x04) << 5);
++ }
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] =
++ DIV_TO_REG(results[1]);
++ old =
++ (old & 0x3f) | ((data->fan_div[1] & 0x03) << 6);
++ old3 =
++ (old3 & 0xbf) |
++ ((data->fan_div[1] & 0x04) << 4);
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] =
++ DIV_TO_REG(results[0]);
++ old =
++ (old & 0xcf) | ((data->fan_div[0] & 0x03) << 4);
++ w83627hf_write_value(client, W83781D_REG_VID_FANDIV,
++ old);
++ old3 =
++ (old3 & 0xdf) |
++ ((data->fan_div[0] & 0x04) << 3);
++ w83627hf_write_value(client,
++ W83781D_REG_VBAT,
++ old3);
++ }
++ }
++}
++
++/* we do not currently support disabling PWM with 2nd argument;
++ set first argument to 255 to disable */
++void w83627hf_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ int nr = 1 + ctl_name - W83781D_SYSCTL_PWM1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83627hf_update_client(client);
++ results[0] = data->pwm[nr - 1];
++ results[1] = data->pwmenable[nr - 1];
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (data->type == w83627thf) {
++ /* bits 0-3 are reserved in 627THF */
++ data->pwm[nr - 1] = PWM_TO_REG(results[0]) & 0xf0;
++ w83627hf_write_value(client,
++ W836X7HF_REG_PWM(data->type, nr),
++ data->pwm[nr - 1] |
++ (w83627hf_read_value(client,
++ W836X7HF_REG_PWM(data->type, nr)) & 0x0f));
++ } else {
++ data->pwm[nr - 1] = PWM_TO_REG(results[0]);
++ w83627hf_write_value(client,
++ W836X7HF_REG_PWM(data->type, nr),
++ data->pwm[nr - 1]);
++ }
++ }
++ }
++}
++
++void w83627hf_sens(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83627hf_data *data = client->data;
++ int nr = 1 + ctl_name - W83781D_SYSCTL_SENS1;
++ u8 tmp;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->sens[nr - 1];
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ switch (results[0]) {
++ case 1: /* PII/Celeron diode */
++ tmp = w83627hf_read_value(client,
++ W83781D_REG_SCFG1);
++ w83627hf_write_value(client,
++ W83781D_REG_SCFG1,
++ tmp | BIT_SCFG1[nr -
++ 1]);
++ tmp = w83627hf_read_value(client,
++ W83781D_REG_SCFG2);
++ w83627hf_write_value(client,
++ W83781D_REG_SCFG2,
++ tmp | BIT_SCFG2[nr -
++ 1]);
++ data->sens[nr - 1] = results[0];
++ break;
++ case 2: /* 3904 */
++ tmp = w83627hf_read_value(client,
++ W83781D_REG_SCFG1);
++ w83627hf_write_value(client,
++ W83781D_REG_SCFG1,
++ tmp | BIT_SCFG1[nr -
++ 1]);
++ tmp = w83627hf_read_value(client,
++ W83781D_REG_SCFG2);
++ w83627hf_write_value(client,
++ W83781D_REG_SCFG2,
++ tmp & ~BIT_SCFG2[nr -
++ 1]);
++ data->sens[nr - 1] = results[0];
++ break;
++ case W83781D_DEFAULT_BETA: /* thermistor */
++ tmp = w83627hf_read_value(client,
++ W83781D_REG_SCFG1);
++ w83627hf_write_value(client,
++ W83781D_REG_SCFG1,
++ tmp & ~BIT_SCFG1[nr -
++ 1]);
++ data->sens[nr - 1] = results[0];
++ break;
++ default:
++ printk
++ (KERN_ERR "w83627hf.o: Invalid sensor type %ld; must be 1, 2, or %d\n",
++ results[0], W83781D_DEFAULT_BETA);
++ break;
++ }
++ }
++ }
++}
++
++static int __init sm_w83627hf_init(void)
++{
++ int addr;
++
++ printk(KERN_INFO "w83627hf.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ if (w83627hf_find(&addr)) {
++ printk("w83627hf.o: W83627/697 not detected, module not inserted.\n");
++ return -ENODEV;
++ }
++ normal_isa[0] = addr;
++
++ return i2c_add_driver(&w83627hf_driver);
++}
++
++static void __exit sm_w83627hf_exit(void)
++{
++ i2c_del_driver(&w83627hf_driver);
++}
++
++
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>, "
++ "Philip Edelbrock <phil@netroedge.com>, "
++ "and Mark Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("W83627HF driver");
++MODULE_LICENSE("GPL");
++
++module_init(sm_w83627hf_init);
++module_exit(sm_w83627hf_exit);
+--- linux-old/drivers/sensors/w83781d.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/w83781d.c Mon Dec 13 20:18:54 2004
+@@ -0,0 +1,1957 @@
++/*
++ w83781d.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>,
++ and Mark Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ Supports following chips:
++
++ Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
++ as99127f 7 3 0 3 0x31 0x12c3 yes no
++ as99127f rev.2 (type name = as99127f) 0x31 0x5ca3 yes no
++ w83627hf 9 3 2 3 0x21 0x5ca3 yes yes(LPC)
++ w83697hf 8 2 2 2 0x60 0x5ca3 no yes(LPC)
++ w83781d 7 3 0 3 0x10-1 0x5ca3 yes yes
++ w83782d 9 3 2-4 3 0x30 0x5ca3 yes yes
++ w83783s 5-6 3 2 1-2 0x40 0x5ca3 yes no
++ w83791d 10 5 5 3 0x71 0x5ca3 yes no
++
++*/
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/ioport.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <asm/io.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++#include <linux/sensors_vid.h>
++#include "lm75.h"
++
++/* RT Table support #defined so we can take it out if it gets bothersome */
++#define W83781D_RT 1
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { 0x20, 0x2f, SENSORS_I2C_END };
++static unsigned int normal_isa[] = { 0x0290, SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_7(w83781d, w83782d, w83783s, w83627hf, as99127f, w83697hf, w83791d);
++SENSORS_MODULE_PARM(force_subclients, "List of subclient addresses: " \
++ "{bus, clientaddr, subclientaddr1, subclientaddr2}");
++
++static int init = 1;
++MODULE_PARM(init, "i");
++MODULE_PARM_DESC(init, "Set to zero to bypass chip initialization");
++
++/* Constants specified below */
++
++/* Length of ISA address segment */
++#define W83781D_EXTENT 8
++
++/* Where are the ISA address/data registers relative to the base address */
++#define W83781D_ADDR_REG_OFFSET 5
++#define W83781D_DATA_REG_OFFSET 6
++
++/* The W83781D registers */
++/* The W83782D registers for nr=7,8 are in bank 5 */
++#define W83781D_REG_IN_MAX(nr) ((nr < 7) ? (0x2b + (nr) * 2) : \
++ (0x554 + (((nr) - 7) * 2)))
++#define W83781D_REG_IN_MIN(nr) ((nr < 7) ? (0x2c + (nr) * 2) : \
++ (0x555 + (((nr) - 7) * 2)))
++#define W83781D_REG_IN(nr) ((nr < 7) ? (0x20 + (nr)) : \
++ (0x550 + (nr) - 7))
++
++#define W83791D_REG_IN_MAX(nr) ((nr < 7) ? (0x2b + (nr) * 2) : \
++ (0xb4 + (((nr) - 7) * 2)))
++#define W83791D_REG_IN_MIN(nr) ((nr < 7) ? (0x2c + (nr) * 2) : \
++ (0xb5 + (((nr) - 7) * 2)))
++#define W83791D_REG_IN(nr) ((nr < 7) ? (0x20 + (nr)) : \
++ (0xb0 + (nr) - 7))
++
++#define W83781D_REG_FAN_MIN(nr) ((nr < 4) ? (0x3a + (nr)) : \
++ (0xba + (nr) - 4))
++#define W83781D_REG_FAN(nr) ((nr < 4) ? (0x27 + (nr)) : \
++ (0xbc + (nr) - 4))
++
++#define W83781D_REG_TEMP2 0x0150
++#define W83781D_REG_TEMP3 0x0250
++#define W83781D_REG_TEMP2_HYST 0x153
++#define W83781D_REG_TEMP3_HYST 0x253
++#define W83781D_REG_TEMP2_CONFIG 0x152
++#define W83781D_REG_TEMP3_CONFIG 0x252
++#define W83781D_REG_TEMP2_OVER 0x155
++#define W83781D_REG_TEMP3_OVER 0x255
++
++#define W83781D_REG_TEMP 0x27
++#define W83781D_REG_TEMP_OVER 0x39
++#define W83781D_REG_TEMP_HYST 0x3A
++#define W83781D_REG_BANK 0x4E
++
++#define W83781D_REG_CONFIG 0x40
++#define W83781D_REG_ALARM1 0x41
++#define W83781D_REG_ALARM2 0x42
++#define W83781D_REG_ALARM3 0x450 /* not on W83781D */
++
++#define W83781D_REG_IRQ 0x4C
++#define W83781D_REG_BEEP_CONFIG 0x4D
++#define W83781D_REG_BEEP_INTS1 0x56
++#define W83781D_REG_BEEP_INTS2 0x57
++#define W83781D_REG_BEEP_INTS3 0x453 /* not on W83781D */
++
++#define W83781D_REG_VID_FANDIV 0x47
++
++#define W83781D_REG_CHIPID 0x49
++#define W83781D_REG_WCHIPID 0x58
++#define W83781D_REG_CHIPMAN 0x4F
++#define W83781D_REG_PIN 0x4B
++
++/* 782D/783S only */
++#define W83781D_REG_VBAT 0x5D
++
++/* PWM 782D (1-4) and 783S (1-2) only */
++#define W83781D_REG_PWM1 0x5B /* 782d and 783s/627hf datasheets disagree */
++ /* on which is which; */
++#define W83781D_REG_PWM2 0x5A /* We follow the 782d convention here, */
++ /* However 782d is probably wrong. */
++#define W83781D_REG_PWM3 0x5E
++#define W83781D_REG_PWM4 0x5F
++#define W83781D_REG_PWMCLK12 0x5C
++#define W83781D_REG_PWMCLK34 0x45C
++
++#define W83791D_REG_PWM1 0x81
++#define W83791D_REG_PWM2 0x83
++#define W83791D_REG_PWM3 0x94
++
++#define W83627HF_REG_PWM1 0x01
++#define W83627HF_REG_PWM2 0x03
++#define W83627HF_REG_PWMCLK1 0x00
++#define W83627HF_REG_PWMCLK2 0x02
++
++static const u8 regpwm[] = { W83781D_REG_PWM1, W83781D_REG_PWM2,
++ W83781D_REG_PWM3, W83781D_REG_PWM4
++};
++
++static const u8 regpwm_w83791d[] = { W83791D_REG_PWM1, W83791D_REG_PWM2,
++ W83791D_REG_PWM3
++};
++
++#define W83781D_REG_PWM(type, nr) (((type) == w83791d) ? \
++ regpwm_w83791d[(nr) - 1] : \
++ ((type) == w83697hf) ? \
++ (((nr) * 2) - 1) : \
++ regpwm[(nr) - 1])
++
++#define W83781D_REG_I2C_ADDR 0x48
++#define W83781D_REG_I2C_SUBADDR 0x4A
++
++/* The following are undocumented in the data sheets however we
++ received the information in an email from Winbond tech support */
++/* Sensor selection - not on 781d */
++#define W83781D_REG_SCFG1 0x5D
++static const u8 BIT_SCFG1[] = { 0x02, 0x04, 0x08 };
++#define W83781D_REG_SCFG2 0x59
++static const u8 BIT_SCFG2[] = { 0x10, 0x20, 0x40 };
++#define W83781D_DEFAULT_BETA 3435
++
++/* RT Table registers */
++#define W83781D_REG_RT_IDX 0x50
++#define W83781D_REG_RT_VAL 0x51
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++#define IN_TO_REG(val) (SENSORS_LIMIT((((val) * 10 + 8)/16),0,255))
++#define IN_FROM_REG(val) (((val) * 16 + 5) / 10)
++
++static inline u8 FAN_TO_REG(long rpm, int div)
++{
++ if (rpm == 0)
++ return 255;
++ rpm = SENSORS_LIMIT(rpm, 1, 1000000);
++ return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1,
++ 254);
++}
++
++#define FAN_FROM_REG(val,div) ((val)==0?-1:(val)==255?0:1350000/((val)*(div)))
++
++#define TEMP_TO_REG(val) (SENSORS_LIMIT(((val)<0?(((val)-5)/10):\
++ ((val)+5)/10),0,255))
++#define TEMP_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*10)
++
++#define AS99127_TEMP_ADD_TO_REG(val) (SENSORS_LIMIT((((((val) + 2)*4)/10) \
++ << 7),0,0xffff))
++#define AS99127_TEMP_ADD_FROM_REG(val) ((((val) >> 7) * 10) / 4)
++
++#define ALARMS_FROM_REG(val) (val)
++#define PWM_FROM_REG(val) (val)
++#define PWM_TO_REG(val) (SENSORS_LIMIT((val),0,255))
++#define BEEPS_FROM_REG(val,type) ((type)==as99127f?(val)^0x7FFF:(val))
++#define BEEPS_TO_REG(val,type) ((type)==as99127f?(~(val))&0x7FFF:(val)&0xffffff)
++
++#define BEEP_ENABLE_TO_REG(val) ((val)?1:0)
++#define BEEP_ENABLE_FROM_REG(val) ((val)?1:0)
++
++#define DIV_FROM_REG(val) (1 << (val))
++
++static inline u8 DIV_TO_REG(long val, enum chips type)
++{
++ int i;
++ val = SENSORS_LIMIT(val, 1,
++ ((type == w83781d || type == as99127f) ? 8 : 128)) >> 1;
++ for (i = 0; i < 6; i++) {
++ if (val == 0)
++ break;
++ val >>= 1;
++ }
++ return ((u8) i);
++}
++
++/* There are some complications in a module like this. First off, W83781D chips
++ may be both present on the SMBus and the ISA bus, and we have to handle
++ those cases separately at some places. Second, there might be several
++ W83781D chips available (well, actually, that is probably never done; but
++ it is a clean illustration of how to handle a case like that). Finally,
++ a specific chip may be attached to *both* ISA and SMBus, and we would
++ not like to detect it double. Fortunately, in the case of the W83781D at
++ least, a register tells us what SMBus address we are on, so that helps
++ a bit - except if there could be more than one SMBus. Groan. No solution
++ for this yet. */
++
++/* This module may seem overly long and complicated. In fact, it is not so
++ bad. Quite a lot of bookkeeping is done. A real driver can often cut
++ some corners. */
++
++/* For each registered W83781D, we need to keep some data in memory. That
++ data is pointed to by w83781d_list[NR]->data. The structure itself is
++ dynamically allocated, at the same time when a new w83781d client is
++ allocated. */
++struct w83781d_data {
++ struct i2c_client client;
++ struct semaphore lock;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ struct i2c_client *lm75; /* for secondary I2C addresses */
++ /* pointer to array of 2 subclients */
++
++ u8 in[10]; /* Register value - 8 & 9 for 782D and 791D only 10 for 791D */
++ u8 in_max[10]; /* Register value - 8 & 9 for 782D and 791D only 10 for 791D */
++ u8 in_min[10]; /* Register value - 8 & 9 for 782D and 791D only 10 for 791D */
++ u8 fan[5]; /* Register value - 4 & 5 for 791D only */
++ u8 fan_min[5]; /* Register value - 4 & 5 for 791D only */
++ u8 temp;
++ u8 temp_over; /* Register value */
++ u8 temp_hyst; /* Register value */
++ u16 temp_add[2]; /* Register value */
++ u16 temp_add_over[2]; /* Register value */
++ u16 temp_add_hyst[2]; /* Register value */
++ u8 fan_div[3]; /* Register encoding, shifted right */
++ u8 vid; /* Register encoding, combined */
++ u32 alarms; /* Register encoding, combined */
++ u32 beeps; /* Register encoding, combined */
++ u8 beep_enable; /* Boolean */
++ u8 pwm[4]; /* Register value */
++ u8 pwmenable[4]; /* bool */
++ u16 sens[3]; /* 782D/783S only.
