aboutsummaryrefslogtreecommitdiffstats
path: root/recipes/opencv/opencv/debian/200_documentation.diff
blob: b90dcc9f21e51414353fcc3e37936da388f88090 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
Index: opencv-1.0.0/docs/ref/opencvref_cv.htm
===================================================================
--- opencv-1.0.0.orig/docs/ref/opencvref_cv.htm	2006-10-17 15:53:35.000000000 +0200
+++ opencv-1.0.0/docs/ref/opencvref_cv.htm	2006-11-14 10:27:01.000000000 +0100
@@ -465,7 +465,7 @@
 <pre>
 dst(x&#146;,y&#146;)&lt;-src(x,y)
 (x&#146;,y&#146;)<sup>T</sup>=map_matrix&bull;(x,y,1)<sup>T</sup>+b if CV_WARP_INVERSE_MAP is not set,
-(x, y)<sup>T</sup>=map_matrix&bull;(x&#146;,y&apos,1)<sup>T</sup>+b otherwise
+(x, y)<sup>T</sup>=map_matrix&bull;(x&#146;,y&amp;apos,1)<sup>T</sup>+b otherwise
 </pre>
 <p>
 The function is similar to <a href="#decl_cvGetQuadrangleSubPix">cvGetQuadrangleSubPix</a> but they are
@@ -543,7 +543,7 @@
 <pre>
 dst(x&#146;,y&#146;)&lt;-src(x,y)
 (t&bull;x&#146;,t&bull;y&#146;,t)<sup>T</sup>=map_matrix&bull;(x,y,1)<sup>T</sup>+b if CV_WARP_INVERSE_MAP is not set,
-(t&bull;x, t&bull;y, t)<sup>T</sup>=map_matrix&bull;(x&#146;,y&apos,1)<sup>T</sup>+b otherwise
+(t&bull;x, t&bull;y, t)<sup>T</sup>=map_matrix&bull;(x&#146;,y&amp;apos,1)<sup>T</sup>+b otherwise
 </pre>
 <p>
 For a sparse set of points
@@ -642,12 +642,12 @@
 {
     IplImage* src;
 
-    if( argc == 2 && (src=cvLoadImage(argv[1],1) != 0 )
+    if( argc == 2 &amp;&amp; (src=cvLoadImage(argv[1],1) != 0 )
     {
         IplImage* dst = cvCreateImage( cvSize(256,256), 8, 3 );
         IplImage* src2 = cvCreateImage( cvGetSize(src), 8, 3 );
-        cvLogPolar( src, dst, cvPoint2D32f(src->width/2,src->height/2), 40, CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS );
-        cvLogPolar( dst, src2, cvPoint2D32f(src->width/2,src->height/2), 40, CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS+CV_WARP_INVERSE_MAP );
+        cvLogPolar( src, dst, cvPoint2D32f(src-&gt;width/2,src-&gt;height/2), 40, CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS );
+        cvLogPolar( dst, src2, cvPoint2D32f(src-&gt;width/2,src-&gt;height/2), 40, CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS+CV_WARP_INVERSE_MAP );
         cvNamedWindow( "log-polar", 1 );
         cvShowImage( "log-polar", dst );
         cvNamedWindow( "inverse log-polar", 1 );
@@ -951,8 +951,8 @@
 <li>Transformations within RGB space like adding/removing alpha channel, reversing the channel order,
 conversion to/from 16-bit RGB color (R5:G6:B5 or R5:G5:B5) color, as well as conversion to/from grayscale using:
 <pre>
-RGB[A]->Gray: Y&lt;-0.299*R + 0.587*G + 0.114*B
-Gray->RGB[A]: R&lt;-Y G&lt;-Y B&lt;-Y A&lt;-0
+RGB[A]-&gt;Gray: Y&lt;-0.299*R + 0.587*G + 0.114*B
+Gray-&gt;RGB[A]: R&lt;-Y G&lt;-Y B&lt;-Y A&lt;-0
 </pre>
 <li>RGB&lt;=&gt;CIE XYZ.Rec 709 with D65 white point (<code>CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR, CV_XYZ2RGB</code>):
 <pre>
@@ -1102,7 +1102,7 @@
 document at Charles Poynton site.
 
