aboutsummaryrefslogtreecommitdiffstats
path: root/meta-oe/recipes-devtools/musl/musl-nscd_git.bb
blob: 83125a1ba43e66215dd53ec2f556a692ddfdf391 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (C) 2020 Armin Kuster <akuster808@gmail.com>
# Released under the MIT license (see COPYING.MIT for the terms)

DESCRIPTION = "Musl-nscd is an implementation of the NSCD protocol, suitable for use with musl and with standard NSS modules"
HOMEPAGE = "https://github.com/pikhq/musl-nscd"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://COPYRIGHT;md5=9bf479a145bcaff8489e743da58afeee"
SECTION = "utils"

DEPENDS += "flex-native bison-native flex bison"

PV = "1.0.2"

SRCREV = "af581482a3e1059458f3c8b20a56f82807ca3bd4"
SRC_URI = "git://github.com/pikhq/musl-nscd \
           file://0001-Fix-build-under-GCC-fno-common.patch \
           file://0001-configure-Check-for-flex-if-lex-is-not-found.patch \
          "

UPSTREAM_CHECK_COMMITS = "1"

inherit autotools-brokensep

S = "${WORKDIR}/git"

do_configure () {
    # no debug set -s flag
    sed -i -e 's/LDFLAGS_AUTO=-s/LDFLAGS_AUTO=/' ${S}/configure
    ${S}/configure ${CONFIGUREOPTS} ${EXTRA_OECONF}
}

do_compile () {
    oe_runmake
}

do_install () {
    make DESTDIR=${D} install
}

COMPATIBLE_HOST = ".*-musl.*"
'>489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
#  This file is part of pybootchartgui.

#  pybootchartgui is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.

#  pybootchartgui is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.

#  You should have received a copy of the GNU General Public License
#  along with pybootchartgui. If not, see <http://www.gnu.org/licenses/>.


import cairo
import math
import re
import random
import colorsys
import functools
from operator import itemgetter

class RenderOptions:

    def __init__(self, app_options):
        # should we render a cumulative CPU time chart
        self.cumulative = True
        self.charts = True
        self.kernel_only = False
        self.app_options = app_options

    def proc_tree (self, trace):
        if self.kernel_only:
            return trace.kernel_tree
        else:
            return trace.proc_tree

# Process tree background color.
BACK_COLOR = (1.0, 1.0, 1.0, 1.0)

WHITE = (1.0, 1.0, 1.0, 1.0)
# Process tree border color.
BORDER_COLOR = (0.63, 0.63, 0.63, 1.0)
# Second tick line color.
TICK_COLOR = (0.92, 0.92, 0.92, 1.0)
# 5-second tick line color.
TICK_COLOR_BOLD = (0.86, 0.86, 0.86, 1.0)
# Annotation colour
ANNOTATION_COLOR = (0.63, 0.0, 0.0, 0.5)
# Text color.
TEXT_COLOR = (0.0, 0.0, 0.0, 1.0)

# Font family
FONT_NAME = "Bitstream Vera Sans"
# Title text font.
TITLE_FONT_SIZE = 18
# Default text font.
TEXT_FONT_SIZE = 12
# Axis label font.
AXIS_FONT_SIZE = 11
# Legend font.
LEGEND_FONT_SIZE = 12

# CPU load chart color.
CPU_COLOR = (0.40, 0.55, 0.70, 1.0)
# IO wait chart color.
IO_COLOR = (0.76, 0.48, 0.48, 0.5)
# Disk throughput color.
DISK_TPUT_COLOR = (0.20, 0.71, 0.20, 1.0)
# CPU load chart color.
FILE_OPEN_COLOR = (0.20, 0.71, 0.71, 1.0)
# Mem cached color
MEM_CACHED_COLOR = CPU_COLOR
# Mem used color
MEM_USED_COLOR = IO_COLOR
# Buffers color
MEM_BUFFERS_COLOR = (0.4, 0.4, 0.4, 0.3)
# Swap color
MEM_SWAP_COLOR = DISK_TPUT_COLOR