++ 1 = pentium diode; 2 = 3904 diode;
++ 3000-5000 = thermistor beta.
++ Default = 3435.
++ Other Betas unimplemented */
++#ifdef W83781D_RT
++ u8 rt[3][32]; /* Register value */
++#endif
++ u8 vrm;
++};
++
++
++static int w83781d_attach_adapter(struct i2c_adapter *adapter);
++static int w83781d_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static int w83781d_detach_client(struct i2c_client *client);
++
++static int w83781d_read_value(struct i2c_client *client, u16 register);
++static int w83781d_write_value(struct i2c_client *client, u16 register,
++ u16 value);
++static void w83781d_update_client(struct i2c_client *client);
++static void w83781d_init_client(struct i2c_client *client);
++
++
++static void w83781d_in(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_fan(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_temp_add(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_vid(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_vrm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_beep(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_pwm(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void w83781d_sens(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++#ifdef W83781D_RT
++static void w83781d_rt(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++#endif
++
++static int w83781d_id = 0;
++
++static struct i2c_driver w83781d_driver = {
++ .owner = THIS_MODULE,
++ .name = "W83781D sensor driver",
++ .id = I2C_DRIVERID_W83781D,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = w83781d_attach_adapter,
++ .detach_client = w83781d_detach_client,
++};
++
++/* The /proc/sys entries */
++/* -- SENSORS SYSCTL START -- */
++
++#define W83781D_SYSCTL_IN0 1000 /* Volts * 100 */
++#define W83781D_SYSCTL_IN1 1001
++#define W83781D_SYSCTL_IN2 1002
++#define W83781D_SYSCTL_IN3 1003
++#define W83781D_SYSCTL_IN4 1004
++#define W83781D_SYSCTL_IN5 1005
++#define W83781D_SYSCTL_IN6 1006
++#define W83781D_SYSCTL_IN7 1007
++#define W83781D_SYSCTL_IN8 1008
++#define W83781D_SYSCTL_IN9 1009
++#define W83781D_SYSCTL_FAN1 1101 /* Rotations/min */
++#define W83781D_SYSCTL_FAN2 1102
++#define W83781D_SYSCTL_FAN3 1103
++#define W83781D_SYSCTL_FAN4 1104
++#define W83781D_SYSCTL_FAN5 1105
++
++#define W83781D_SYSCTL_TEMP1 1200 /* Degrees Celcius * 10 */
++#define W83781D_SYSCTL_TEMP2 1201 /* Degrees Celcius * 10 */
++#define W83781D_SYSCTL_TEMP3 1202 /* Degrees Celcius * 10 */
++#define W83781D_SYSCTL_VID 1300 /* Volts * 1000 */
++#define W83781D_SYSCTL_VRM 1301
++#define W83781D_SYSCTL_PWM1 1401
++#define W83781D_SYSCTL_PWM2 1402
++#define W83781D_SYSCTL_PWM3 1403
++#define W83781D_SYSCTL_PWM4 1404
++#define W83781D_SYSCTL_SENS1 1501 /* 1, 2, or Beta (3000-5000) */
++#define W83781D_SYSCTL_SENS2 1502
++#define W83781D_SYSCTL_SENS3 1503
++#define W83781D_SYSCTL_RT1 1601 /* 32-entry table */
++#define W83781D_SYSCTL_RT2 1602 /* 32-entry table */
++#define W83781D_SYSCTL_RT3 1603 /* 32-entry table */
++#define W83781D_SYSCTL_FAN_DIV 2000 /* 1, 2, 4 or 8 */
++#define W83781D_SYSCTL_ALARMS 2001 /* bitvector */
++#define W83781D_SYSCTL_BEEP 2002 /* bitvector */
++
++#define W83781D_ALARM_IN0 0x0001
++#define W83781D_ALARM_IN1 0x0002
++#define W83781D_ALARM_IN2 0x0004
++#define W83781D_ALARM_IN3 0x0008
++#define W83781D_ALARM_IN4 0x0100
++#define W83781D_ALARM_IN5 0x0200
++#define W83781D_ALARM_IN6 0x0400
++#define W83782D_ALARM_IN7 0x10000
++#define W83782D_ALARM_IN8 0x20000
++#define W83781D_ALARM_FAN1 0x0040
++#define W83781D_ALARM_FAN2 0x0080
++#define W83781D_ALARM_FAN3 0x0800
++#define W83781D_ALARM_TEMP1 0x0010
++#define W83781D_ALARM_TEMP23 0x0020 /* 781D only */
++#define W83781D_ALARM_TEMP2 0x0020 /* 782D/783S */
++#define W83781D_ALARM_TEMP3 0x2000 /* 782D only */
++#define W83781D_ALARM_CHAS 0x1000
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected chip. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++
++/* just a guess - no datasheet */
++static ctl_table as99127f_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vid},
++ {W83781D_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vrm},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_beep},
++ {0}
++};
++
++static ctl_table w83781d_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vid},
++ {W83781D_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vrm},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_beep},
++#ifdef W83781D_RT
++ {W83781D_SYSCTL_RT1, "rt1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_rt},
++ {W83781D_SYSCTL_RT2, "rt2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_rt},
++ {W83781D_SYSCTL_RT3, "rt3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_rt},
++#endif
++ {0}
++};
++
++/* without pwm3-4 */
++static ctl_table w83782d_isa_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vid},
++ {W83781D_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vrm},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_beep},
++ {W83781D_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_SENS1, "sensor1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {W83781D_SYSCTL_SENS2, "sensor2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {W83781D_SYSCTL_SENS3, "sensor3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {0}
++};
++
++/* with pwm3-4 */
++static ctl_table w83782d_i2c_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vid},
++ {W83781D_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vrm},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_beep},
++ {W83781D_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_PWM3, "pwm3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_PWM4, "pwm4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_SENS1, "sensor1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {W83781D_SYSCTL_SENS2, "sensor2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {W83781D_SYSCTL_SENS3, "sensor3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {0}
++};
++
++/* w83791D has 10 voltages 5 fans and 3 temps. 2 of the temps are on other
++ devices. */
++static ctl_table w83791d_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN1, "in1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN9, "in9", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN4, "fan4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN5, "fan5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_TEMP3, "temp3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vid},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_beep},
++ {W83781D_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_PWM3, "pwm3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_PWM4, "pwm4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vrm},
++ {0}
++};
++
++static ctl_table w83783s_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ /* no in1 to maintain compatibility with 781d and 782d. */
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN3, "fan3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_VID, "vid", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vid},
++ {W83781D_SYSCTL_VRM, "vrm", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_vrm},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_beep},
++ {W83781D_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_SENS1, "sensor1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {W83781D_SYSCTL_SENS2, "sensor2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {0}
++};
++
++/* similar to w83782d but no fan3, no vid */
++static ctl_table w83697hf_dir_table_template[] = {
++ {W83781D_SYSCTL_IN0, "in0", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ /* no in1 to maintain compatibility with 781d and 782d. */
++ {W83781D_SYSCTL_IN2, "in2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN3, "in3", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN4, "in4", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN5, "in5", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN6, "in6", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN7, "in7", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_IN8, "in8", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_in},
++ {W83781D_SYSCTL_FAN1, "fan1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_FAN2, "fan2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan},
++ {W83781D_SYSCTL_TEMP1, "temp1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp},
++ {W83781D_SYSCTL_TEMP2, "temp2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_temp_add},
++ {W83781D_SYSCTL_FAN_DIV, "fan_div", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_fan_div},
++ {W83781D_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_alarms},
++ {W83781D_SYSCTL_BEEP, "beep", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_beep},
++ {W83781D_SYSCTL_PWM1, "pwm1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_PWM2, "pwm2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_pwm},
++ {W83781D_SYSCTL_SENS1, "sensor1", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {W83781D_SYSCTL_SENS2, "sensor2", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &w83781d_sens},
++ {0}
++};
++
++
++/* This function is called when:
++ * w83781d_driver is inserted (when this module is loaded), for each
++ available adapter
++ * when a new adapter is inserted (and w83781d_driver is still present) */
++static int w83781d_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, w83781d_detect);
++}
++
++static int w83781d_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i, val1 = 0, val2, id;
++ struct i2c_client *new_client;
++ struct w83781d_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++ int is_isa = i2c_is_isa_adapter(adapter);
++ enum vendor { winbond, asus } vendid;
++
++ if (!is_isa
++ && !i2c_check_functionality(adapter,
++ I2C_FUNC_SMBUS_BYTE_DATA)) goto
++ ERROR0;
++
++ if (is_isa) {
++ if (!request_region(address, W83781D_EXTENT, "w83781d"))
++ goto ERROR0;
++ release_region(address, W83781D_EXTENT);
++ }
++
++ /* Probe whether there is anything available on this address. Already
++ done for SMBus clients */
++ if (kind < 0) {
++ if (is_isa) {
++
++#define REALLY_SLOW_IO
++ /* We need the timeouts for at least some LM78-like chips. But only
++ if we read 'undefined' registers. */
++ i = inb_p(address + 1);
++ if (inb_p(address + 2) != i)
++ goto ERROR0;
++ if (inb_p(address + 3) != i)
++ goto ERROR0;
++ if (inb_p(address + 7) != i)
++ goto ERROR0;
++#undef REALLY_SLOW_IO
++
++ /* Let's just hope nothing breaks here */
++ i = inb_p(address + 5) & 0x7f;
++ outb_p(~i & 0x7f, address + 5);
++ if ((inb_p(address + 5) & 0x7f) != (~i & 0x7f)) {
++ outb_p(i, address + 5);
++ return 0;
++ }
++ }
++ }
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access w83781d_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct w83781d_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ init_MUTEX(&data->lock);
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &w83781d_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ /* The w8378?d may be stuck in some other bank than bank 0. This may
++ make reading other information impossible. Specify a force=... or
++ force_*=... parameter, and the Winbond will be reset to the right
++ bank. */
++ if (kind < 0) {
++ if (w83781d_read_value(new_client, W83781D_REG_CONFIG) &
++ 0x80) {
++ err = -ENODEV;
++ goto ERROR1;
++ }
++ val1 = w83781d_read_value(new_client, W83781D_REG_BANK);
++ val2 = w83781d_read_value(new_client, W83781D_REG_CHIPMAN);
++ /* Check for Winbond or Asus ID if in bank 0 */
++ if ((!(val1 & 0x07)) &&
++ (((!(val1 & 0x80)) && (val2 != 0xa3) && (val2 != 0xc3))
++ || ((val1 & 0x80) && (val2 != 0x5c) && (val2 != 0x12)))) {
++ err = -ENODEV;
++ goto ERROR1;
++ }
++ /* If Winbond SMBus, check address at 0x48.
++ Asus doesn't support, except for the as99127f rev.2 */
++ if ((!is_isa) && (((!(val1 & 0x80)) && (val2 == 0xa3)) ||
++ ((val1 & 0x80) && (val2 == 0x5c)))) {
++ if (w83781d_read_value
++ (new_client, W83781D_REG_I2C_ADDR) != address) {
++ err = -ENODEV;
++ goto ERROR1;
++ }
++ }
++ }
++
++ /* We have either had a force parameter, or we have already detected the
++ Winbond. Put it now into bank 0 and Vendor ID High Byte */
++ w83781d_write_value(new_client, W83781D_REG_BANK,
++ (w83781d_read_value(new_client,
++ W83781D_REG_BANK) & 0x78) |
++ 0x80);
++
++ /* Determine the chip type. */
++ if (kind <= 0) {
++ /* get vendor ID */
++ val2 = w83781d_read_value(new_client, W83781D_REG_CHIPMAN);
++ if (val2 == 0x5c)
++ vendid = winbond;
++ else if (val2 == 0x12)
++ vendid = asus;
++ else {
++ err = -ENODEV;
++ goto ERROR1;
++ }
++ val1 =
++ w83781d_read_value(new_client, W83781D_REG_WCHIPID);
++ if ((val1 == 0x10 || val1 == 0x11) && vendid == winbond)
++ kind = w83781d;
++ else if (val1 == 0x30 && vendid == winbond)
++ kind = w83782d;
++ else if (val1 == 0x40 && vendid == winbond && !is_isa && address == 0x2d)
++ kind = w83783s;
++ else if (val1 == 0x21 && vendid == winbond)
++ kind = w83627hf;
++ else if (val1 == 0x71 && vendid == winbond && address >= 0x2c)
++ kind = w83791d;
++ else if (val1 == 0x31 && !is_isa && address >= 0x28)
++ kind = as99127f;
++ else if (val1 == 0x60 && vendid == winbond && is_isa)
++ kind = w83697hf;
++ else {
++ if (kind == 0)
++ printk
++ (KERN_WARNING "w83781d.o: Ignoring 'force' parameter for unknown chip at"
++ "adapter %d, address 0x%02x\n",
++ i2c_adapter_id(adapter), address);
++ err = -EINVAL;
++ goto ERROR1;
++ }
++ }
++
++ if (kind == w83781d) {
++ type_name = "w83781d";
++ client_name = "W83781D chip";
++ } else if (kind == w83782d) {
++ type_name = "w83782d";
++ client_name = "W83782D chip";
++ } else if (kind == w83783s) {
++ type_name = "w83783s";
++ client_name = "W83783S chip";
++ } else if (kind == w83627hf) {
++ type_name = "w83627hf";
++ client_name = "W83627HF chip";
++ } else if (kind == as99127f) {
++ type_name = "as99127f";
++ client_name = "AS99127F chip";
++ } else if (kind == w83697hf) {
++ type_name = "w83697hf";
++ client_name = "W83697HF chip";
++ } else if (kind == w83791d) {
++ type_name = "w83791d";
++ client_name = "W83791D chip";
++ } else {
++#ifdef DEBUG
++ printk(KERN_ERR "w83781d.o: Internal error: unknown kind (%d)?!?",
++ kind);
++#endif
++ err = -ENODEV;
++ goto ERROR1;
++ }
++
++ /* Reserve the ISA region */
++ if (is_isa)
++ request_region(address, W83781D_EXTENT, type_name);
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = w83781d_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto ERROR3;
++
++ /* attach secondary i2c lm75-like clients */
++ if (!is_isa) {
++ if (!(data->lm75 = kmalloc(2 * sizeof(struct i2c_client),
++ GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto ERROR4;
++ }
++ id = i2c_adapter_id(adapter);
++ if(force_subclients[0] == id && force_subclients[1] == address) {
++ for(i = 2; i <= 3; i++) {
++ if(force_subclients[i] < 0x48 ||
++ force_subclients[i] > 0x4f) {
++ printk(KERN_ERR "w83781d.o: Invalid subclient address %d; must be 0x48-0x4f\n",
++ force_subclients[i]);
++ err = -EINVAL;
++ goto ERROR5;
++ }
++ }
++ w83781d_write_value(new_client,
++ W83781D_REG_I2C_SUBADDR,
++ (force_subclients[2] & 0x07) |
++ ((force_subclients[3] & 0x07) <<4));
++ data->lm75[0].addr = force_subclients[2];
++ } else {
++ val1 = w83781d_read_value(new_client,
++ W83781D_REG_I2C_SUBADDR);
++ data->lm75[0].addr = 0x48 + (val1 & 0x07);
++ }
++ if (kind != w83783s) {
++ if(force_subclients[0] == id &&
++ force_subclients[1] == address) {
++ data->lm75[1].addr = force_subclients[3];
++ } else {
++ data->lm75[1].addr = 0x48 + ((val1 >> 4) & 0x07);
++ }
++ if(data->lm75[0].addr == data->lm75[1].addr) {
++ printk(KERN_ERR "w83781d.o: Duplicate addresses 0x%x for subclients.\n",
++ data->lm75[0].addr);
++ err = -EBUSY;
++ goto ERROR5;
++ }
++ }
++ if (kind == w83781d)
++ client_name = "W83781D subclient";
++ else if (kind == w83782d)
++ client_name = "W83782D subclient";
++ else if (kind == w83783s)
++ client_name = "W83783S subclient";
++ else if (kind == w83627hf)
++ client_name = "W83627HF subclient";
++ else if (kind == as99127f)
++ client_name = "AS99127F subclient";
++ else if (kind == w83791d)
++ client_name = "W83791D subclient";
++
++
++ for (i = 0; i <= 1; i++) {
++ data->lm75[i].data = NULL; /* store all data in w83781d */
++ data->lm75[i].adapter = adapter;
++ data->lm75[i].driver = &w83781d_driver;
++ data->lm75[i].flags = 0;
++ strcpy(data->lm75[i].name, client_name);
++ data->lm75[i].id = w83781d_id++;
++ if ((err = i2c_attach_client(&(data->lm75[i])))) {
++ printk(KERN_ERR "w83781d.o: Subclient %d registration at address 0x%x failed.\n",
++ i, data->lm75[i].addr);
++ if (i == 1)
++ goto ERROR6;
++ goto ERROR5;
++ }
++ if (kind == w83783s)
++ break;
++ }
++ } else {
++ data->lm75 = NULL;
++ }
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client,
++ type_name,
++ (kind == as99127f) ?