 <p></p>
-<li>Bayer=>RGB (<code>CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR, CV_BayerGR2BGR,<br>
+<li>Bayer=&gt;RGB (<code>CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR, CV_BayerGR2BGR,<br>
                 CV_BayerBG2RGB, CV_BayerGB2RGB, CV_BayerRG2RGB, CV_BayerGR2RGB</code>)
 <p>Bayer pattern is widely used in CCD and CMOS cameras. It allows to get color picture
 out of a single plane where R,G and B pixels (sensors of a particular component) are interleaved like
@@ -1524,7 +1524,7 @@
 input image (or down-sized input image, see below) the function executes meanshift iterations,
 that is, the pixel <code>(X,Y)</code> neighborhood in the joint space-color
 hyperspace is considered:
-<pre>{(x,y): X-sp&le;x&le;X+sp && Y-sp&le;y&le;Y+sp && ||(R,G,B)-(r,g,b)|| &le; sr},</pre>
+<pre>{(x,y): X-sp&le;x&le;X+sp &amp;&amp; Y-sp&le;y&le;Y+sp &amp;&amp; ||(R,G,B)-(r,g,b)|| &le; sr},</pre>
 where <code>(R,G,B)</code> and <code>(r,g,b)</code> are the vectors of color components
 at <code>(X,Y)</code> and <code>(x,y)</code>, respectively (though, the algorithm does not depend
 on the color space used, so any 3-component color space can be used instead).
@@ -1732,7 +1732,7 @@
 int main(int argc, char** argv)
 {
     IplImage* src;
-    if( argc == 2 && (src=cvLoadImage(argv[1], 0))!= 0)
+    if( argc == 2 &amp;&amp; (src=cvLoadImage(argv[1], 0))!= 0)
     {
         IplImage* dst = cvCreateImage( cvGetSize(src), 8, 1 );
         IplImage* color_dst = cvCreateImage( cvGetSize(src), 8, 3 );
@@ -1832,15 +1832,15 @@
 int main(int argc, char** argv)
 {
     IplImage* img;
-    if( argc == 2 && (img=cvLoadImage(argv[1], 1))!= 0)
+    if( argc == 2 &amp;&amp; (img=cvLoadImage(argv[1], 1))!= 0)
     {
         IplImage* gray = cvCreateImage( cvGetSize(img), 8, 1 );
         CvMemStorage* storage = cvCreateMemStorage(0);
         cvCvtColor( img, gray, CV_BGR2GRAY );
         cvSmooth( gray, gray, CV_GAUSSIAN, 9, 9 ); // smooth it, otherwise a lot of false circles may be detected
-        CvSeq* circles = cvHoughCircles( gray, storage, CV_HOUGH_GRADIENT, 2, gray->height/4, 200, 100 );
+        CvSeq* circles = cvHoughCircles( gray, storage, CV_HOUGH_GRADIENT, 2, gray-&gt;height/4, 200, 100 );
         int i;
-        for( i = 0; i < circles->total; i++ )
+        for( i = 0; i &lt; circles-&gt;total; i++ )
         {
              float* p = (float*)cvGetSeqElem( circles, i );
              cvCircle( img, cvPoint(cvRound(p[0]),cvRound(p[1])), 3, CV_RGB(0,255,0), -1, 8, 0 );
@@ -2076,13 +2076,13 @@
 <p class="Blurb">Queries value of histogram bin</p>
 <pre>
 #define cvQueryHistValue_1D( hist, idx0 ) \
-    cvGetReal1D( (hist)->bins, (idx0) )
+    cvGetReal1D( (hist)-&gt;bins, (idx0) )
 #define cvQueryHistValue_2D( hist, idx0, idx1 ) \
-    cvGetReal2D( (hist)->bins, (idx0), (idx1) )
+    cvGetReal2D( (hist)-&gt;bins, (idx0), (idx1) )
 #define cvQueryHistValue_3D( hist, idx0, idx1, idx2 ) \
-    cvGetReal3D( (hist)->bins, (idx0), (idx1), (idx2) )
+    cvGetReal3D( (hist)-&gt;bins, (idx0), (idx1), (idx2) )
 #define cvQueryHistValue_nD( hist, idx ) \
-    cvGetRealND( (hist)->bins, (idx) )
+    cvGetRealND( (hist)-&gt;bins, (idx) )
 </pre><p><dl>
 <dt>hist<dd>Histogram.
 <dt>idx0, idx1, idx2, idx3<dd>Indices of the bin.
@@ -2098,13 +2098,13 @@
 <p class="Blurb">Returns pointer to histogram bin</p>
 <pre>
 #define cvGetHistValue_1D( hist, idx0 ) \
-    ((float*)(cvPtr1D( (hist)->bins, (idx0), 0 ))
+    ((float*)(cvPtr1D( (hist)-&gt;bins, (idx0), 0 ))
 #define cvGetHistValue_2D( hist, idx0, idx1 ) \
-    ((float*)(cvPtr2D( (hist)->bins, (idx0), (idx1), 0 ))
+    ((float*)(cvPtr2D( (hist)-&gt;bins, (idx0), (idx1), 0 ))
 #define cvGetHistValue_3D( hist, idx0, idx1, idx2 ) \
-    ((float*)(cvPtr3D( (hist)->bins, (idx0), (idx1), (idx2), 0 ))
+    ((float*)(cvPtr3D( (hist)-&gt;bins, (idx0), (idx1), (idx2), 0 ))
 #define cvGetHistValue_nD( hist, idx ) \
-    ((float*)(cvPtrND( (hist)->bins, (idx), 0 ))
+    ((float*)(cvPtrND( (hist)-&gt;bins, (idx), 0 ))
 </pre><p><dl>
 <dt>hist<dd>Histogram.
 <dt>idx0, idx1, idx2, idx3<dd>Indices of the bin.
@@ -2237,7 +2237,7 @@
 int main( int argc, char** argv )
 {
     IplImage* src;
-    if( argc == 2 && (src=cvLoadImage(argv[1], 1))!= 0)
+    if( argc == 2 &amp;&amp; (src=cvLoadImage(argv[1], 1))!= 0)
     {
         IplImage* h_plane = cvCreateImage( cvGetSize(src), 8, 1 );
         IplImage* s_plane = cvCreateImage( cvGetSize(src), 8, 1 );
@@ -2259,7 +2259,7 @@
         cvCvtPixToPlane( hsv, h_plane, s_plane, v_plane, 0 );
         hist = cvCreateHist( 2, hist_size, CV_HIST_ARRAY, ranges, 1 );
         cvCalcHist( planes, hist, 0, 0 );
-        cvGetMinMaxHistValue( hist, 0, &max_value, 0, 0 );
+        cvGetMinMaxHistValue( hist, 0, &amp;max_value, 0, 0 );
         cvZero( hist_img );
 