# Process border color.
PROC_BORDER_COLOR = (0.71, 0.71, 0.71, 1.0)
# Waiting process color.
PROC_COLOR_D = (0.76, 0.48, 0.48, 0.5)
# Running process color.
PROC_COLOR_R = CPU_COLOR
# Sleeping process color.
PROC_COLOR_S = (0.94, 0.94, 0.94, 1.0)
# Stopped process color.
PROC_COLOR_T = (0.94, 0.50, 0.50, 1.0)
# Zombie process color.
PROC_COLOR_Z = (0.71, 0.71, 0.71, 1.0)
# Dead process color.
PROC_COLOR_X = (0.71, 0.71, 0.71, 0.125)
# Paging process color.
PROC_COLOR_W = (0.71, 0.71, 0.71, 0.125)

# Process label color.
PROC_TEXT_COLOR = (0.19, 0.19, 0.19, 1.0)
# Process label font.
PROC_TEXT_FONT_SIZE = 12

# Signature color.
SIG_COLOR = (0.0, 0.0, 0.0, 0.3125)
# Signature font.
SIG_FONT_SIZE = 14
# Signature text.
SIGNATURE = "http://github.com/mmeeks/bootchart"

# Process dependency line color.
DEP_COLOR = (0.75, 0.75, 0.75, 1.0)
# Process dependency line stroke.
DEP_STROKE = 1.0

# Process description date format.
DESC_TIME_FORMAT = "mm:ss.SSS"

# Cumulative coloring bits
HSV_MAX_MOD = 31
HSV_STEP = 7

# Configure task color
TASK_COLOR_CONFIGURE = (1.0, 1.0, 0.00, 1.0)
# Compile task color.
TASK_COLOR_COMPILE = (0.0, 1.00, 0.00, 1.0)
# Install task color
TASK_COLOR_INSTALL = (1.0, 0.00, 1.00, 1.0)
# Sysroot task color
TASK_COLOR_SYSROOT = (0.0, 0.00, 1.00, 1.0)
# Package task color
TASK_COLOR_PACKAGE = (0.0, 1.00, 1.00, 1.0)
# Package Write RPM/DEB/IPK task color
TASK_COLOR_PACKAGE_WRITE = (0.0, 0.50, 0.50, 1.0)

# Distinct colors used for different disk volumnes.
# If we have more volumns, colors get re-used.
VOLUME_COLORS = [
    (1.0, 1.0, 0.00, 1.0),
    (0.0, 1.00, 0.00, 1.0),
    (1.0, 0.00, 1.00, 1.0),
    (0.0, 0.00, 1.00, 1.0),
    (0.0, 1.00, 1.00, 1.0),
]

# Process states
STATE_UNDEFINED = 0
STATE_RUNNING   = 1
STATE_SLEEPING  = 2
STATE_WAITING   = 3
STATE_STOPPED   = 4
STATE_ZOMBIE    = 5

STATE_COLORS = [(0, 0, 0, 0), PROC_COLOR_R, PROC_COLOR_S, PROC_COLOR_D, \
        PROC_COLOR_T, PROC_COLOR_Z, PROC_COLOR_X, PROC_COLOR_W]

# CumulativeStats Types
STAT_TYPE_CPU = 0
STAT_TYPE_IO = 1

# Convert ps process state to an int
def get_proc_state(flag):
    return "RSDTZXW".find(flag) + 1

def draw_text(ctx, text, color, x, y):
    ctx.set_source_rgba(*color)
    ctx.move_to(x, y)
    ctx.show_text(text)

def draw_fill_rect(ctx, color, rect):
    ctx.set_source_rgba(*color)
    ctx.rectangle(*rect)
    ctx.fill()

def draw_rect(ctx, color, rect):
    ctx.set_source_rgba(*color)
    ctx.rectangle(*rect)
    ctx.stroke()