++ as99127f_dir_table_template :
++ (kind == w83781d) ?
++ w83781d_dir_table_template :
++ (kind == w83783s) ?
++ w83783s_dir_table_template :
++ (kind == w83697hf) ?
++ w83697hf_dir_table_template :
++ (kind == w83791d ) ?
++ w83791d_dir_table_template :
++ (is_isa || kind == w83627hf) ?
++ w83782d_isa_dir_table_template :
++ w83782d_i2c_dir_table_template)) < 0) {
++ err = i;
++ goto ERROR7;
++ }
++ data->sysctl_id = i;
++
++ /* Only PWM2 can be disabled */
++ for(i = 0; i < 4; i++)
++ data->pwmenable[i] = 1;
++
++ /* Initialize the chip */
++ w83781d_init_client(new_client);
++ return 0;
++
++/* OK, this is not exactly good programming practice, usually. But it is
++ very code-efficient in this case. */
++
++ ERROR7:
++ if (!is_isa)
++ i2c_detach_client(&
++ (((struct
++ w83781d_data *) (new_client->data))->
++ lm75[1]));
++ ERROR6:
++ if (!is_isa)
++ i2c_detach_client(&
++ (((struct
++ w83781d_data *) (new_client->data))->
++ lm75[0]));
++ ERROR5:
++ if (!is_isa)
++ kfree(((struct w83781d_data *) (new_client->data))->lm75);
++ ERROR4:
++ i2c_detach_client(new_client);
++ ERROR3:
++ if (is_isa)
++ release_region(address, W83781D_EXTENT);
++ ERROR1:
++ kfree(data);
++ ERROR0:
++ return err;
++}
++
++static int w83781d_detach_client(struct i2c_client *client)
++{
++ int err;
++ struct w83781d_data *data = client->data;
++
++ i2c_deregister_entry(data->sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ (KERN_ERR "w83781d.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ if(i2c_is_isa_client(client)) {
++ release_region(client->addr, W83781D_EXTENT);
++ } else {
++ i2c_detach_client(&(data->lm75[0]));
++ if (data->type != w83783s)
++ i2c_detach_client(&(data->lm75[1]));
++ kfree(data->lm75);
++ }
++ kfree(data);
++
++ return 0;
++}
++
++/* The SMBus locks itself, usually, but nothing may access the Winbond between
++ bank switches. ISA access must always be locked explicitly!
++ We ignore the W83781D BUSY flag at this moment - it could lead to deadlocks,
++ would slow down the W83781D access and should not be necessary.
++ There are some ugly typecasts here, but the good news is - they should
++ nowhere else be necessary! */
++static int w83781d_read_value(struct i2c_client *client, u16 reg)
++{
++ int res, word_sized, bank;
++ struct i2c_client *cl;
++
++ down(&(((struct w83781d_data *) (client->data))->lock));
++ if (i2c_is_isa_client(client)) {
++ word_sized = (((reg & 0xff00) == 0x100)
++ || ((reg & 0xff00) == 0x200))
++ && (((reg & 0x00ff) == 0x50)
++ || ((reg & 0x00ff) == 0x53)
++ || ((reg & 0x00ff) == 0x55));
++ if (reg & 0xff00) {
++ outb_p(W83781D_REG_BANK,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ outb_p(reg >> 8,
++ client->addr + W83781D_DATA_REG_OFFSET);
++ }
++ outb_p(reg & 0xff, client->addr + W83781D_ADDR_REG_OFFSET);
++ res = inb_p(client->addr + W83781D_DATA_REG_OFFSET);
++ if (word_sized) {
++ outb_p((reg & 0xff) + 1,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ res =
++ (res << 8) + inb_p(client->addr +
++ W83781D_DATA_REG_OFFSET);
++ }
++ if (reg & 0xff00) {
++ outb_p(W83781D_REG_BANK,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ outb_p(0, client->addr + W83781D_DATA_REG_OFFSET);
++ }
++ } else {
++ bank = (reg >> 8) & 0x0f;
++ if (bank > 2)
++ /* switch banks */
++ i2c_smbus_write_byte_data(client, W83781D_REG_BANK,
++ bank);
++ if (bank == 0 || bank > 2) {
++ res = i2c_smbus_read_byte_data(client, reg & 0xff);
++ } else {
++ /* switch to subclient */
++ cl =
++ &(((struct w83781d_data *) (client->data))->
++ lm75[bank - 1]);
++ /* convert from ISA to LM75 I2C addresses */
++ switch (reg & 0xff) {
++ case 0x50: /* TEMP */
++ res = swab16(i2c_smbus_read_word_data(cl, 0));
++ break;
++ case 0x52: /* CONFIG */
++ res = i2c_smbus_read_byte_data(cl, 1);
++ break;
++ case 0x53: /* HYST */
++ res = swab16(i2c_smbus_read_word_data(cl, 2));
++ break;
++ case 0x55: /* OVER */
++ default:
++ res = swab16(i2c_smbus_read_word_data(cl, 3));
++ break;
++ }
++ }
++ if (bank > 2)
++ i2c_smbus_write_byte_data(client, W83781D_REG_BANK,
++ 0);
++ }
++ up(&(((struct w83781d_data *) (client->data))->lock));
++ return res;
++}
++
++static int w83781d_write_value(struct i2c_client *client, u16 reg, u16 value)
++{
++ int word_sized, bank;
++ struct i2c_client *cl;
++
++ down(&(((struct w83781d_data *) (client->data))->lock));
++ if (i2c_is_isa_client(client)) {
++ word_sized = (((reg & 0xff00) == 0x100)
++ || ((reg & 0xff00) == 0x200))
++ && (((reg & 0x00ff) == 0x53)
++ || ((reg & 0x00ff) == 0x55));
++ if (reg & 0xff00) {
++ outb_p(W83781D_REG_BANK,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ outb_p(reg >> 8,
++ client->addr + W83781D_DATA_REG_OFFSET);
++ }
++ outb_p(reg & 0xff, client->addr + W83781D_ADDR_REG_OFFSET);
++ if (word_sized) {
++ outb_p(value >> 8,
++ client->addr + W83781D_DATA_REG_OFFSET);
++ outb_p((reg & 0xff) + 1,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ }
++ outb_p(value & 0xff,
++ client->addr + W83781D_DATA_REG_OFFSET);
++ if (reg & 0xff00) {
++ outb_p(W83781D_REG_BANK,
++ client->addr + W83781D_ADDR_REG_OFFSET);
++ outb_p(0, client->addr + W83781D_DATA_REG_OFFSET);
++ }
++ } else {
++ bank = (reg >> 8) & 0x0f;
++ if (bank > 2)
++ /* switch banks */
++ i2c_smbus_write_byte_data(client, W83781D_REG_BANK,
++ bank);
++ if (bank == 0 || bank > 2) {
++ i2c_smbus_write_byte_data(client, reg & 0xff,
++ value & 0xff);
++ } else {
++ /* switch to subclient */
++ cl = &(((struct w83781d_data *) (client->data))->
++ lm75[bank - 1]);
++ /* convert from ISA to LM75 I2C addresses */
++ switch (reg & 0xff) {
++ case 0x52: /* CONFIG */
++ i2c_smbus_write_byte_data(cl, 1, value & 0xff);
++ break;
++ case 0x53: /* HYST */
++ i2c_smbus_write_word_data(cl, 2, swab16(value));
++ break;
++ case 0x55: /* OVER */
++ i2c_smbus_write_word_data(cl, 3, swab16(value));
++ break;
++ }
++ }
++ if (bank > 2)
++ i2c_smbus_write_byte_data(client, W83781D_REG_BANK,
++ 0);
++ }
++ up(&(((struct w83781d_data *) (client->data))->lock));
++ return 0;
++}
++
++/* Called when we have found a new W83781D. It should set limits, etc. */
++static void w83781d_init_client(struct i2c_client *client)
++{
++ struct w83781d_data *data = client->data;
++ int i, p;
++ int type = data->type;
++ u8 tmp;
++
++ if(init && type != as99127f) { /* this resets registers we don't have
++ documentation for on the as99127f */
++ /* save these registers */
++ i = w83781d_read_value(client, W83781D_REG_BEEP_CONFIG);
++ p = w83781d_read_value(client, W83781D_REG_PWMCLK12);
++ /* Reset all except Watchdog values and last conversion values
++ This sets fan-divs to 2, among others */
++ w83781d_write_value(client, W83781D_REG_CONFIG, 0x80);
++ /* Restore the registers and disable power-on abnormal beep.
++ This saves FAN 1/2/3 input/output values set by BIOS. */
++ w83781d_write_value(client, W83781D_REG_BEEP_CONFIG, i | 0x80);
++ w83781d_write_value(client, W83781D_REG_PWMCLK12, p);
++ /* Disable master beep-enable (reset turns it on).
++ Individual beeps should be reset to off but for some reason
++ disabling this bit helps some people not get beeped */
++ w83781d_write_value(client, W83781D_REG_BEEP_INTS2, 0);
++ }
++
++ data->vrm = (type == w83791d) ? 90 : 82;
++
++ if ((type != w83781d) && (type != as99127f)) {
++ tmp = w83781d_read_value(client, W83781D_REG_SCFG1);
++ for (i = 1; i <= 3; i++) {
++ if (!(tmp & BIT_SCFG1[i - 1])) {
++ data->sens[i - 1] = W83781D_DEFAULT_BETA;
++ } else {
++ if (w83781d_read_value
++ (client,
++ W83781D_REG_SCFG2) & BIT_SCFG2[i - 1])
++ data->sens[i - 1] = 1;
++ else
++ data->sens[i - 1] = 2;
++ }
++ if ((type == w83783s || type == w83697hf) && (i == 2))
++ break;
++ }
++ }
++#ifdef W83781D_RT
++/*
++ Fill up the RT Tables.
++ We assume that they are 32 bytes long, in order for temp 1-3.
++ Data sheet documentation is sparse.
++ We also assume that it is only for the 781D although I suspect
++ that the others support it as well....
++*/
++
++ if (init && type == w83781d) {
++ u16 k = 0;
++/*
++ Auto-indexing doesn't seem to work...
++ w83781d_write_value(client,W83781D_REG_RT_IDX,0);
++*/
++ for (i = 0; i < 3; i++) {
++ int j;
++ for (j = 0; j < 32; j++) {
++ w83781d_write_value(client,
++ W83781D_REG_RT_IDX,
++ k++);
++ data->rt[i][j] =
++ w83781d_read_value(client,
++ W83781D_REG_RT_VAL);
++ }
++ }
++ }
++#endif /* W83781D_RT */
++
++ if(init) {
++ w83781d_write_value(client, W83781D_REG_TEMP2_CONFIG, 0x00);
++ if (type != w83783s && type != w83697hf) {
++ w83781d_write_value(client, W83781D_REG_TEMP3_CONFIG,
++ 0x00);
++ }
++ if (type != w83781d) {
++ /* enable comparator mode for temp2 and temp3 so
++ alarm indication will work correctly */
++ i = w83781d_read_value(client, W83781D_REG_IRQ);
++ if (!(i & 0x40))
++ w83781d_write_value(client, W83781D_REG_IRQ,
++ i | 0x40);
++ }
++ }
++
++ /* Start monitoring */
++ w83781d_write_value(client, W83781D_REG_CONFIG,
++ (w83781d_read_value(client,
++ W83781D_REG_CONFIG) & 0xf7)
++ | 0x01);
++}
++
++static void w83781d_update_client(struct i2c_client *client)
++{
++ struct w83781d_data *data = client->data;
++ int i;
++
++ down(&data->update_lock);
++
++ if (time_after(jiffies - data->last_updated, HZ + HZ / 2) ||
++ time_before(jiffies, data->last_updated) || !data->valid) {
++ pr_debug(KERN_DEBUG "Starting device update\n");
++
++ for (i = 0; i <= 9; i++) {
++ if ((data->type == w83783s || data->type == w83697hf)
++ && (i == 1))
++ continue; /* 783S has no in1 */
++ if (data->type == w83791d) {
++ data->in[i] =
++ w83781d_read_value(client, W83791D_REG_IN(i));
++ data->in_min[i] =
++ w83781d_read_value(client,
++ W83791D_REG_IN_MIN(i));
++ data->in_max[i] =
++ w83781d_read_value(client,
++ W83791D_REG_IN_MAX(i));
++ } else {
++ data->in[i] =
++ w83781d_read_value(client, W83781D_REG_IN(i));
++ data->in_min[i] =
++ w83781d_read_value(client,
++ W83781D_REG_IN_MIN(i));
++ data->in_max[i] =
++ w83781d_read_value(client,
++ W83781D_REG_IN_MAX(i));
++ }
++ if ((data->type != w83782d) && (data->type != w83697hf)
++ && (data->type != w83627hf) && (i == 6)
++ && (data->type != w83791d))
++ break;
++
++ if (data->type != w83791d && i == 8)
++ break;
++ }
++ for (i = 1; i <= 5; i++) {
++ data->fan[i - 1] =
++ w83781d_read_value(client, W83781D_REG_FAN(i));
++ data->fan_min[i - 1] =
++ w83781d_read_value(client,
++ W83781D_REG_FAN_MIN(i));
++ if (data->type != w83791d && i == 3) break;
++ }
++ if (data->type != w83781d && data->type != as99127f) {
++ for (i = 1; i <= 4; i++) {
++ data->pwm[i - 1] =
++ w83781d_read_value(client,
++ W83781D_REG_PWM(data->type, i));
++ if (((data->type == w83783s)
++ || (data->type == w83627hf)
++ || (data->type == w83697hf)
++ || ((data->type == w83782d)
++ && i2c_is_isa_client(client)))
++ && i == 2)
++ break;
++ }
++ /* Only PWM2 can be disabled */
++ data->pwmenable[1] = (w83781d_read_value(client,
++ W83781D_REG_PWMCLK12) & 0x08) >> 3;
++ }
++
++ data->temp = w83781d_read_value(client, W83781D_REG_TEMP);
++ data->temp_over =
++ w83781d_read_value(client, W83781D_REG_TEMP_OVER);
++ data->temp_hyst =
++ w83781d_read_value(client, W83781D_REG_TEMP_HYST);
++ data->temp_add[0] =
++ w83781d_read_value(client, W83781D_REG_TEMP2);
++ data->temp_add_over[0] =
++ w83781d_read_value(client, W83781D_REG_TEMP2_OVER);
++ data->temp_add_hyst[0] =
++ w83781d_read_value(client, W83781D_REG_TEMP2_HYST);
++ if (data->type != w83783s && data->type != w83697hf) {
++ data->temp_add[1] =
++ w83781d_read_value(client, W83781D_REG_TEMP3);
++ data->temp_add_over[1] =
++ w83781d_read_value(client, W83781D_REG_TEMP3_OVER);
++ data->temp_add_hyst[1] =
++ w83781d_read_value(client, W83781D_REG_TEMP3_HYST);
++ }
++ i = w83781d_read_value(client, W83781D_REG_VID_FANDIV);
++ if (data->type != w83697hf) {
++ data->vid = i & 0x0f;
++ data->vid |=
++ (w83781d_read_value(client, W83781D_REG_CHIPID) & 0x01)
++ << 4;
++ }
++ data->fan_div[0] = (i >> 4) & 0x03;
++ data->fan_div[1] = (i >> 6) & 0x03;
++ if (data->type != w83697hf) {
++ data->fan_div[2] = (w83781d_read_value(client,
++ W83781D_REG_PIN) >> 6) & 0x03;
++ }
++ if ((data->type != w83781d) && (data->type != as99127f)) {
++ i = w83781d_read_value(client, W83781D_REG_VBAT);
++ data->fan_div[0] |= (i >> 3) & 0x04;
++ data->fan_div[1] |= (i >> 4) & 0x04;
++ if (data->type != w83697hf)
++ data->fan_div[2] |= (i >> 5) & 0x04;
++ }
++ data->alarms =
++ w83781d_read_value(client,
++ W83781D_REG_ALARM1) +
++ (w83781d_read_value(client, W83781D_REG_ALARM2) << 8);
++ if ((data->type == w83782d) || (data->type == w83627hf) ||
++ (data->type == w83697hf)) {
++ data->alarms |=
++ w83781d_read_value(client,
++ W83781D_REG_ALARM3) << 16;
++ }
++ i = w83781d_read_value(client, W83781D_REG_BEEP_INTS2);
++ data->beep_enable = i >> 7;
++ data->beeps = ((i & 0x7f) << 8) +
++ w83781d_read_value(client, W83781D_REG_BEEP_INTS1);
++ if ((data->type != w83781d) && (data->type != as99127f)
++ && (data->type != w83791d)) {
++ data->beeps |=
++ w83781d_read_value(client,
++ W83781D_REG_BEEP_INTS3) << 16;
++ }
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++
++/* The next few functions are the call-back functions of the /proc/sys and
++ sysctl files. Which function is used is defined in the ctl_table in
++ the extra1 field.