         for( h = 0; h &lt; h_bins; h++ )
@@ -2374,8 +2374,8 @@
 the two histograms as:</p>
 <pre>
 dist_hist(I)=0      if hist1(I)==0
-             scale  if hist1(I)!=0 && hist2(I)&gt;hist1(I)
-             hist2(I)*scale/hist1(I) if hist1(I)!=0 && hist2(I)&lt;=hist1(I)
+             scale  if hist1(I)!=0 &amp;&amp; hist2(I)&gt;hist1(I)
+             hist2(I)*scale/hist1(I) if hist1(I)!=0 &amp;&amp; hist2(I)&lt;=hist1(I)
 </pre>
 <p>
 So the destination histogram bins are within less than scale.
@@ -2666,7 +2666,7 @@
                 <li>is_closed=0 - the curve is assumed to be unclosed.
                 <li>is_closed&gt;0 - the curve is assumed to be closed.
                 <li>is_closed&lt;0 - if curve is sequence, the flag CV_SEQ_FLAG_CLOSED of
-                    ((CvSeq*)curve)->flags is checked to determine if the curve is closed or not,
+                    ((CvSeq*)curve)-&gt;flags is checked to determine if the curve is closed or not,
                      otherwise (curve is represented by array (CvMat*) of points) it is assumed
                      to be unclosed.
 </ul>
@@ -2927,12 +2927,12 @@
 