def draw_legend_box(ctx, label, fill_color, x, y, s):
    draw_fill_rect(ctx, fill_color, (x, y - s, s, s))
    draw_rect(ctx, PROC_BORDER_COLOR, (x, y - s, s, s))
    draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)

def draw_legend_line(ctx, label, fill_color, x, y, s):
    draw_fill_rect(ctx, fill_color, (x, y - s/2, s + 1, 3))
    ctx.arc(x + (s + 1)/2.0, y - (s - 3)/2.0, 2.5, 0, 2.0 * math.pi)
    ctx.fill()
    draw_text(ctx, label, TEXT_COLOR, x + s + 5, y)

def draw_label_in_box(ctx, color, label, x, y, w, maxx):
    label_w = ctx.text_extents(label)[2]
    label_x = x + w / 2 - label_w / 2
    if label_w + 10 > w:
        label_x = x + w + 5
    if label_x + label_w > maxx:
        label_x = x - label_w - 5
    draw_text(ctx, label, color, label_x, y)

def draw_sec_labels(ctx, options, rect, sec_w, nsecs):
    ctx.set_font_size(AXIS_FONT_SIZE)
    prev_x = 0
    for i in range(0, rect[2] + 1, sec_w):
        if ((i / sec_w) % nsecs == 0) :
            if options.app_options.as_minutes :
                label = "%.1f" % (i / sec_w / 60.0)
            else :
                label = "%d" % (i / sec_w)
            label_w = ctx.text_extents(label)[2]
            x = rect[0] + i - label_w/2
            if x >= prev_x:
                draw_text(ctx, label, TEXT_COLOR, x, rect[1] - 2)
                prev_x = x + label_w

def draw_box_ticks(ctx, rect, sec_w):
    draw_rect(ctx, BORDER_COLOR, tuple(rect))

    ctx.set_line_cap(cairo.LINE_CAP_SQUARE)

    for i in range(sec_w, rect[2] + 1, sec_w):
        if ((i / sec_w) % 10 == 0) :
            ctx.set_line_width(1.5)
        elif sec_w < 5 :
            continue
        else :
            ctx.set_line_width(1.0)
        if ((i / sec_w) % 30 == 0) :
            ctx.set_source_rgba(*TICK_COLOR_BOLD)
        else :
            ctx.set_source_rgba(*TICK_COLOR)
        ctx.move_to(rect[0] + i, rect[1] + 1)
        ctx.line_to(rect[0] + i, rect[1] + rect[3] - 1)
        ctx.stroke()
    ctx.set_line_width(1.0)

    ctx.set_line_cap(cairo.LINE_CAP_BUTT)

def draw_annotations(ctx, proc_tree, times, rect):
    ctx.set_line_cap(cairo.LINE_CAP_SQUARE)
    ctx.set_source_rgba(*ANNOTATION_COLOR)
    ctx.set_dash([4, 4])

    for time in times:
        if time is not None:
            x = ((time - proc_tree.start_time) * rect[2] / proc_tree.duration)

            ctx.move_to(rect[0] + x, rect[1] + 1)
            ctx.line_to(rect[0] + x, rect[1] + rect[3] - 1)
            ctx.stroke()

    ctx.set_line_cap(cairo.LINE_CAP_BUTT)
    ctx.set_dash([])

def draw_chart(ctx, color, fill, chart_bounds, data, proc_tree, data_range):
    ctx.set_line_width(0.5)
    x_shift = proc_tree.start_time

    def transform_point_coords(point, x_base, y_base, \
                   xscale, yscale, x_trans, y_trans):
        x = (point[0] - x_base) * xscale + x_trans
        y = (point[1] - y_base) * -yscale + y_trans + chart_bounds[3]
        return x, y