++ Each function must return the magnitude (power of 10 to divide the date
++ with) if it is called with operation==SENSORS_PROC_REAL_INFO. It must
++ put a maximum of *nrels elements in results reflecting the data of this
++ file, and set *nrels to the number it actually put in it, if operation==
++ SENSORS_PROC_REAL_READ. Finally, it must get upto *nrels elements from
++ results and write them to the chip, if operations==SENSORS_PROC_REAL_WRITE.
++ Note that on SENSORS_PROC_REAL_READ, I do not check whether results is
++ large enough (by checking the incoming value of *nrels). This is not very
++ good practice, but as long as you put less than about 5 values in results,
++ you can assume it is large enough. */
++static void w83781d_in(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ int nr = ctl_name - W83781D_SYSCTL_IN0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 2;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83781d_update_client(client);
++ results[0] = IN_FROM_REG(data->in_min[nr]);
++ results[1] = IN_FROM_REG(data->in_max[nr]);
++ results[2] = IN_FROM_REG(data->in[nr]);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->in_min[nr] = IN_TO_REG(results[0]);
++ w83781d_write_value(client, W83781D_REG_IN_MIN(nr),
++ data->in_min[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ data->in_max[nr] = IN_TO_REG(results[1]);
++ w83781d_write_value(client, W83781D_REG_IN_MAX(nr),
++ data->in_max[nr]);
++ }
++ }
++}
++
++void w83781d_fan(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ int nr = ctl_name - W83781D_SYSCTL_FAN1 + 1;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83781d_update_client(client);
++ results[0] = FAN_FROM_REG(data->fan_min[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ results[1] = FAN_FROM_REG(data->fan[nr - 1],
++ DIV_FROM_REG(data->fan_div[nr - 1]));
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->fan_min[nr - 1] =
++ FAN_TO_REG(results[0],
++ DIV_FROM_REG(data->fan_div[nr-1]));
++ w83781d_write_value(client,
++ W83781D_REG_FAN_MIN(nr),
++ data->fan_min[nr - 1]);
++ }
++ }
++}
++
++void w83781d_temp(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83781d_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over);
++ results[1] = TEMP_FROM_REG(data->temp_hyst);
++ results[2] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->temp_over = TEMP_TO_REG(results[0]);
++ w83781d_write_value(client, W83781D_REG_TEMP_OVER,
++ data->temp_over);
++ }
++ if (*nrels_mag >= 2) {
++ data->temp_hyst = TEMP_TO_REG(results[1]);
++ w83781d_write_value(client, W83781D_REG_TEMP_HYST,
++ data->temp_hyst);
++ }
++ }
++}
++
++void w83781d_temp_add(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ int nr = ctl_name - W83781D_SYSCTL_TEMP2;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83781d_update_client(client);
++ if (data->type == as99127f) {
++ results[0] =
++ AS99127_TEMP_ADD_FROM_REG(data->
++ temp_add_over[nr]);
++ results[1] =
++ AS99127_TEMP_ADD_FROM_REG(data->
++ temp_add_hyst[nr]);
++ results[2] =
++ AS99127_TEMP_ADD_FROM_REG(data->temp_add[nr]);
++ } else {
++ results[0] =
++ LM75_TEMP_FROM_REG(data->temp_add_over[nr]);
++ results[1] =
++ LM75_TEMP_FROM_REG(data->temp_add_hyst[nr]);
++ results[2] = LM75_TEMP_FROM_REG(data->temp_add[nr]);
++ }
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ if (data->type == as99127f)
++ data->temp_add_over[nr] =
++ AS99127_TEMP_ADD_TO_REG(results[0]);
++ else
++ data->temp_add_over[nr] =
++ LM75_TEMP_TO_REG(results[0]);
++ w83781d_write_value(client,
++ nr ? W83781D_REG_TEMP3_OVER :
++ W83781D_REG_TEMP2_OVER,
++ data->temp_add_over[nr]);
++ }
++ if (*nrels_mag >= 2) {
++ if (data->type == as99127f)
++ data->temp_add_hyst[nr] =
++ AS99127_TEMP_ADD_TO_REG(results[1]);
++ else
++ data->temp_add_hyst[nr] =
++ LM75_TEMP_TO_REG(results[1]);
++ w83781d_write_value(client,
++ nr ? W83781D_REG_TEMP3_HYST :
++ W83781D_REG_TEMP2_HYST,
++ data->temp_add_hyst[nr]);
++ }
++ }
++}
++
++
++void w83781d_vid(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 3;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83781d_update_client(client);
++ results[0] = vid_from_reg(data->vid, data->vrm);
++ *nrels_mag = 1;
++ }
++}
++
++void w83781d_vrm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 1;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->vrm;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1)
++ data->vrm = results[0];
++ }
++}
++
++void w83781d_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83781d_update_client(client);
++ results[0] = ALARMS_FROM_REG(data->alarms);
++ *nrels_mag = 1;
++ }
++}
++
++void w83781d_beep(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ int val;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83781d_update_client(client);
++ results[0] = BEEP_ENABLE_FROM_REG(data->beep_enable);
++ results[1] = BEEPS_FROM_REG(data->beeps, data->type);
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 2) {
++ data->beeps = BEEPS_TO_REG(results[1], data->type);
++ w83781d_write_value(client, W83781D_REG_BEEP_INTS1,
++ data->beeps & 0xff);
++ if ((data->type != w83781d) &&
++ (data->type != as99127f)) {
++ w83781d_write_value(client,
++ W83781D_REG_BEEP_INTS3,
++ ((data-> beeps) >> 16) &
++ 0xff);
++ }
++ val = (data->beeps >> 8) & 0x7f;
++ } else if (*nrels_mag >= 1)
++ val =
++ w83781d_read_value(client,
++ W83781D_REG_BEEP_INTS2) &
++ 0x7f;
++ if (*nrels_mag >= 1) {
++ data->beep_enable = BEEP_ENABLE_TO_REG(results[0]);
++ w83781d_write_value(client, W83781D_REG_BEEP_INTS2,
++ val | data->beep_enable << 7);
++ }
++ }
++}
++
++/* w83697hf only has two fans */
++void w83781d_fan_div(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ int old, old2, old3 = 0;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83781d_update_client(client);
++ results[0] = DIV_FROM_REG(data->fan_div[0]);
++ results[1] = DIV_FROM_REG(data->fan_div[1]);
++ if (data->type == w83697hf) {
++ *nrels_mag = 2;
++ } else {
++ results[2] = DIV_FROM_REG(data->fan_div[2]);
++ *nrels_mag = 3;
++ }
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ old = w83781d_read_value(client, W83781D_REG_VID_FANDIV);
++ /* w83781d and as99127f don't have extended divisor bits */
++ if ((data->type != w83781d) && data->type != as99127f) {
++ old3 =
++ w83781d_read_value(client, W83781D_REG_VBAT);
++ }
++ if (*nrels_mag >= 3 && data->type != w83697hf) {
++ data->fan_div[2] =
++ DIV_TO_REG(results[2], data->type);
++ old2 = w83781d_read_value(client, W83781D_REG_PIN);
++ old2 =
++ (old2 & 0x3f) | ((data->fan_div[2] & 0x03) << 6);
++ w83781d_write_value(client, W83781D_REG_PIN, old2);
++ if ((data->type != w83781d) &&
++ (data->type != as99127f)) {
++ old3 =
++ (old3 & 0x7f) |
++ ((data->fan_div[2] & 0x04) << 5);
++ }
++ }
++ if (*nrels_mag >= 2) {
++ data->fan_div[1] =
++ DIV_TO_REG(results[1], data->type);
++ old =
++ (old & 0x3f) | ((data->fan_div[1] & 0x03) << 6);
++ if ((data->type != w83781d) &&
++ (data->type != as99127f)) {
++ old3 =
++ (old3 & 0xbf) |
++ ((data->fan_div[1] & 0x04) << 4);
++ }
++ }
++ if (*nrels_mag >= 1) {
++ data->fan_div[0] =
++ DIV_TO_REG(results[0], data->type);
++ old =
++ (old & 0xcf) | ((data->fan_div[0] & 0x03) << 4);
++ w83781d_write_value(client, W83781D_REG_VID_FANDIV,
++ old);
++ if ((data->type != w83781d) &&
++ (data->type != as99127f)) {
++ old3 =
++ (old3 & 0xdf) |
++ ((data->fan_div[0] & 0x04) << 3);
++ w83781d_write_value(client,
++ W83781D_REG_VBAT,
++ old3);
++ }
++ }
++ }
++}
++
++void w83781d_pwm(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ int nr = 1 + ctl_name - W83781D_SYSCTL_PWM1;
++ int j, k;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ w83781d_update_client(client);
++ results[0] = PWM_FROM_REG(data->pwm[nr - 1]);
++ results[1] = data->pwmenable[nr - 1];
++ *nrels_mag = 2;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->pwm[nr - 1] = PWM_TO_REG(results[0]);
++ w83781d_write_value(client,
++ W83781D_REG_PWM(data->type, nr),
++ data->pwm[nr - 1]);
++ }
++ /* only PWM2 can be enabled/disabled */
++ if (*nrels_mag >= 2 && nr == 2) {
++ j = w83781d_read_value(client, W83781D_REG_PWMCLK12);
++ k = w83781d_read_value(client, W83781D_REG_BEEP_CONFIG);
++ if(results[1]) {
++ if(!(j & 0x08))
++ w83781d_write_value(client,
++ W83781D_REG_PWMCLK12, j | 0x08);
++ if(k & 0x10)
++ w83781d_write_value(client,
++ W83781D_REG_BEEP_CONFIG, k & 0xef);
++ data->pwmenable[1] = 1;
++ } else {
++ if(j & 0x08)
++ w83781d_write_value(client,
++ W83781D_REG_PWMCLK12, j & 0xf7);
++ if(!(k & 0x10))
++ w83781d_write_value(client,
++ W83781D_REG_BEEP_CONFIG, j | 0x10);
++ data->pwmenable[1] = 0;
++ }
++ }
++ }
++}
++
++void w83781d_sens(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ int nr = 1 + ctl_name - W83781D_SYSCTL_SENS1;
++ u8 tmp;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ results[0] = data->sens[nr - 1];
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ switch (results[0]) {
++ case 1: /* PII/Celeron diode */
++ tmp = w83781d_read_value(client,
++ W83781D_REG_SCFG1);
++ w83781d_write_value(client,
++ W83781D_REG_SCFG1,
++ tmp | BIT_SCFG1[nr -
++ 1]);
++ tmp = w83781d_read_value(client,
++ W83781D_REG_SCFG2);
++ w83781d_write_value(client,
++ W83781D_REG_SCFG2,
++ tmp | BIT_SCFG2[nr -
++ 1]);
++ data->sens[nr - 1] = results[0];
++ break;
++ case 2: /* 3904 */
++ tmp = w83781d_read_value(client,
++ W83781D_REG_SCFG1);
++ w83781d_write_value(client,
++ W83781D_REG_SCFG1,
++ tmp | BIT_SCFG1[nr -
++ 1]);
++ tmp = w83781d_read_value(client,
++ W83781D_REG_SCFG2);
++ w83781d_write_value(client,
++ W83781D_REG_SCFG2,
++ tmp & ~BIT_SCFG2[nr -
++ 1]);
++ data->sens[nr - 1] = results[0];
++ break;
++ case W83781D_DEFAULT_BETA: /* thermistor */
++ tmp = w83781d_read_value(client,
++ W83781D_REG_SCFG1);
++ w83781d_write_value(client,
++ W83781D_REG_SCFG1,
++ tmp & ~BIT_SCFG1[nr -
++ 1]);
++ data->sens[nr - 1] = results[0];
++ break;
++ default:
++ printk
++ (KERN_ERR "w83781d.o: Invalid sensor type %ld; must be 1, 2, or %d\n",
++ results[0], W83781D_DEFAULT_BETA);
++ break;
++ }
++ }
++ }
++}
++
++#ifdef W83781D_RT
++static void w83781d_rt(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct w83781d_data *data = client->data;
++ int nr = 1 + ctl_name - W83781D_SYSCTL_RT1;
++ int i;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ for (i = 0; i < 32; i++) {
++ results[i] = data->rt[nr - 1][i];
++ }
++ *nrels_mag = 32;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag > 32)
++ *nrels_mag = 32;
++ for (i = 0; i < *nrels_mag; i++) {
++ /* fixme: no bounds checking 0-255 */
++ data->rt[nr - 1][i] = results[i];
++ w83781d_write_value(client, W83781D_REG_RT_IDX, i);
++ w83781d_write_value(client, W83781D_REG_RT_VAL,
++ data->rt[nr - 1][i]);
++ }
++ }
++}
++#endif
++
++static int __init sm_w83781d_init(void)
++{
++ printk(KERN_INFO "w83781d.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&w83781d_driver);
++}
++
++static void __exit sm_w83781d_exit(void)
++{
++ i2c_del_driver(&w83781d_driver);
++}
++
++
++
++MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl>, "
++ "Philip Edelbrock <phil@netroedge.com>, "
++ "and Mark Studebaker <mdsxyz123@yahoo.com>");
++MODULE_DESCRIPTION("W83781D driver");
++MODULE_LICENSE("GPL");
++
++module_init(sm_w83781d_init);
++module_exit(sm_w83781d_exit);
+--- linux-old/drivers/sensors/w83l785ts.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/w83l785ts.c Mon Dec 13 20:18:54 2004
+@@ -0,0 +1,388 @@
++/*
++ * w83l785ts.c - Part of lm_sensors, Linux kernel modules for hardware
++ * monitoring
++ * Copyright (C) 2003-2004 Jean Delvare <khali@linux-fr.org>
++ *
++ * Inspired from the lm83 driver. The W83L785TS-S is a sensor chip made
++ * by Winbond. It reports a single external temperature with a 1 deg
++ * resolution and a 3 deg accuracy. Data sheet can be obtained from
++ * Winbond's website at:
++ * http://www.winbond-usa.com/products/winbond_products/pdfs/PCIC/W83L785TS-S.pdf
++ *
++ * Thanks to James Bolt <james@evilpenguin.com> for benchmarking the read
++ * error handling mechanism.