         for( i = 0; i &lt; count; i++ )
         {
-            pt0.x = rand() % (img->width/2) + img->width/4;
-            pt0.y = rand() % (img->height/2) + img->height/4;
-            cvSeqPush( ptseq, &pt0 );
+            pt0.x = rand() % (img-&gt;width/2) + img-&gt;width/4;
+            pt0.y = rand() % (img-&gt;height/2) + img-&gt;height/4;
+            cvSeqPush( ptseq, &amp;pt0 );
         }
         hull = cvConvexHull2( ptseq, 0, CV_CLOCKWISE, 0 );
-        hullcount = hull->total;
+        hullcount = hull-&gt;total;
 #else
         CvPoint* points = (CvPoint*)malloc( count * sizeof(points[0]));
         int* hull = (int*)malloc( count * sizeof(hull[0]));
@@ -2941,11 +2941,11 @@
 
         for( i = 0; i &lt; count; i++ )
         {
-            pt0.x = rand() % (img->width/2) + img->width/4;
-            pt0.y = rand() % (img->height/2) + img->height/4;
+            pt0.x = rand() % (img-&gt;width/2) + img-&gt;width/4;
+            pt0.y = rand() % (img-&gt;height/2) + img-&gt;height/4;
             points[i] = pt0;
         }
-        cvConvexHull2( &point_mat, &hull_mat, CV_CLOCKWISE, 0 );
+        cvConvexHull2( &amp;point_mat, &amp;hull_mat, CV_CLOCKWISE, 0 );
         hullcount = hull_mat.cols;
 #endif
         cvZero( img );
@@ -3552,7 +3552,7 @@
 <dt>criteria<dd>Criteria applied to determine when the window search should be
 finished.
 <dt>comp<dd>Resultant structure that contains converged search window coordinates
-(<code>comp->rect</code> field) and sum of all pixels inside the window (<code>comp->area</code> field).
+(<code>comp-&gt;rect</code> field) and sum of all pixels inside the window (<code>comp-&gt;area</code> field).
 </dl></p><p>
 The function <code>cvMeanShift</code> iterates to find the object center given its back projection and
 initial position of search window. The iterations are made until the search window
@@ -3573,7 +3573,7 @@
 <dt>criteria<dd>Criteria applied to determine when the window search should be
 finished.
 <dt>comp<dd>Resultant structure that contains converged search window coordinates
-(<code>comp->rect</code> field) and sum of all pixels inside the window (<code>comp->area</code> field).
+(<code>comp-&gt;rect</code> field) and sum of all pixels inside the window (<code>comp-&gt;area</code> field).
 <dt>box<dd>Circumscribed box for the object. If not <code>NULL</code>, contains object size and
 orientation.
 </dl></p><p>
@@ -3648,7 +3648,7 @@
 <dt>criteria<dd>Criteria of termination of velocity computing.
 </dl></p><p>
 The function <code>cvCalcOpticalFlowHS</code> computes flow for every pixel of the first input image using
-Horn & Schunck algorithm <a href="#paper_horn81">[Horn81]</a>.
+Horn &amp; Schunck algorithm <a href="#paper_horn81">[Horn81]</a>.
 </p>
 
 
@@ -3667,7 +3667,7 @@
             32-bit floating-point, single-channel.
 </dl></p><p>
 The function <code>cvCalcOpticalFlowLK</code> computes flow for every pixel of the first input image using
-Lucas & Kanade algorithm <a href="#paper_lucas81">[Lucas81]</a>.
+Lucas &amp; Kanade algorithm <a href="#paper_lucas81">[Lucas81]</a>.
 </p>
 