    max_x = max (x for (x, y) in data)
    max_y = max (y for (x, y) in data)
    # avoid divide by zero
    if max_y == 0:
        max_y = 1.0
    xscale = float (chart_bounds[2]) / (max_x - x_shift)
    # If data_range is given, scale the chart so that the value range in
    # data_range matches the chart bounds exactly.
    # Otherwise, scale so that the actual data matches the chart bounds.
    if data_range:
        yscale = float(chart_bounds[3]) / (data_range[1] - data_range[0])
        ybase = data_range[0]
    else:
        yscale = float(chart_bounds[3]) / max_y
        ybase = 0

    first = transform_point_coords (data[0], x_shift, ybase, xscale, yscale, \
                        chart_bounds[0], chart_bounds[1])
    last =  transform_point_coords (data[-1], x_shift, ybase, xscale, yscale, \
                        chart_bounds[0], chart_bounds[1])

    ctx.set_source_rgba(*color)
    ctx.move_to(*first)
    for point in data:
        x, y = transform_point_coords (point, x_shift, ybase, xscale, yscale, \
                           chart_bounds[0], chart_bounds[1])
        ctx.line_to(x, y)
    if fill:
        ctx.stroke_preserve()
        ctx.line_to(last[0], chart_bounds[1]+chart_bounds[3])
        ctx.line_to(first[0], chart_bounds[1]+chart_bounds[3])
        ctx.line_to(first[0], first[1])
        ctx.fill()
    else:
        ctx.stroke()
    ctx.set_line_width(1.0)

bar_h = 55
meminfo_bar_h = 2 * bar_h
header_h = 60
# offsets
off_x, off_y = 220, 10
sec_w_base = 1 # the width of a second
proc_h = 16 # the height of a process
leg_s = 10
MIN_IMG_W = 800
CUML_HEIGHT = 2000 # Increased value to accomodate CPU and I/O Graphs
OPTIONS = None

def extents(options, xscale, trace):
    start = min(trace.start.keys())
    end = start

    processes = 0
    for proc in trace.processes:
        if not options.app_options.show_all and \
               trace.processes[proc][1] - trace.processes[proc][0] < options.app_options.mintime:
            continue

        if trace.processes[proc][1] > end:
            end = trace.processes[proc][1]
        processes += 1

    if trace.min is not None and trace.max is not None:
        start = trace.min
        end = trace.max

    w = int ((end - start) * sec_w_base * xscale) + 2 * off_x
    h = proc_h * processes + header_h + 2 * off_y

    if options.charts:
        if trace.cpu_stats:
            h += 30 + bar_h
        if trace.disk_stats:
            h += 30 + bar_h
        if trace.monitor_disk:
            h += 30 + bar_h
        if trace.mem_stats:
            h += meminfo_bar_h

    # Allow for width of process legend and offset
    if w < (720 + off_x):
        w = 720 + off_x

    return (w, h)

def clip_visible(clip, rect):
    xmax = max (clip[0], rect[0])
    ymax = max (clip[1], rect[1])
    xmin = min (clip[0] + clip[2], rect[0] + rect[2])
    ymin = min (clip[1] + clip[3], rect[1] + rect[3])
    return (xmin > xmax and ymin > ymax)

def render_charts(ctx, options, clip, trace, curr_y, w, h, sec_w):
    proc_tree = options.proc_tree(trace)

    # render bar legend
    if trace.cpu_stats:
        ctx.set_font_size(LEGEND_FONT_SIZE)

        draw_legend_box(ctx, "CPU (user+sys)", CPU_COLOR, off_x, curr_y+20, leg_s)
        draw_legend_box(ctx, "I/O (wait)", IO_COLOR, off_x + 120, curr_y+20, leg_s)