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++ */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#include <linux/delay.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++#ifndef I2C_DRIVERID_W83L785TS
++#define I2C_DRIVERID_W83L785TS 1047
++#endif
++
++/* How many retries on register read error */
++#define MAX_RETRIES 5
++
++/*
++ * Address to scan
++ * Address is fully defined internally and cannot be changed.
++ */
++
++static unsigned short normal_i2c[] = { 0x2e, SENSORS_I2C_END };
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/*
++ * Insmod parameters
++ */
++
++SENSORS_INSMOD_1(w83l785ts);
++
++/*
++ * The W83L785TS-S registers
++ * Manufacturer ID is 0x5CA3 for Winbond.
++ */
++
++#define W83L785TS_REG_MAN_ID1 0x4D
++#define W83L785TS_REG_MAN_ID2 0x4C
++#define W83L785TS_REG_CHIP_ID 0x4E
++#define W83L785TS_REG_CONFIG 0x40
++#define W83L785TS_REG_TYPE 0x52
++#define W83L785TS_REG_TEMP 0x27
++#define W83L785TS_REG_TEMP_OVER 0x53 /* not sure about this one */
++
++/*
++ * Conversions
++ * The W83L785TS-S uses signed 8-bit values.
++ */
++
++#define TEMP_FROM_REG(val) (val & 0x80 ? val-0x100 : val)
++
++/*
++ * Functions declaration
++ */
++
++static int w83l785ts_attach_adapter(struct i2c_adapter *adapter);
++static int w83l785ts_detect(struct i2c_adapter *adapter, int address, unsigned
++ short flags, int kind);
++static int w83l785ts_detach_client(struct i2c_client *client);
++static u8 w83l785ts_read_value(struct i2c_client *client, u8 reg, u8 defval);
++static void w83l785ts_update_client(struct i2c_client *client);
++static void w83l785ts_temp(struct i2c_client *client, int operation, int
++ ctl_name, int *nrels_mag, long *results);
++
++/*
++ * Driver data (common to all clients)
++ */
++
++static struct i2c_driver w83l785ts_driver = {
++ .owner = THIS_MODULE,
++ .name = "W83L785S-S sensor driver",
++ .id = I2C_DRIVERID_W83L785TS,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = w83l785ts_attach_adapter,
++ .detach_client = w83l785ts_detach_client,
++};
++
++/*
++ * Client data (each client gets its own)
++ */
++
++struct w83l785ts_data {
++ struct i2c_client client;
++ int sysctl_id;
++
++ struct semaphore update_lock;
++ char valid; /* zero until following fields are valid */
++ unsigned long last_updated; /* in jiffies */
++
++ /* registers values */
++ u8 temp, temp_over;
++};
++
++/*
++ * Proc entries
++ * These files are created for each detected W83L785TS-S.
++ */
++
++/* -- SENSORS SYSCTL START -- */
++
++#define W83L785TS_SYSCTL_TEMP 1200
++
++/* -- SENSORS SYSCTL END -- */
++
++
++static ctl_table w83l785ts_dir_table_template[] =
++{
++ {W83L785TS_SYSCTL_TEMP, "temp", NULL, 0, 0444, NULL,
++ &i2c_proc_real, &i2c_sysctl_real, NULL, &w83l785ts_temp},
++ {0}
++};
++
++/*
++ * Internal variables
++ */
++
++static int w83l785ts_id = 0;
++
++/*
++ * Real code
++ */
++
++static int w83l785ts_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, w83l785ts_detect);
++}
++
++/*
++ * The following function does more than just detection. If detection
++ * succeeds, it also registers the new chip.
++ */
++static int w83l785ts_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ struct i2c_client *new_client;
++ struct w83l785ts_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "w83l785ts.o: I2C bus doesn't support "
++ "byte read mode, skipping.\n");
++#endif
++ return 0;
++ }
++
++ if (!(data = kmalloc(sizeof(struct w83l785ts_data), GFP_KERNEL))) {
++ printk(KERN_ERR "w83l785ts.o: Out of memory in w83l785ts_detect "
++ "(new_client).\n");
++ return -ENOMEM;
++ }
++
++ /*
++ * The common I2C client data is placed right after the
++ * W83L785TS-specific. The W83L785TS-specific data is pointed to by the
++ * data field from the I2C client data.
++ */
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &w83l785ts_driver;
++ new_client->flags = 0;
++
++ /*
++ * Now we do the remaining detection. A negative kind means that
++ * the driver was loaded with no force parameter (default), so we
++ * must both detect and identify the chip (actually there is only
++ * one possible kind of chip for now, W83L785TS-S). A zero kind means
++ * that the driver was loaded with the force parameter, the detection
++ * step shall be skipped. A positive kind means that the driver
++ * was loaded with the force parameter and a given kind of chip is
++ * requested, so both the detection and the identification steps
++ * are skipped.
++ */
++
++ if (kind < 0) { /* detection */
++ if (((w83l785ts_read_value(new_client, W83L785TS_REG_CONFIG, 0)
++ & 0x80) != 0x00)
++ || ((w83l785ts_read_value(new_client, W83L785TS_REG_TYPE, 0)
++ & 0xFC) != 0x00)) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "w83l785ts.o: Detection failed at "
++ "0x%02x.\n", address);
++#endif
++ goto ERROR1;
++ }
++ }
++
++ if (kind <= 0) { /* identification */
++ u16 man_id;
++ u8 chip_id;
++
++ man_id = (w83l785ts_read_value(new_client, W83L785TS_REG_MAN_ID1, 0) << 8)
++ + w83l785ts_read_value(new_client, W83L785TS_REG_MAN_ID2, 0);
++ chip_id = w83l785ts_read_value(new_client, W83L785TS_REG_CHIP_ID, 0);
++ if (man_id == 0x5CA3) { /* Winbond */
++ if (chip_id == 0x70)
++ kind = w83l785ts;
++ }
++ }
++
++ if (kind <= 0) { /* identification failed */
++ printk(KERN_INFO "w83l785ts.o: Unsupported chip.\n");
++ goto ERROR1;
++ }
++
++ if (kind == w83l785ts) {
++ type_name = "w83l785ts";
++ client_name = "W83L785TS-S chip";
++ } else {
++ printk(KERN_ERR "w83l785ts.o: Unknown kind %d.\n", kind);
++ goto ERROR1;
++ }
++
++ /*
++ * OK, we got a valid chip so we can fill in the remaining client
++ * fields.
++ */
++
++ strcpy(new_client->name, client_name);
++ new_client->id = w83l785ts_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /*
++ * Tell the I2C layer a new client has arrived.
++ */
++
++ if ((err = i2c_attach_client(new_client))) {
++#ifdef DEBUG
++ printk(KERN_ERR "w83l785ts.o: Failed attaching client.\n");
++#endif
++ goto ERROR1;
++ }
++
++ /*
++ * Register a new directory entry.
++ */
++
++ if ((err = i2c_register_entry(new_client, type_name,
++ w83l785ts_dir_table_template)) < 0) {
++#ifdef DEBUG
++ printk(KERN_ERR "w83l785ts.o: Failed registering directory "
++ "entry.\n");
++#endif
++ goto ERROR2;
++ }
++ data->sysctl_id = err;
++
++ /*
++ * Initialize the W83L785TS chip
++ * Nothing yet, assume it is already started.
++ */
++
++ return 0;
++
++ ERROR2:
++ i2c_detach_client(new_client);
++ ERROR1:
++ kfree(data);
++ return err;
++}
++
++static int w83l785ts_detach_client(struct i2c_client *client)
++{
++ int err;
++
++ i2c_deregister_entry(((struct w83l785ts_data *) (client->data))->sysctl_id);
++ if ((err = i2c_detach_client(client))) {
++ printk(KERN_ERR "w83l785ts.o: Client deregistration failed, "
++ "client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++ return 0;
++}
++
++static u8 w83l785ts_read_value(struct i2c_client *client, u8 reg, u8 defval)
++{
++ int value, i;
++
++ /* Frequent read errors have been reported on Asus boards, so we
++ * retry on read errors. If it still fails (unlikely), return the
++ * default value requested by the caller. */
++ for (i = 1; i <= MAX_RETRIES; i++) {
++ value = i2c_smbus_read_byte_data(client, reg);
++ if (value >= 0)
++ return value;
++ printk(KERN_WARNING "w83l785ts.o: Read failed, will retry "
++ "in %d.\n", i);
++ mdelay(i);
++ }
++
++ printk(KERN_ERR "w83l785ts.o: Couldn't read value from register. "
++ "Please report.\n");
++ return defval;
++}
++
++static void w83l785ts_update_client(struct i2c_client *client)
++{
++ struct w83l785ts_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ * 2)
++ || (jiffies < data->last_updated)
++ || !data->valid) {
++#ifdef DEBUG
++ printk(KERN_DEBUG "w83l785ts.o: Updating data.\n");
++#endif
++ data->temp = w83l785ts_read_value(client, W83L785TS_REG_TEMP,
++ data->temp);
++ data->temp_over = w83l785ts_read_value(client,
++ W83L785TS_REG_TEMP_OVER, data->temp_over);
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++static void w83l785ts_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct w83l785ts_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO) {
++ *nrels_mag = 0; /* magnitude */
++ } else if (operation == SENSORS_PROC_REAL_READ) {
++ w83l785ts_update_client(client);
++ results[0] = TEMP_FROM_REG(data->temp_over);
++ results[1] = TEMP_FROM_REG(data->temp);
++ *nrels_mag = 2;
++ }
++}
++
++static int __init sm_w83l785ts_init(void)
++{
++ printk(KERN_INFO "w83l785ts.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&w83l785ts_driver);
++}
++
++static void __exit sm_w83l785ts_exit(void)
++{
++ i2c_del_driver(&w83l785ts_driver);
++}
++
++MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
++MODULE_DESCRIPTION("W83L785TS-S sensor driver");
++MODULE_LICENSE("GPL");
++
++module_init(sm_w83l785ts_init);
++module_exit(sm_w83l785ts_exit);
+--- linux-old/drivers/sensors/xeontemp.c Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/xeontemp.c Mon Dec 13 20:18:54 2004
+@@ -0,0 +1,388 @@
++/*
++ xeontemp.c - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 1998, 1999,2003 Frodo Looijaard <frodol@dds.nl>,
++ Philip Edelbrock <phil@netroedge.com>, and
++ Mark D. Studebaker <mdsxyz123@yahoo.com>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/* The Xeon temperature sensor looks just like an ADM1021 with the remote
++ sensor only. There is are no ID registers so detection is difficult. */
++
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/i2c.h>
++#include <linux/i2c-proc.h>
++#include <linux/init.h>
++#define LM_DATE "20041007"
++#define LM_VERSION "2.8.8"
++
++#ifndef I2C_DRIVERID_XEONTEMP
++#define I2C_DRIVERID_XEONTEMP 1045
++#endif
++
++/* Addresses to scan */
++static unsigned short normal_i2c[] = { 0x18, 0x1a, 0x29, 0x2b,
++ 0x4c, 0x4e, SENSORS_I2C_END
++};
++static unsigned short normal_i2c_range[] = { SENSORS_I2C_END };
++static unsigned int normal_isa[] = { SENSORS_ISA_END };
++static unsigned int normal_isa_range[] = { SENSORS_ISA_END };
++
++/* Insmod parameters */
++SENSORS_INSMOD_1(xeontemp);
++
++/* xeontemp constants specified below */
++
++/* The registers */
++/* Read-only */
++#define XEONTEMP_REG_REMOTE_TEMP 0x01
++#define XEONTEMP_REG_STATUS 0x02
++/* These use different addresses for reading/writing */
++#define XEONTEMP_REG_CONFIG_R 0x03
++#define XEONTEMP_REG_CONFIG_W 0x09
++#define XEONTEMP_REG_CONV_RATE_R 0x04
++#define XEONTEMP_REG_CONV_RATE_W 0x0A
++/* limits */
++#define XEONTEMP_REG_REMOTE_TOS_R 0x07
++#define XEONTEMP_REG_REMOTE_TOS_W 0x0D
++#define XEONTEMP_REG_REMOTE_THYST_R 0x08
++#define XEONTEMP_REG_REMOTE_THYST_W 0x0E
++/* write-only */
++#define XEONTEMP_REG_ONESHOT 0x0F
++
++#define XEONTEMP_ALARM_RTEMP (XEONTEMP_ALARM_RTEMP_HIGH | XEONTEMP_ALARM_RTEMP_LOW\
++ | XEONTEMP_ALARM_RTEMP_NA)
++#define XEONTEMP_ALARM_ALL XEONTEMP_ALARM_RTEMP
++
++/* Conversions. Rounding and limit checking is only done on the TO_REG
++ variants. Note that you should be a bit careful with which arguments
++ these macros are called: arguments may be evaluated more than once.
++ Fixing this is just not worth it. */
++/* Conversions note: 1021 uses normal integer signed-byte format*/
++#define TEMP_FROM_REG(val) (val > 127 ? val-256 : val)
++#define TEMP_TO_REG(val) (SENSORS_LIMIT((val < 0 ? val+256 : val),0,255))
++
++/* Each client has this additional data */
++struct xeontemp_data {
++ struct i2c_client client;
++ int sysctl_id;
++ enum chips type;
++
++ struct semaphore update_lock;
++ char valid; /* !=0 if following fields are valid */
++ unsigned long last_updated; /* In jiffies */
++
++ u8 remote_temp, remote_temp_os, remote_temp_hyst, alarms;
++ u8 fail;
++};
++
++static int xeontemp_attach_adapter(struct i2c_adapter *adapter);
++static int xeontemp_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind);
++static void xeontemp_init_client(struct i2c_client *client);
++static int xeontemp_detach_client(struct i2c_client *client);
++static int xeontemp_read_value(struct i2c_client *client, u8 reg);
++static int xeontemp_rd_good(u8 *val, struct i2c_client *client, u8 reg, u8 mask);
++static int xeontemp_write_value(struct i2c_client *client, u8 reg,
++ u16 value);
++static void xeontemp_remote_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag,
++ long *results);
++static void xeontemp_alarms(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results);
++static void xeontemp_update_client(struct i2c_client *client);
++
++/* (amalysh) read only mode, otherwise any limit's writing confuse BIOS */
++static int read_only = 0;
++
++
++/* This is the driver that will be inserted */
++static struct i2c_driver xeontemp_driver = {
++ .owner = THIS_MODULE,
++ .name = "Xeon temp sensor driver",
++ .id = I2C_DRIVERID_XEONTEMP,
++ .flags = I2C_DF_NOTIFY,
++ .attach_adapter = xeontemp_attach_adapter,
++ .detach_client = xeontemp_detach_client,
++};
++
++/* -- SENSORS SYSCTL START -- */
++
++#define XEONTEMP_SYSCTL_REMOTE_TEMP 1201
++#define XEONTEMP_SYSCTL_ALARMS 1203
++
++#define XEONTEMP_ALARM_RTEMP_HIGH 0x10
++#define XEONTEMP_ALARM_RTEMP_LOW 0x08
++#define XEONTEMP_ALARM_RTEMP_NA 0x04
++
++/* -- SENSORS SYSCTL END -- */
++
++/* These files are created for each detected xeontemp. This is just a template;
++ though at first sight, you might think we could use a statically
++ allocated list, we need some way to get back to the parent - which
++ is done through one of the 'extra' fields which are initialized
++ when a new copy is allocated. */
++static ctl_table xeontemp_dir_table_template[] = {
++ {XEONTEMP_SYSCTL_REMOTE_TEMP, "temp", NULL, 0, 0644, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &xeontemp_remote_temp},
++ {XEONTEMP_SYSCTL_ALARMS, "alarms", NULL, 0, 0444, NULL, &i2c_proc_real,
++ &i2c_sysctl_real, NULL, &xeontemp_alarms},
++ {0}
++};
++
++static int xeontemp_id = 0;
++
++static int xeontemp_attach_adapter(struct i2c_adapter *adapter)
++{
++ return i2c_detect(adapter, &addr_data, xeontemp_detect);
++}
++
++static int xeontemp_detect(struct i2c_adapter *adapter, int address,
++ unsigned short flags, int kind)
++{
++ int i;
++ struct i2c_client *new_client;
++ struct xeontemp_data *data;
++ int err = 0;
++ const char *type_name = "";
++ const char *client_name = "";
++
++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
++ goto error0;
++
++ /* OK. For now, we presume we have a valid client. We now create the
++ client structure, even though we cannot fill it completely yet.