 
@@ -3685,7 +3685,7 @@
 <dt>max_range<dd>Size of the scanned neighborhood in pixels around block.
 <dt>use_previous<dd>Uses previous (input) velocity field.
 <dt>velx<dd>Horizontal component of the optical flow of<br>
-            floor((prev->width - block_size.width)/shiftSize.width) &times; floor((prev->height - block_size.height)/shiftSize.height) size,
+            floor((prev-&gt;width - block_size.width)/shiftSize.width) &times; floor((prev-&gt;height - block_size.height)/shiftSize.height) size,
             32-bit floating-point, single-channel.
 <dt>vely<dd>Vertical component of the optical flow of the same size <code>velx</code>,
             32-bit floating-point, single-channel.
@@ -3766,17 +3766,17 @@
 
     /* backward compatibility fields */
 #if 1
-    float* PosterState;         /* =state_pre->data.fl */
-    float* PriorState;          /* =state_post->data.fl */
-    float* DynamMatr;           /* =transition_matrix->data.fl */
-    float* MeasurementMatr;     /* =measurement_matrix->data.fl */
-    float* MNCovariance;        /* =measurement_noise_cov->data.fl */
-    float* PNCovariance;        /* =process_noise_cov->data.fl */
-    float* KalmGainMatr;        /* =gain->data.fl */
-    float* PriorErrorCovariance;/* =error_cov_pre->data.fl */
-    float* PosterErrorCovariance;/* =error_cov_post->data.fl */
-    float* Temp1;               /* temp1->data.fl */
-    float* Temp2;               /* temp2->data.fl */
+    float* PosterState;         /* =state_pre-&gt;data.fl */
+    float* PriorState;          /* =state_post-&gt;data.fl */
+    float* DynamMatr;           /* =transition_matrix-&gt;data.fl */
+    float* MeasurementMatr;     /* =measurement_matrix-&gt;data.fl */
+    float* MNCovariance;        /* =measurement_noise_cov-&gt;data.fl */
+    float* PNCovariance;        /* =process_noise_cov-&gt;data.fl */
+    float* KalmGainMatr;        /* =gain-&gt;data.fl */
+    float* PriorErrorCovariance;/* =error_cov_pre-&gt;data.fl */
+    float* PosterErrorCovariance;/* =error_cov_post-&gt;data.fl */
+    float* Temp1;               /* temp1-&gt;data.fl */
+    float* Temp2;               /* temp2-&gt;data.fl */
 #endif
 
     CvMat* state_pre;           /* predicted state (x'(k)):
@@ -3872,17 +3872,17 @@
                should be NULL iff there is no external control (<code>control_params</code>=0).
 </dl></p><p>
 The function <code>cvKalmanPredict</code> estimates the subsequent stochastic model state
-by its current state and stores it at <code>kalman->state_pre</code>:</p>
+by its current state and stores it at <code>kalman-&gt;state_pre</code>:</p>
 <pre>
     x'<sub>k</sub>=A&bull;x<sub>k</sub>+B&bull;u<sub>k</sub>
     P'<sub>k</sub>=A&bull;P<sub>k-1</sub>*A<sup>T</sup> + Q,
 where
-x'<sub>k</sub> is predicted state (kalman->state_pre),
-x<sub>k-1</sub> is corrected state on the previous step (kalman->state_post)
+x'<sub>k</sub> is predicted state (kalman-&gt;state_pre),
+x<sub>k-1</sub> is corrected state on the previous step (kalman-&gt;state_post)
                 (should be initialized somehow in the beginning, zero vector by default),
 u<sub>k</sub> is external control (<code>control</code> parameter),
-P'<sub>k</sub> is priori error covariance matrix (kalman->error_cov_pre)
-P<sub>k-1</sub> is posteriori error covariance matrix on the previous step (kalman->error_cov_post)
+P'<sub>k</sub> is priori error covariance matrix (kalman-&gt;error_cov_pre)
+P<sub>k-1</sub> is posteriori error covariance matrix on the previous step (kalman-&gt;error_cov_post)
                 (should be initialized somehow in the beginning, identity matrix by default),
 </pre>
 The function returns the estimated state.
@@ -3909,7 +3909,7 @@
 K<sub>k</sub> - Kalman "gain" matrix.
 </pre>
 <p>
-The function stores adjusted state at <code>kalman->state_post</code> and returns it on output.
+The function stores adjusted state at <code>kalman-&gt;state_post</code> and returns it on output.
 </p>
 