        # render I/O wait
        chart_rect = (off_x, curr_y+30, w, bar_h)
        if clip_visible (clip, chart_rect):
            draw_box_ticks (ctx, chart_rect, sec_w)
            draw_annotations (ctx, proc_tree, trace.times, chart_rect)
            draw_chart (ctx, IO_COLOR, True, chart_rect, \
                    [(sample.time, sample.user + sample.sys + sample.io) for sample in trace.cpu_stats], \
                    proc_tree, None)
            # render CPU load
            draw_chart (ctx, CPU_COLOR, True, chart_rect, \
                    [(sample.time, sample.user + sample.sys) for sample in trace.cpu_stats], \
                    proc_tree, None)

        curr_y = curr_y + 30 + bar_h

    # render second chart
    if trace.disk_stats:
        draw_legend_line(ctx, "Disk throughput", DISK_TPUT_COLOR, off_x, curr_y+20, leg_s)
        draw_legend_box(ctx, "Disk utilization", IO_COLOR, off_x + 120, curr_y+20, leg_s)

        # render I/O utilization
        chart_rect = (off_x, curr_y+30, w, bar_h)
        if clip_visible (clip, chart_rect):
            draw_box_ticks (ctx, chart_rect, sec_w)
            draw_annotations (ctx, proc_tree, trace.times, chart_rect)
            draw_chart (ctx, IO_COLOR, True, chart_rect, \
                    [(sample.time, sample.util) for sample in trace.disk_stats], \
                    proc_tree, None)

        # render disk throughput
        max_sample = max (trace.disk_stats, key = lambda s: s.tput)
        if clip_visible (clip, chart_rect):
            draw_chart (ctx, DISK_TPUT_COLOR, False, chart_rect, \
                    [(sample.time, sample.tput) for sample in trace.disk_stats], \
                    proc_tree, None)

        pos_x = off_x + ((max_sample.time - proc_tree.start_time) * w / proc_tree.duration)

        shift_x, shift_y = -20, 20
        if (pos_x < off_x + 245):
            shift_x, shift_y = 5, 40

        label = "%dMB/s" % round ((max_sample.tput) / 1024.0)
        draw_text (ctx, label, DISK_TPUT_COLOR, pos_x + shift_x, curr_y + shift_y)

        curr_y = curr_y + 30 + bar_h

    # render disk space usage
    #
    # Draws the amount of disk space used on each volume relative to the
    # lowest recorded amount. The graphs for each volume are stacked above
    # each other so that total disk usage is visible.
    if trace.monitor_disk:
        ctx.set_font_size(LEGEND_FONT_SIZE)
        # Determine set of volumes for which we have
        # information and the minimal amount of used disk
        # space for each. Currently samples are allowed to
        # not have a values for all volumes; drawing could be
        # made more efficient if that wasn't the case.
        volumes = set()
        min_used = {}
        for sample in trace.monitor_disk:
            for volume, used in sample.records.items():
                volumes.add(volume)
                if volume not in min_used or min_used[volume] > used:
                    min_used[volume] = used
        volumes = sorted(list(volumes))
        disk_scale = 0
        for i, volume in enumerate(volumes):
            volume_scale = max([sample.records[volume] - min_used[volume]
                                for sample in trace.monitor_disk
                                if volume in sample.records])
            # Does not take length of volume name into account, but fixed offset
            # works okay in practice.
            draw_legend_box(ctx, '%s (max: %u MiB)' % (volume, volume_scale / 1024 / 1024),
                            VOLUME_COLORS[i % len(VOLUME_COLORS)],
                            off_x + i * 250, curr_y+20, leg_s)
            disk_scale += volume_scale

        # render used amount of disk space
        chart_rect = (off_x, curr_y+30, w, bar_h)
        if clip_visible (clip, chart_rect):
            draw_box_ticks (ctx, chart_rect, sec_w)
            draw_annotations (ctx, proc_tree, trace.times, chart_rect)
            for i in range(len(volumes), 0, -1):
                draw_chart (ctx, VOLUME_COLORS[(i - 1) % len(VOLUME_COLORS)], True, chart_rect, \
                            [(sample.time,
                              # Sum up used space of all volumes including the current one
                              # so that the graphs appear as stacked on top of each other.
                              functools.reduce(lambda x,y: x+y,
                                     [sample.records[volume] - min_used[volume]
                                      for volume in volumes[0:i]
                                      if volume in sample.records],
                                     0))
                             for sample in trace.monitor_disk], \
                            proc_tree, [0, disk_scale])