++ But it allows us to access xeontemp_{read,write}_value. */
++
++ if (!(data = kmalloc(sizeof(struct xeontemp_data), GFP_KERNEL))) {
++ err = -ENOMEM;
++ goto error0;
++ }
++
++ new_client = &data->client;
++ new_client->addr = address;
++ new_client->data = data;
++ new_client->adapter = adapter;
++ new_client->driver = &xeontemp_driver;
++ new_client->flags = 0;
++
++ /* Now, we do the remaining detection. */
++
++ if (kind < 0) {
++ if (
++ (xeontemp_read_value(new_client, XEONTEMP_REG_STATUS) &
++ 0x03) != 0x00)
++ goto error1;
++ }
++
++ /* Determine the chip type. */
++
++ if (kind <= 0) {
++ kind = xeontemp;
++ }
++
++ type_name = "xeontemp";
++ client_name = "xeon sensors";
++
++ /* Fill in the remaining client fields and put it into the global list */
++ strcpy(new_client->name, client_name);
++ data->type = kind;
++
++ new_client->id = xeontemp_id++;
++ data->valid = 0;
++ init_MUTEX(&data->update_lock);
++
++ /* Tell the I2C layer a new client has arrived */
++ if ((err = i2c_attach_client(new_client)))
++ goto error3;
++
++ /* Register a new directory entry with module sensors */
++ if ((i = i2c_register_entry(new_client, type_name,
++ xeontemp_dir_table_template)) < 0) {
++ err = i;
++ goto error4;
++ }
++ data->sysctl_id = i;
++
++ xeontemp_init_client(new_client);
++ return 0;
++
++ error4:
++ i2c_detach_client(new_client);
++ error3:
++ error1:
++ kfree(data);
++ error0:
++ return err;
++}
++
++static void xeontemp_init_client(struct i2c_client *client)
++{
++ /* Enable ADC and disable suspend mode */
++ xeontemp_write_value(client, XEONTEMP_REG_CONFIG_W, 0);
++ /* Set Conversion rate to 1/sec (this can be tinkered with) */
++ xeontemp_write_value(client, XEONTEMP_REG_CONV_RATE_W, 0x04);
++}
++
++static int xeontemp_detach_client(struct i2c_client *client)
++{
++
++ int err;
++
++ i2c_deregister_entry(((struct xeontemp_data *) (client->data))->
++ sysctl_id);
++
++ if ((err = i2c_detach_client(client))) {
++ printk
++ ("xeontemp.o: Client deregistration failed, client not detached.\n");
++ return err;
++ }
++
++ kfree(client->data);
++
++ return 0;
++
++}
++
++
++/* All registers are byte-sized */
++static int xeontemp_read_value(struct i2c_client *client, u8 reg)
++{
++ return i2c_smbus_read_byte_data(client, reg);
++}
++
++/* only update value if read succeeded; set fail bit if failed */
++static int xeontemp_rd_good(u8 *val, struct i2c_client *client, u8 reg, u8 mask)
++{
++ int i;
++ struct xeontemp_data *data = client->data;
++
++ i = i2c_smbus_read_byte_data(client, reg);
++ if (i < 0) {
++ data->fail |= mask;
++ return i;
++ }
++ *val = i;
++ return 0;
++}
++
++static int xeontemp_write_value(struct i2c_client *client, u8 reg, u16 value)
++{
++ if (read_only > 0)
++ return 0;
++
++ return i2c_smbus_write_byte_data(client, reg, value);
++}
++
++static void xeontemp_update_client(struct i2c_client *client)
++{
++ struct xeontemp_data *data = client->data;
++
++ down(&data->update_lock);
++
++ if ((jiffies - data->last_updated > HZ + HZ / 2) ||
++ (jiffies < data->last_updated) || !data->valid) {
++
++#ifdef DEBUG
++ printk("Starting xeontemp update\n");
++#endif
++
++ data->fail = 0;
++ xeontemp_rd_good(&(data->remote_temp), client,
++ XEONTEMP_REG_REMOTE_TEMP, XEONTEMP_ALARM_RTEMP);
++ xeontemp_rd_good(&(data->remote_temp_os), client,
++ XEONTEMP_REG_REMOTE_TOS_R, XEONTEMP_ALARM_RTEMP);
++ xeontemp_rd_good(&(data->remote_temp_hyst), client,
++ XEONTEMP_REG_REMOTE_THYST_R,
++ XEONTEMP_ALARM_RTEMP);
++ data->alarms = XEONTEMP_ALARM_ALL;
++ if (!xeontemp_rd_good(&(data->alarms), client,
++ XEONTEMP_REG_STATUS, 0))
++ data->alarms &= XEONTEMP_ALARM_ALL;
++ data->last_updated = jiffies;
++ data->valid = 1;
++ }
++
++ up(&data->update_lock);
++}
++
++void xeontemp_remote_temp(struct i2c_client *client, int operation,
++ int ctl_name, int *nrels_mag, long *results)
++{
++ struct xeontemp_data *data = client->data;
++
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ xeontemp_update_client(client);
++ results[0] = TEMP_FROM_REG(data->remote_temp_os);
++ results[1] = TEMP_FROM_REG(data->remote_temp_hyst);
++ results[2] = TEMP_FROM_REG(data->remote_temp);
++ *nrels_mag = 3;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ if (*nrels_mag >= 1) {
++ data->remote_temp_os = TEMP_TO_REG(results[0]);
++ xeontemp_write_value(client,
++ XEONTEMP_REG_REMOTE_TOS_W,
++ data->remote_temp_os);
++ }
++ if (*nrels_mag >= 2) {
++ data->remote_temp_hyst = TEMP_TO_REG(results[1]);
++ xeontemp_write_value(client,
++ XEONTEMP_REG_REMOTE_THYST_W,
++ data->remote_temp_hyst);
++ }
++ }
++}
++
++void xeontemp_alarms(struct i2c_client *client, int operation, int ctl_name,
++ int *nrels_mag, long *results)
++{
++ struct xeontemp_data *data = client->data;
++ if (operation == SENSORS_PROC_REAL_INFO)
++ *nrels_mag = 0;
++ else if (operation == SENSORS_PROC_REAL_READ) {
++ xeontemp_update_client(client);
++ results[0] = data->alarms | data->fail;
++ *nrels_mag = 1;
++ } else if (operation == SENSORS_PROC_REAL_WRITE) {
++ /* Can't write to it */
++ }
++}
++
++static int __init sm_xeontemp_init(void)
++{
++ printk(KERN_INFO "xeontemp.o version %s (%s)\n", LM_VERSION, LM_DATE);
++ return i2c_add_driver(&xeontemp_driver);
++}
++
++static void __exit sm_xeontemp_exit(void)
++{
++ i2c_del_driver(&xeontemp_driver);
++}
++
++MODULE_AUTHOR
++ ("Frodo Looijaard <frodol@dds.nl> and Philip Edelbrock <phil@netroedge.com>");
++MODULE_DESCRIPTION("xeontemp driver");
++MODULE_LICENSE("GPL");
++
++MODULE_PARM(read_only, "i");
++MODULE_PARM_DESC(read_only, "Don't set any values, read only mode");
++
++module_init(sm_xeontemp_init)
++module_exit(sm_xeontemp_exit)
+--- linux-old/include/linux/sensors_compat.h Thu Jan 1 00:00:00 1970
++++ linux/include/linux/sensors_compat.h Mon Dec 13 20:18:54 2004
+@@ -0,0 +1,31 @@
++/*
++ * Stolen from kernel 2.5.69
++ * device.h - generic, centralized driver model
++ * To make it easier to backport from 2.5
++ *
++ * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org>
++ *
++ */
++
++#ifndef _SENSORS_COMPAT_H_
++#define _SENSORS_COMPAT_H_
++
++/* debugging and troubleshooting/diagnostic helpers. */
++#define dev_printk(level, dev, format, arg...) \
++ printk(level "%s: " format , (dev)->name , ## arg)
++
++#ifdef DEBUG
++#define dev_dbg(dev, format, arg...) \
++ dev_printk(KERN_DEBUG , dev , format , ## arg)
++#else
++#define dev_dbg(dev, format, arg...) do {} while (0)
++#endif
++
++#define dev_err(dev, format, arg...) \
++ dev_printk(KERN_ERR , dev , format , ## arg)
++#define dev_info(dev, format, arg...) \
++ dev_printk(KERN_INFO , dev , format , ## arg)
++#define dev_warn(dev, format, arg...) \
++ dev_printk(KERN_WARNING , dev , format , ## arg)
++
++#endif /* _SENSORS_COMPAT_H_ */
+--- linux-old/include/linux/sensors_vid.h Thu Jan 1 00:00:00 1970
++++ linux/include/linux/sensors_vid.h Mon Dec 13 20:18:54 2004
+@@ -0,0 +1,95 @@
++/*
++ sensors_vid.h - Part of lm_sensors, Linux kernel modules for hardware
++ monitoring
++ Copyright (c) 2002-2004 Mark D. Studebaker <mdsxyz123@yahoo.com>
++ With assistance from Trent Piepho <xyzzy@speakeasy.org>
++
++ This program is free software; you can redistribute it and/or modify
++ it under the terms of the GNU General Public License as published by
++ the Free Software Foundation; either version 2 of the License, or
++ (at your option) any later version.
++
++ This program is distributed in the hope that it will be useful,
++ but WITHOUT ANY WARRANTY; without even the implied warranty of
++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ GNU General Public License for more details.
++
++ You should have received a copy of the GNU General Public License
++ along with this program; if not, write to the Free Software
++ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++*/
++
++/*
++ This file contains common code for decoding VID pins.
++ This file is #included in various sensor chip drivers.
++ As the user is unlikely to load more than one driver which
++ includes this code we don't worry about the wasted space.
++ References: VRM x.y DC-DC Converter Design Guidelines,
++ VRD 10.0 Design Guide,
++ available at http://developer.intel.com
++*/
++
++/*
++ AMD Opteron processors don't follow the Intel VRM spec.
++ I'm going to "make up" 2.4 as the VRM spec for the Opterons.
++ No good reason just a mnemonic for the 24x Opteron processor
++ series
++
++ Opteron VID encoding is:
++
++ 00000 = 1.550 V
++ 00001 = 1.525 V
++ . . . .
++ 11110 = 0.800 V
++ 11111 = 0.000 V (off)
++ */
++
++/*
++ Legal val values 00 - 1F except for VRD 10.0, 0x00-0x3f.
++ vrm is the Intel VRM document version.
++ Note: vrm version is scaled by 10 and the return value is scaled by 1000
++ to avoid floating point in the kernel.
++*/
++
++#define DEFAULT_VRM 82
++
++static inline int vid_from_reg(int val, int vrm)
++{
++ int vid;
++
++ switch(vrm) {
++
++ case 100: /* VRD 10.0 */
++ if((val & 0x1f) == 0x1f)
++ return 0;
++ if((val & 0x1f) <= 0x09 || val == 0x0a)
++ vid = 10875 - (val & 0x1f) * 250;
++ else
++ vid = 18625 - (val & 0x1f) * 250;
++ if(val & 0x20)
++ vid -= 125;
++ vid /= 10; /* only return 3 dec. places for now */
++ return vid;
++
++ case 24: /* Opteron processor */
++ return(val == 0x1f ? 0 : 1550 - val * 25);
++
++ case 91: /* VRM 9.1 */
++ case 90: /* VRM 9.0 */
++ return(val == 0x1f ? 0 :
++ 1850 - val * 25);
++
++ case 85: /* VRM 8.5 */
++ return((val & 0x10 ? 25 : 0) +
++ ((val & 0x0f) > 0x04 ? 2050 : 1250) -
++ ((val & 0x0f) * 50));
++
++ case 84: /* VRM 8.4 */
++ val &= 0x0f;
++ /* fall through */
++ default: /* VRM 8.2 */
++ return(val == 0x1f ? 0 :
++ val & 0x10 ? 5100 - (val) * 100 :
++ 2050 - (val) * 50);
++ }
++}
+--- linux-old/drivers/sensors/Config.in Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/Config.in Mon Dec 13 20:18:54 2004
+@@ -0,0 +1,62 @@
++#
++# Sensor device configuration
++# All depend on CONFIG_I2C_PROC.
++# ISA-only devices depend on CONFIG_I2C_ISA also.