 <h4>Example. Using Kalman filter to track a rotating point</h4>
@@ -3933,51 +3933,51 @@
     CvRandState rng;
     int code = -1;
 
-    cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );
+    cvRandInit( &amp;rng, 0, 1, -1, CV_RAND_UNI );
 
     cvZero( measurement );
     cvNamedWindow( "Kalman", 1 );
 
     for(;;)
     {
-        cvRandSetRange( &rng, 0, 0.1, 0 );
+        cvRandSetRange( &amp;rng, 0, 0.1, 0 );
         rng.disttype = CV_RAND_NORMAL;
 
-        cvRand( &rng, state );
+        cvRand( &amp;rng, state );
 
-        memcpy( kalman->transition_matrix->data.fl, A, sizeof(A));
-        cvSetIdentity( kalman->measurement_matrix, cvRealScalar(1) );
-        cvSetIdentity( kalman->process_noise_cov, cvRealScalar(1e-5) );
-        cvSetIdentity( kalman->measurement_noise_cov, cvRealScalar(1e-1) );
-        cvSetIdentity( kalman->error_cov_post, cvRealScalar(1));
+        memcpy( kalman-&gt;transition_matrix-&gt;data.fl, A, sizeof(A));
+        cvSetIdentity( kalman-&gt;measurement_matrix, cvRealScalar(1) );
+        cvSetIdentity( kalman-&gt;process_noise_cov, cvRealScalar(1e-5) );
+        cvSetIdentity( kalman-&gt;measurement_noise_cov, cvRealScalar(1e-1) );
+        cvSetIdentity( kalman-&gt;error_cov_post, cvRealScalar(1));
         /* choose random initial state */
-        cvRand( &rng, kalman->state_post );
+        cvRand( &ramp;ng, kalman-&gt;state_post );
 
         rng.disttype = CV_RAND_NORMAL;
 
         for(;;)
         {
             #define calc_point(angle)                                      \
-                cvPoint( cvRound(img->width/2 + img->width/3*cos(angle)),  \
-                         cvRound(img->height/2 - img->width/3*sin(angle)))
+                cvPoint( cvRound(img-&gt;width/2 + img-&gt;width/3*cos(angle)),  \
+                         cvRound(img-&gt;height/2 - img-&gt;width/3*sin(angle)))
 
-            float state_angle = state->data.fl[0];
+            float state_angle = state-&gt;data.fl[0];
             CvPoint state_pt = calc_point(state_angle);
 
             /* predict point position */
             const CvMat* prediction = cvKalmanPredict( kalman, 0 );
-            float predict_angle = prediction->data.fl[0];
+            float predict_angle = prediction-&gt;data.fl[0];
             CvPoint predict_pt = calc_point(predict_angle);
             float measurement_angle;
             CvPoint measurement_pt;
 
-            cvRandSetRange( &rng, 0, sqrt(kalman->measurement_noise_cov->data.fl[0]), 0 );
-            cvRand( &rng, measurement );
+            cvRandSetRange( &amp;rng, 0, sqrt(kalman-&gt;measurement_noise_cov-&gt;data.fl[0]), 0 );
+            cvRand( &amp;rng, measurement );
 
             /* generate measurement */
-            cvMatMulAdd( kalman->measurement_matrix, state, measurement, measurement );
+            cvMatMulAdd( kalman-&gt;measurement_matrix, state, measurement, measurement );
 
-            measurement_angle = measurement->data.fl[0];
+            measurement_angle = measurement-&gt;data.fl[0];
             measurement_pt = calc_point(measurement_angle);
 
             /* plot points */
@@ -3996,14 +3996,14 @@
             /* adjust Kalman filter state */
             cvKalmanCorrect( kalman, measurement );
 