++#
++
++if [ "$CONFIG_I2C" = "m" -o "$CONFIG_I2C" = "y" ] ; then
++if [ "$CONFIG_I2C_PROC" = "m" -o "$CONFIG_I2C_PROC" = "y" ] ; then
++ mainmenu_option next_comment
++ comment 'Hardware sensors support'
++
++ dep_mbool 'Hardware sensors support' CONFIG_SENSORS $CONFIG_I2C $CONFIG_I2C_PROC
++
++ if [ "$CONFIG_SENSORS" != "n" ]; then
++ dep_tristate ' Analog Devices ADM1021 and compatibles' CONFIG_SENSORS_ADM1021 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Analog Devices ADM1024' CONFIG_SENSORS_ADM1024 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Analog Devices ADM1025' CONFIG_SENSORS_ADM1025 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Analog Devices ADM1026' CONFIG_SENSORS_ADM1026 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Analog Devices ADM9240 and compatibles' CONFIG_SENSORS_ADM9240 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Asus ASB100' CONFIG_SENSORS_ASB100 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Dallas DS1621 and DS1625' CONFIG_SENSORS_DS1621 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Fujitsu-Siemens Poseidon' CONFIG_SENSORS_FSCPOS $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Fujitsu-Siemens Scylla' CONFIG_SENSORS_FSCSCY $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Genesys Logic GL518SM' CONFIG_SENSORS_GL518SM $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Genesys Logic GL520SM' CONFIG_SENSORS_GL520SM $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' HP Maxilife' CONFIG_SENSORS_MAXILIFE $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Intel Xeon Thermal Sensor' CONFIG_SENSORS_XEONTEMP $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' ITE 8705/8712, SiS950' CONFIG_SENSORS_IT87 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Maxim MAX6650, MAX6651' CONFIG_SENSORS_MAX6650 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Myson MTP008' CONFIG_SENSORS_MTP008 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' National Semiconductor LM75 and compatibles' CONFIG_SENSORS_LM75 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' National Semiconductor LM78' CONFIG_SENSORS_LM78 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' National Semiconductor LM80' CONFIG_SENSORS_LM80 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' National Semiconductor LM83' CONFIG_SENSORS_LM83 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' National Semiconductor LM85, Analog Devices ADM1027' CONFIG_SENSORS_LM85 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' National Semiconductor LM87' CONFIG_SENSORS_LM87 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' National Semiconductor LM90 and compatibles' CONFIG_SENSORS_LM90 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' National Semiconductor LM92' CONFIG_SENSORS_LM92 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' National Semiconductor PC8736x Sensors' CONFIG_SENSORS_PC87360 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Silicon Integrated Systems Corp. SiS5595' CONFIG_SENSORS_SIS5595 $CONFIG_I2C $CONFIG_I2C_PROC $CONFIG_I2C_ISA
++ dep_tristate ' SMSC47M1xx Integrated Sensors' CONFIG_SENSORS_SMSC47M1 $CONFIG_I2C $CONFIG_I2C_PROC $CONFIG_I2C_ISA
++ dep_tristate ' Texas Instruments THMC50 and compatibles' CONFIG_SENSORS_THMC50 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' VIA 686a Integrated Hardware Monitor' CONFIG_SENSORS_VIA686A $CONFIG_I2C $CONFIG_I2C_PROC $CONFIG_I2C_ISA
++ dep_tristate ' VIA VT1211 Integrated Sensors' CONFIG_SENSORS_VT1211 $CONFIG_I2C $CONFIG_I2C_PROC $CONFIG_I2C_ISA
++ dep_tristate ' VIA VT8231 Integrated Sensors' CONFIG_SENSORS_VT8231 $CONFIG_I2C $CONFIG_I2C_PROC $CONFIG_I2C_ISA
++ dep_tristate ' Winbond W83781D, W83782D, W83783S, W83627HF, Asus AS99127F' CONFIG_SENSORS_W83781D $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Winbond W83627HF, W83627THF, W83697HF' CONFIG_SENSORS_W83627HF $CONFIG_I2C $CONFIG_I2C_PROC $CONFIG_I2C_ISA
++ dep_tristate ' Winbond W83L785TS-S' CONFIG_SENSORS_W83L785TS $CONFIG_I2C $CONFIG_I2C_PROC
++ bool 'Other I2C devices' CONFIG_SENSORS_OTHER
++ if [ "$CONFIG_SENSORS_OTHER" = "y" ] ; then
++ dep_tristate ' Brooktree BT869 Video Modulator' CONFIG_SENSORS_BT869 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' DDC Monitor EDID EEPROM' CONFIG_SENSORS_DDCMON $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' EEprom (DIMM) reader ' CONFIG_SENSORS_EEPROM $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Matrix-Orbital LCD Displays' CONFIG_SENSORS_MATORB $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Philips PCF8574 Parallel I/O' CONFIG_SENSORS_PCF8574 $CONFIG_I2C $CONFIG_I2C_PROC
++ dep_tristate ' Philips PCF8591 D/A and A/D' CONFIG_SENSORS_PCF8591 $CONFIG_I2C $CONFIG_I2C_PROC
++ fi
++ fi
++ endmenu
++fi
++fi
++
+--- linux-old/Makefile Sat Aug 14 18:38:44 2004
++++ linux/Makefile Mon Dec 13 20:18:54 2004
+@@ -195,6 +195,7 @@
+ DRIVERS-$(CONFIG_ISDN_BOOL) += drivers/isdn/vmlinux-obj.o
+ DRIVERS-$(CONFIG_CRYPTO) += crypto/crypto.o
+
++DRIVERS-$(CONFIG_SENSORS) += drivers/sensors/sensor.o
+ DRIVERS := $(DRIVERS-y)
+
+
+--- linux-old/drivers/Makefile Mon Nov 17 01:07:35 2003
++++ linux/drivers/Makefile Mon Dec 13 20:18:54 2004
+@@ -8,7 +8,7 @@
+
+ mod-subdirs := dio hil mtd sbus video macintosh usb input telephony ide \
+ message/i2o message/fusion scsi md ieee1394 pnp isdn atm \
+- fc4 net/hamradio i2c acpi bluetooth usb/gadget
++ fc4 net/hamradio i2c acpi bluetooth usb/gadget sensors
+
+ subdir-y := parport char block net sound misc media cdrom hotplug
+ subdir-m := $(subdir-y)
+@@ -45,6 +45,7 @@
+ # CONFIG_HAMRADIO can be set without CONFIG_NETDEVICE being set -- ch
+ subdir-$(CONFIG_HAMRADIO) += net/hamradio
+ subdir-$(CONFIG_I2C) += i2c
++subdir-$(CONFIG_SENSORS) += sensors
+ subdir-$(CONFIG_ACPI_BOOT) += acpi
+
+ subdir-$(CONFIG_BLUEZ) += bluetooth
+--- linux-old/drivers/sensors/Makefile Thu Jan 1 00:00:00 1970
++++ linux/drivers/sensors/Makefile Mon Dec 13 20:18:54 2004
+@@ -0,0 +1,49 @@
++#
++# Makefile for the kernel hardware sensors drivers.
++#
++
++MOD_LIST_NAME := SENSORS_MODULES
++O_TARGET := sensor.o
++
++obj-$(CONFIG_SENSORS_ADM1021) += adm1021.o
++obj-$(CONFIG_SENSORS_ADM1024) += adm1024.o
++obj-$(CONFIG_SENSORS_ADM1025) += adm1025.o
++obj-$(CONFIG_SENSORS_ADM1026) += adm1026.o
++obj-$(CONFIG_SENSORS_ADM9240) += adm9240.o
++obj-$(CONFIG_SENSORS_ASB100) += asb100.o
++obj-$(CONFIG_SENSORS_BT869) += bt869.o
++obj-$(CONFIG_SENSORS_DDCMON) += ddcmon.o
++obj-$(CONFIG_SENSORS_DS1621) += ds1621.o
++obj-$(CONFIG_SENSORS_EEPROM) += eeprom.o
++obj-$(CONFIG_SENSORS_FSCPOS) += fscpos.o
++obj-$(CONFIG_SENSORS_FSCSCY) += fscscy.o
++obj-$(CONFIG_SENSORS_GL518SM) += gl518sm.o
++obj-$(CONFIG_SENSORS_GL520SM) += gl520sm.o
++obj-$(CONFIG_SENSORS_IT87) += it87.o
++obj-$(CONFIG_SENSORS_LM75) += lm75.o
++obj-$(CONFIG_SENSORS_LM78) += lm78.o
++obj-$(CONFIG_SENSORS_LM80) += lm80.o
++obj-$(CONFIG_SENSORS_LM83) += lm83.o
++obj-$(CONFIG_SENSORS_LM85) += lm85.o
++obj-$(CONFIG_SENSORS_LM87) += lm87.o
++obj-$(CONFIG_SENSORS_LM90) += lm90.o
++obj-$(CONFIG_SENSORS_LM92) += lm92.o
++obj-$(CONFIG_SENSORS_MAX6650) += max6650.o
++obj-$(CONFIG_SENSORS_MAXILIFE) += maxilife.o
++obj-$(CONFIG_SENSORS_MTP008) += mtp008.o
++obj-$(CONFIG_SENSORS_PC87360) += pc87360.o
++obj-$(CONFIG_SENSORS_PCF8574) += pcf8574.o
++obj-$(CONFIG_SENSORS_PCF8591) += pcf8591.o
++obj-$(CONFIG_SENSORS_SIS5595) += sis5595.o
++obj-$(CONFIG_SENSORS_SMSC47M1) += smsc47m1.o
++obj-$(CONFIG_SENSORS_THMC50) += thmc50.o
++obj-$(CONFIG_SENSORS_VIA686A) += via686a.o
++obj-$(CONFIG_SENSORS_VT1211) += vt1211.o
++obj-$(CONFIG_SENSORS_VT8231) += vt8231.o
++obj-$(CONFIG_SENSORS_W83781D) += w83781d.o
++obj-$(CONFIG_SENSORS_W83627HF) += w83627hf.o
++obj-$(CONFIG_SENSORS_W83L785TS) += w83l785ts.o
++obj-$(CONFIG_SENSORS_XEONTEMP) += xeontemp.o
++
++include $(TOPDIR)/Rules.make
++
+--- linux-old/drivers/char/Config.in Sat Aug 14 18:38:49 2004
++++ linux/drivers/char/Config.in Mon Dec 13 20:18:54 2004
+@@ -191,6 +191,8 @@
+
+ source drivers/i2c/Config.in
+
++source drivers/sensors/Config.in
++
+ mainmenu_option next_comment
+ comment 'Mice'
+ tristate 'Bus Mouse Support' CONFIG_BUSMOUSE
+--- linux-old/drivers/i2c/Config.in Wed Jul 7 00:38:02 2004
++++ linux/drivers/i2c/Config.in Mon Dec 13 20:18:54 2004
+@@ -63,6 +63,30 @@
+ fi
+
+ # This is needed for automatic patch generation: sensors code starts here
++ bool 'I2C mainboard interfaces' CONFIG_I2C_MAINBOARD
++ if [ "$CONFIG_I2C_MAINBOARD" = "y" ]; then
++ dep_tristate ' Acer Labs ALI 1535' CONFIG_I2C_ALI1535 $CONFIG_I2C
++ dep_tristate ' Acer Labs ALI 1533 and 1543C' CONFIG_I2C_ALI15X3 $CONFIG_I2C
++ dep_tristate ' Apple Hydra Mac I/O' CONFIG_I2C_HYDRA $CONFIG_I2C_ALGOBIT
++ dep_tristate ' AMD 756/766/768/8111' CONFIG_I2C_AMD756 $CONFIG_I2C
++ dep_tristate ' AMD 8111 SMBus 2.0' CONFIG_I2C_AMD8111 $CONFIG_I2C
++ if [ "$CONFIG_ALPHA" = "y" ]; then
++ dep_tristate ' DEC Tsunami I2C interface' CONFIG_I2C_TSUNAMI $CONFIG_I2C_ALGOBIT
++ fi
++ dep_tristate ' Intel 82801AA, AB, BA, DB' CONFIG_I2C_I801 $CONFIG_I2C
++ dep_tristate ' Intel i810AA/AB/E and i815' CONFIG_I2C_I810 $CONFIG_I2C_ALGOBIT
++ dep_tristate ' Intel 82371AB PIIX4(E), 443MX, ServerWorks OSB4/CSB5, SMSC Victory66' CONFIG_I2C_PIIX4 $CONFIG_I2C
++ dep_tristate ' Nvidia Nforce2' CONFIG_I2C_NFORCE2 $CONFIG_I2C
++ dep_tristate ' SiS 5595' CONFIG_I2C_SIS5595 $CONFIG_I2C
++ dep_tristate ' SiS 630/730' CONFIG_I2C_SIS630 $CONFIG_I2C
++ dep_tristate ' SiS 645/961,645DX/961,735' CONFIG_I2C_SIS645 $CONFIG_I2C $CONFIG_HOTPLUG
++ dep_tristate ' Savage 4' CONFIG_I2C_SAVAGE4 $CONFIG_I2C_ALGOBIT
++ dep_tristate ' VIA Technologies, Inc. VT82C586B' CONFIG_I2C_VIA $CONFIG_I2C_ALGOBIT
++ dep_tristate ' VIA Technologies, Inc. VT596A/B, 686A/B, 8231, 8233, 8233A, 8235' CONFIG_I2C_VIAPRO $CONFIG_I2C
++ dep_tristate ' Voodoo3 I2C interface' CONFIG_I2C_VOODOO3 $CONFIG_I2C_ALGOBIT
++ dep_tristate ' Pseudo ISA adapter (for some hardware sensors)' CONFIG_I2C_ISA $CONFIG_I2C
++ fi
++
+ # This is needed for automatic patch generation: sensors code ends here
+
+ dep_tristate 'I2C device interface' CONFIG_I2C_CHARDEV $CONFIG_I2C
+--- linux-old/drivers/i2c/Makefile Wed Jul 7 00:38:02 2004
++++ linux/drivers/i2c/Makefile Mon Dec 13 20:18:54 2004
+@@ -28,6 +28,24 @@
+ obj-$(CONFIG_I2C_ALGO_AU1550) += i2c-algo-au1550.o i2c-au1550.o i2c-au1550.o
+
+ # This is needed for automatic patch generation: sensors code starts here
++obj-$(CONFIG_I2C_ALI1535) += i2c-ali1535.o
++obj-$(CONFIG_I2C_ALI15X3) += i2c-ali15x3.o
++obj-$(CONFIG_I2C_AMD756) += i2c-amd756.o
++obj-$(CONFIG_I2C_AMD8111) += i2c-amd8111.o
++obj-$(CONFIG_I2C_HYDRA) += i2c-hydra.o
++obj-$(CONFIG_I2C_I801) += i2c-i801.o
++obj-$(CONFIG_I2C_I810) += i2c-i810.o
++obj-$(CONFIG_I2C_ISA) += i2c-isa.o
++obj-$(CONFIG_I2C_NFORCE2) += i2c-nforce2.o
++obj-$(CONFIG_I2C_PIIX4) += i2c-piix4.o
++obj-$(CONFIG_I2C_SIS5595) += i2c-sis5595.o
++obj-$(CONFIG_I2C_SIS630) += i2c-sis630.o
++obj-$(CONFIG_I2C_SIS645) += i2c-sis645.o
++obj-$(CONFIG_I2C_SAVAGE4) += i2c-savage4.o
++obj-$(CONFIG_I2C_TSUNAMI) += i2c-tsunami.o
++obj-$(CONFIG_I2C_VIA) += i2c-via.o
++obj-$(CONFIG_I2C_VIAPRO) += i2c-viapro.o
++obj-$(CONFIG_I2C_VOODOO3) += i2c-voodoo3.o
+ # This is needed for automatic patch generation: sensors code ends here
+
+ include $(TOPDIR)/Rules.make
+--- linux-old/Documentation/Configure.help Mon Dec 13 20:09:52 2004
++++ linux/Documentation/Configure.help Mon Dec 13 20:18:56 2004
+@@ -29449,4 +29449,527 @@
+ # fill-prefix:" "
+ # adaptive-fill:nil
+ # fill-column:70
++I2C mainboard interfaces
++CONFIG_I2C_MAINBOARD
++ Many modern mainboards have some kind of I2C interface integrated. This
++ is often in the form of a SMBus, or System Management Bus, which is
++ basically the same as I2C but which uses only a subset of the I2C
++ protocol.
++
++ You will also want the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Acer Labs ALI 1535
++CONFIG_I2C_ALI1535
++ If you say yes to this option, support will be included for the Acer
++ Labs ALI 1535 mainboard I2C interface. This can also be
++ built as a module.
++
++Acer Labs ALI 1533 and 1543C
++CONFIG_I2C_ALI15X3
++ If you say yes to this option, support will be included for the Acer
++ Labs ALI 1533 and 1543C mainboard I2C interfaces. This can also be
++ built as a module which can be inserted and removed while the kernel
++ is running.
++
++AMD 756/766/768/8111
++CONFIG_I2C_AMD756
++ If you say yes to this option, support will be included for the AMD
++ 756/766/768/8111 mainboard I2C interfaces. This can also be
++ built as a module which can be inserted and removed while the kernel
++ is running.
++
++AMD 8111 SMBus 2.0
++CONFIG_I2C_AMD8111
++ If you say yes to this option, support will be included for the AMD
++ 8111 mainboard SMBus 2.0 interface. This can also be
++ built as a module which can be inserted and removed while the kernel
++ is running.
++
++Apple Hydra Mac I/O
++CONFIG_I2C_HYDRA
++ If you say yes to this option, support will be included for the
++ Hydra mainboard I2C interface. This can also be built as a module
++ which can be inserted and removed while the kernel is running.
++
++Intel I801
++CONFIG_I2C_I801
++ If you say yes to this option, support will be included for the
++ Intel I801 mainboard I2C interfaces. "I810" mainboard sensor chips are
++ generally located on the I801's I2C bus. This can also be
++ built as a module which can be inserted and removed while the kernel
++ is running.
++
++Intel I810/I815 based Mainboard
++CONFIG_I2C_I810
++ If you say yes to this option, support will be included for the
++ Intel I810/I815 mainboard I2C interfaces. The I2C busses these chips
++ are generally used only for video devices. For "810" mainboard sensor
++ chips, use the I801 I2C driver instead. This can also be
++ built as a module which can be inserted and removed while the kernel
++ is running.
++
++Intel 82371AB PIIX4(E) / ServerWorks OSB4 and CSB5
++CONFIG_I2C_PIIX4
++ If you say yes to this option, support will be included for the
++ Intel PIIX4, PIIX4E, and 443MX, Serverworks OSB4/CSB5,
++ and SMSC Victory66 mainboard
++ I2C interfaces. This can also be
++ built as a module which can be inserted and removed while the kernel
++ is running.
++
++Nvidia Nforce2 based Mainboard
++CONFIG_I2C_NFORCE2
++ If you say yes to this option, support will be included for the
++ Nvidia Nforce2 family of mainboard I2C interfaces. This can also be
++ built as a module which can be inserted and removed while the kernel
++ is running.
++
++Silicon Integrated Systems Corp. SiS5595 based Mainboard
++CONFIG_I2C_SIS5595
++ If you say yes to this option, support will be included for the
++ SiS5595 mainboard I2C interfaces. For integrated sensors on the
++ Sis5595, use CONFIG_SENSORS_SIS5595. This can also be
++ built as a module which can be inserted and removed while the kernel
++ is running.
++
++Silicon Integrated Systems Corp. SiS630/730 based Mainboard
++CONFIG_I2C_SIS630
++ If you say yes to this option, support will be included for the SiS 630
++ and 730 mainboard I2C interfaces. This can also be built as a module
++ which can be inserted and removed while the kernel is running.
++
++Silicon Integrated Systems Corp. SiS645/961,645DX/961,735 based Mainboard
++CONFIG_I2C_SIS645
++ If you say yes to this option, support will be included for the SiS 645/961,
++ 645DX/961 and 735 mainboard I2C interfaces. This can also be built as a module
++ which can be inserted and removed while the kernel is running.
++
++VIA Technologies, Inc. VT82C586B
++CONFIG_I2C_VIA
++ If you say yes to this option, support will be included for the VIA
++ Technologies I2C adapter found on some motherboards. This can also
++ be built as a module which can be inserted and removed while the
++ kernel is running.
++
++VIA Technologies, Inc. VT82C596, 596B, 686A/B, 8233, 8235
++CONFIG_I2C_VIAPRO
++ If you say yes to this option, support will be included for the VIA
++ Technologies I2C adapter on these chips. For integrated sensors on the
++ Via 686A/B, use CONFIG_SENSORS_VIA686A. This can also be
++ be built as a module which can be inserted and removed while the
++ kernel is running.
++
++3DFX Banshee / Voodoo3
++CONFIG_I2C_VOODOO3
++ If you say yes to this option, support will be included for the
++ 3DFX Banshee and Voodoo3 I2C interfaces. The I2C busses on the these
++ chips are generally used only for video devices.
++ This can also be
++ built as a module which can be inserted and removed while the kernel
++ is running.
++
++DEC Tsunami 21272
++CONFIG_I2C_TSUNAMI
++ If you say yes to this option, support will be included for the DEC
++ Tsunami chipset I2C adapter. Requires the Alpha architecture;
++ do not enable otherwise. This can also be built as a module which
++ can be inserted and removed while the kernel is running.
++
++Pseudo ISA adapter (for hardware sensors modules)
++CONFIG_I2C_ISA
++ This provides support for accessing some hardware sensor chips over
++ the ISA bus rather than the I2C or SMBus. If you want to do this,
++ say yes here. This feature can also be built as a module which can
++ be inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Analog Devices ADM1021 and compatibles
++CONFIG_SENSORS_ADM1021
++ If you say yes here you get support for Analog Devices ADM1021
++ and ADM1023 sensor chips and clones: Maxim MAX1617 and MAX1617A,
++ Genesys Logic GL523SM, National Semi LM84, TI THMC10 and Onsemi
++ MC1066. This can also be built as a module which can be inserted
++ and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Analog Devices ADM1024
++CONFIG_SENSORS_ADM1024
++ If you say yes here you get support for Analog Devices ADM1024 sensor
++ chips. This can also be built as a module.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Analog Devices ADM1025
++CONFIG_SENSORS_ADM1025
++ If you say yes here you get support for Analog Devices ADM1025 sensor
++ chips. This can also be built as a module which can be inserted and
++ removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Analog Devices ADM1026
++CONFIG_SENSORS_ADM1026
++ If you say yes here you get support for Analog Devices ADM1026 sensor
++ chips. This can also be built as a module which can be inserted and
++ removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Analog Devices ADM9240 and compatibles
++CONFIG_SENSORS_ADM9240
++ If you say yes here you get support for Analog Devices ADM9240
++ sensor chips and clones: the Dallas Semiconductor DS1780 and
++ the National Semiconductor LM81. This can also be built as a
++ module which can be inserted and removed while the kernel is
++ running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Asus ASB100
++CONFIG_SENSORS_ASB100
++ If you say yes here you get support for the Asus ASB100 (aka
++ "Bach") sensor chip. This can also be built as a module.
++
++ You will also need the latest user-space utilities: you can find
++ them in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu/
++
++Dallas DS1621 and DS1625
++CONFIG_SENSORS_DS1621
++ If you say yes here you get support for the Dallas DS1621 and DS1625x
++ sensor chips. This can also be built as a module.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Fujitsu-Siemens Poseidon
++CONFIG_SENSORS_FSCPOS
++ If you say yes here you get support for the Fujitsu-Siemens Poseidon
++ sensor chip. This can also be built as a module.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Fujitsu-Siemens Scylla
++CONFIG_SENSORS_FSCSCY
++ If you say yes here you get support for the Fujitsu-Siemens Scylla
++ sensor chip. This can also be built as a module. This driver may/should
++ also work with the following Fujitsu-Siemens chips: "Poseidon",
++ "Poseidon II" and "Hydra". You may have to force loading of the module
++ for motherboards in these cases. Be careful - those motherboards have
++ not been tested with this driver.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Genesys Logic GL518SM
++CONFIG_SENSORS_GL518SM
++ If you say yes here you get support for Genesys Logic GL518SM sensor
++ chips. This can also be built as a module which can be inserted and
++ removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Genesys Logic GL520SM
++CONFIG_SENSORS_GL520SM
++ If you say yes here you get support for Genesys Logic GL518SM sensor
++ chips. This can also be built as a module which can be inserted and
++ removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++HP Maxilife
++CONFIG_SENSORS_MAXILIFE
++ If you say yes here you get support for the HP Maxilife
++ sensor chip. This can also be built as a module.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Intel Xeon Thermal Sensor
++CONFIG_SENSORS_XEONTEMP
++ If you say yes here you get support for the Intel Xeon processor
++ built-in thermal sensor. This can also be built as a module which
++ can be inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilities: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu/
++
++ITE 8705, 8712, Sis950
++CONFIG_SENSORS_IT87
++ If you say yes here you get support for the ITE 8705 and 8712 and
++ SiS950 sensor chips. This can also be built as a module.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Maxim MAX6650, MAX6651
++CONFIG_SENSORS_MAX6650
++ If you say yes here you get support for the Maxim MAX6650 and
++ MAX6651 sensor chips. This can also be built as a module.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Myson MTP008
++CONFIG_SENSORS_MTP008
++ If you say yes here you get support for the Myson MTP008
++ sensor chip. This can also be built as a module.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++National Semiconductor LM75 and compatibles
++CONFIG_SENSORS_LM75
++ If you say yes here you get support for National Semiconductor LM75
++ sensor chips and clones: Dallas Semiconductor DS75 and DS1775 (in
++ 9-bit precision mode), and TelCom (now Microchip) TCN75. This can
++ also be built as a module which can be inserted and removed while
++ the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++National Semiconductor LM78
++CONFIG_SENSORS_LM78
++ If you say yes here you get support for National Semiconductor LM78
++ sensor chips family: the LM78-J and LM79. Many clone chips will
++ also work at least somewhat with this driver. This can also be built
++ as a module which can be inserted and removed while the kernel is
++ running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++National Semiconductor LM80
++CONFIG_SENSORS_LM80
++ If you say yes here you get support for National Semiconductor LM80
++ sensor chips. This can also be built as a module which can be
++ inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++National Semiconductor LM83
++CONFIG_SENSORS_LM83
++ If you say yes here you get support for the National Semiconductor
++ LM83 sensor chip. This can also be built as a module.
++
++ You will also need the latest user-space utilities: you can find
++ them in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu/
++
++National Semiconductor LM85
++CONFIG_SENSORS_LM85
++ If you say yes here you get support for National Semiconductor LM85
++ sensor chips and compatibles. Compatible chips include the Analog
++ Devices ADM1027 and ADT7463 and SMSC EMC6D100 and EMC6D101. This
++ can also be built as a module which can be inserted and removed
++ while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++National Semiconductor LM87
++CONFIG_SENSORS_LM87
++ If you say yes here you get support for National Semiconductor LM87
++ sensor chips. This can also be built as a module which can be
++ inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++National Semiconductor LM90
++CONFIG_SENSORS_LM90
++ If you say yes here you get support for the National Semiconductor
++ LM90, LM89 and LM99, and Analog Devices ADM1032 sensor chips. This
++ can also be built as a module.
++
++ You will also need the latest user-space utilities: you can find
++ them in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu/
++
++National Semiconductor LM92
++CONFIG_SENSORS_LM92
++ If you say yes here you get support for National Semiconductor LM92
++ sensor chips. This can also be built as a module which can be
++ inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++National Semiconductor PC8736x Sensors
++CONFIG_SENSORS_PC87360
++ If you say yes here you get support for the integrated hardware
++ monitoring in the National Semicoductor PC87360, PC87363, PC87364,
++ PC87365 and PC87366 Super I/O chips. This can also be built as a
++ module which can be inserted and removed while the kernel is
++ running.
++
++ You will also need the latest user-space utilities: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu/
++
++Philips PCF8574
++CONFIG_SENSORS_PCF8574
++ If you say yes here you get support for the Philips PCF8574
++ I2C 8-bit Parallel I/O device.
++ This can also be built as a module which can be
++ inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Philips PCF8591
++CONFIG_SENSORS_PCF8591
++ If you say yes here you get support for the Philips PCF8591
++ I2C Quad D/A + Single A/D I/O device.
++ This can also be built as a module which can be
++ inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Silicon Integrated Systems Corp. SiS5595 Sensor
++CONFIG_SENSORS_SIS5595
++ If you say yes here you get support for the integrated sensors in
++ SiS5595 South Bridges. This can also be built as a module
++ which can be inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++SMSC47M1xx Super I/O Fan Support
++CONFIG_SENSORS_SMSC47M1
++ If you say yes here you get support for the integrated fan
++ monitoring and control in the SMSC 47M1xx Super I/O chips.
++ This can also be built as a module
++ which can be inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Texas Instruments THMC50 / Analog Devices ADM1022
++CONFIG_SENSORS_THMC50
++ If you say yes here you get support for Texas Instruments THMC50
++ sensor chips and clones: the Analog Devices ADM1022.
++ This can also be built as a module which
++ can be inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Via VT82C686A/B
++CONFIG_SENSORS_VIA686A
++ If you say yes here you get support for the integrated sensors in
++ Via 686A/B South Bridges. This can also be built as a module
++ which can be inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Via VT1211 Sensors
++CONFIG_SENSORS_VT1211
++ If you say yes here you get support for the integrated sensors in
++ the Via VT1211 Super I/O device. This can also be built as a module
++ which can be inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Via VT8231 Sensors
++CONFIG_SENSORS_VT8231
++ If you say yes here you get support for the integrated sensors in
++ the Via VT8231 device. This can also be built as a module
++ which can be inserted and removed while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Winbond W83781D, W83782D, W83783S, W83627HF, AS99127F
++CONFIG_SENSORS_W83781D
++ If you say yes here you get support for the Winbond W8378x series
++ of sensor chips: the W83781D, W83782D, W83783S and W83682HF,
++ and the similar Asus AS99127F. This
++ can also be built as a module which can be inserted and removed
++ while the kernel is running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
++Winbond W83627HF, W83627THF, W83697HF
++CONFIG_SENSORS_W83627HF
++ If you say yes here you get support for the Winbond W836x7 series
++ of sensor chips: the Winbond W83627HF, W83627THF and W83697HF. This
++ can also be built as a module which can be inserted and removed
++ while the kernel is running.
++
++ You will also need the latest user-space utilities: you can find
++ them in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu/
++
++Winbond W83L785TS-S
++CONFIG_SENSORS_W83L785TS
++ If you say yes here you get support for the Winbond W83L785TS-S
++ sensor chip. This can also be built as a module.
++
++ You will also need the latest user-space utilities: you can find
++ them in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu/
++
++EEprom (DIMM) reader
++CONFIG_SENSORS_EEPROM
++ If you say yes here you get read-only access to the EEPROM data
++ available on modern memory DIMMs, and which could theoretically
++ also be available on other devices. This can also be built as a
++ module which can be inserted and removed while the kernel is
++ running.
++
++ You will also need the latest user-space utilties: you can find them
++ in the lm_sensors package, which you can download at
++ http://www.lm-sensors.nu
++
+ # End:
+--- linux-old/MAINTAINERS Sun Oct 3 01:33:28 2004
++++ linux/MAINTAINERS Mon Dec 13 20:18:56 2004
+@@ -1659,6 +1659,15 @@
+ L: linux-ide@vger.kernel.org
+ S: Supported
+
++SENSORS DRIVERS
++P: Frodo Looijaard
++M: frodol@dds.nl
++P: Philip Edelbrock
++M: phil@netroedge.com
++L: sensors@stimpy.netroedge.com
++W: http://www.lm-sensors.nu/
++S: Maintained
++
+ SGI VISUAL WORKSTATION 320 AND 540
+ P: Bent Hagemark
+ M: bh@sgi.com
+--- linux-old/arch/i386/kernel/dmi_scan.c Fri Apr 16 03:14:11 2004
++++ linux/arch/i386/kernel/dmi_scan.c Mon Dec 13 20:18:56 2004
+@@ -15,6 +15,7 @@
+ #include "pci-i386.h"
+
+ unsigned long dmi_broken;
++int is_unsafe_smbus;
+ int is_sony_vaio_laptop;
+
+ struct dmi_header
+@@ -371,6 +372,19 @@
+ }
+
+ /*
++ * Don't access SMBus on IBM systems which get corrupted eeproms
++ */
++
++static __init int disable_smbus(struct dmi_blacklist *d)
++{
++ if (is_unsafe_smbus == 0) {
++ is_unsafe_smbus = 1;
++ printk(KERN_INFO "%s machine detected. Disabling SMBus accesses.\n", d->ident);
++ }
++ return 0;
++}
++
++/*
+ * Check for a Sony Vaio system
+ *
+ * On a Sony system we want to enable the use of the sonypi
+@@ -675,6 +689,10 @@
+ NO_MATCH, NO_MATCH,
+ } },
+
++ { disable_smbus, "IBM", {
++ MATCH(DMI_SYS_VENDOR, "IBM"),
++ NO_MATCH, NO_MATCH, NO_MATCH
++ } },
+ { sony_vaio_laptop, "Sony Vaio", { /* This is a Sony Vaio laptop */
+ MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
+ MATCH(DMI_PRODUCT_NAME, "PCG-"),
+--- linux-old/arch/i386/kernel/i386_ksyms.c Fri Apr 16 03:14:11 2004
++++ linux/arch/i386/kernel/i386_ksyms.c Mon Dec 13 20:18:56 2004
+@@ -179,6 +179,9 @@
+ EXPORT_SYMBOL(atomic_dec_and_lock);
+ #endif
+
++extern int is_unsafe_smbus;
++EXPORT_SYMBOL(is_unsafe_smbus);
++
+ extern int is_sony_vaio_laptop;
+ EXPORT_SYMBOL(is_sony_vaio_laptop);
+