-            cvRandSetRange( &rng, 0, sqrt(kalman->process_noise_cov->data.fl[0]), 0 );
-            cvRand( &rng, process_noise );
-            cvMatMulAdd( kalman->transition_matrix, state, process_noise, state );
+            cvRandSetRange( &amp;rng, 0, sqrt(kalman-&gt;process_noise_cov-&gt;data.fl[0]), 0 );
+            cvRand( &amp;rng, process_noise );
+            cvMatMulAdd( kalman-&gt;transition_matrix, state, process_noise, state );
 
             cvShowImage( "Kalman", img );
             code = cvWaitKey( 100 );
 
-            if( code > 0 ) /* break current simulation by pressing a key */
+            if( code &gt; 0 ) /* break current simulation by pressing a key */
                 break;
         }
         if( code == 27 ) /* exit by ESCAPE */
@@ -4641,7 +4641,7 @@
 
 <pre>
 sum_i((x'<sub>i</sub>-(h11*x<sub>i</sub> + h12*y<sub>i</sub> + h13)/(h31*x<sub>i</sub> + h32*y<sub>i</sub> + h33))<sup>2</sup>+
-      (y'<sub>i</sub>-(h21*x<sub>i</sub> + h22*y<sub>i</sub> + h23)/(h31*x<sub>i</sub> + h32*y<sub>i</sub> + h33))<sup>2</sup>) -> min
+      (y'<sub>i</sub>-(h21*x<sub>i</sub> + h22*y<sub>i</sub> + h23)/(h31*x<sub>i</sub> + h32*y<sub>i</sub> + h33))<sup>2</sup>) -&gt; min
 </pre>
 
 The function is used to find initial intrinsic and extrinsic matrices.
@@ -4978,9 +4978,9 @@
                            (7-point method may return up to 3 matrices).
 <dt>method<dd>Method for computing the fundamental matrix
           <dd>CV_FM_7POINT - for 7-point algorithm. N == 7
-          <dd>CV_FM_8POINT - for 8-point algorithm. N >= 8
-          <dd>CV_FM_RANSAC - for RANSAC  algorithm. N >= 8
-          <dd>CV_FM_LMEDS  - for LMedS   algorithm. N >= 8
+          <dd>CV_FM_8POINT - for 8-point algorithm. N &gt;= 8
+          <dd>CV_FM_RANSAC - for RANSAC  algorithm. N &gt;= 8
+          <dd>CV_FM_LMEDS  - for LMedS   algorithm. N &gt;= 8
 <dt>param1<dd>The parameter is used for RANSAC or LMedS methods only.
             It is the maximum distance from point to epipolar line in pixels,
             beyond which the point is considered an outlier and is not used
@@ -5030,10 +5030,10 @@
 /* Fill the points here ... */
 for( i = 0; i &lt; point_count; i++ )
 {
-    points1->data.db[i*2] = &lt;x<sub>1,i</sub>&gt;;
-    points1->data.db[i*2+1] = &lt;y<sub>1,i</sub>&gt;;
-    points2->data.db[i*2] = &lt;x<sub>2,i</sub>&gt;;
-    points2->data.db[i*2+1] = &lt;y<sub>2,i</sub>&gt;;
+    points1-&gt;data.db[i*2] = &lt;x<sub>1,i</sub>&gt;;
+    points1-&gt;data.db[i*2+1] = &lt;y<sub>1,i</sub>&gt;;
+    points2-&gt;data.db[i*2] = &lt;x<sub>2,i</sub>&gt;;
+    points2-&gt;data.db[i*2+1] = &lt;y<sub>2,i</sub>&gt;;
 }
 
 fundamental_matrix = cvCreateMat(3,3,CV_32FC1);
@@ -5115,7 +5115,7 @@
 In case if the input array dimensionality is larger than the output,
 each point coordinates are divided by the last coordinate:
 <pre>
-(x,y[,z],w) -> (x',y'[,z']):
+(x,y[,z],w) -&gt; (x',y'[,z']):
 
 x' = x/w
 y' = y/w
@@ -5124,7 +5124,7 @@
 
 If the output array dimensionality is larger, an extra 1 is appended to each point.
 <pre>
-(x,y[,z]) -> (x,y[,z],1)
+(x,y[,z]) -&gt; (x,y[,z],1)
 </pre>
 
 Otherwise, the input array is simply copied (with optional tranposition) to the output.