        curr_y = curr_y + 30 + bar_h

    # render mem usage
    chart_rect = (off_x, curr_y+30, w, meminfo_bar_h)
    mem_stats = trace.mem_stats
    if mem_stats and clip_visible (clip, chart_rect):
        mem_scale = max(sample.buffers for sample in mem_stats)
        draw_legend_box(ctx, "Mem cached (scale: %u MiB)" % (float(mem_scale) / 1024), MEM_CACHED_COLOR, off_x, curr_y+20, leg_s)
        draw_legend_box(ctx, "Used", MEM_USED_COLOR, off_x + 240, curr_y+20, leg_s)
        draw_legend_box(ctx, "Buffers", MEM_BUFFERS_COLOR, off_x + 360, curr_y+20, leg_s)
        draw_legend_line(ctx, "Swap (scale: %u MiB)" % max([(sample.swap)/1024 for sample in mem_stats]), \
                 MEM_SWAP_COLOR, off_x + 480, curr_y+20, leg_s)
        draw_box_ticks(ctx, chart_rect, sec_w)
        draw_annotations(ctx, proc_tree, trace.times, chart_rect)
        draw_chart(ctx, MEM_BUFFERS_COLOR, True, chart_rect, \
               [(sample.time, sample.buffers) for sample in trace.mem_stats], \
               proc_tree, [0, mem_scale])
        draw_chart(ctx, MEM_USED_COLOR, True, chart_rect, \
               [(sample.time, sample.used) for sample in mem_stats], \
               proc_tree, [0, mem_scale])
        draw_chart(ctx, MEM_CACHED_COLOR, True, chart_rect, \
               [(sample.time, sample.cached) for sample in mem_stats], \
               proc_tree, [0, mem_scale])
        draw_chart(ctx, MEM_SWAP_COLOR, False, chart_rect, \
               [(sample.time, float(sample.swap)) for sample in mem_stats], \
               proc_tree, None)

        curr_y = curr_y + meminfo_bar_h

    return curr_y

def render_processes_chart(ctx, options, trace, curr_y, w, h, sec_w):
    chart_rect = [off_x, curr_y+header_h, w, h - curr_y - 1 * off_y - header_h  ]

    draw_legend_box (ctx, "Configure", \
             TASK_COLOR_CONFIGURE, off_x  , curr_y + 45, leg_s)
    draw_legend_box (ctx, "Compile", \
             TASK_COLOR_COMPILE, off_x+120, curr_y + 45, leg_s)
    draw_legend_box (ctx, "Install", \
             TASK_COLOR_INSTALL, off_x+240, curr_y + 45, leg_s)
    draw_legend_box (ctx, "Populate Sysroot", \
             TASK_COLOR_SYSROOT, off_x+360, curr_y + 45, leg_s)
    draw_legend_box (ctx, "Package", \
             TASK_COLOR_PACKAGE, off_x+480, curr_y + 45, leg_s)
    draw_legend_box (ctx, "Package Write", \
             TASK_COLOR_PACKAGE_WRITE, off_x+600, curr_y + 45, leg_s)

    ctx.set_font_size(PROC_TEXT_FONT_SIZE)

    draw_box_ticks(ctx, chart_rect, sec_w)
    draw_sec_labels(ctx, options, chart_rect, sec_w, 30)

    y = curr_y+header_h

    offset = trace.min or min(trace.start.keys())
    for start in sorted(trace.start.keys()):
        for process in sorted(trace.start[start]):
            if not options.app_options.show_all and \
                    trace.processes[process][1] - start < options.app_options.mintime:
                continue
            task = process.split(":")[1]

            #print(process)
            #print(trace.processes[process][1])
            #print(s)

            x = chart_rect[0] + (start - offset) * sec_w
            w = ((trace.processes[process][1] - start) * sec_w)

            #print("proc at %s %s %s %s" % (x, y, w, proc_h))
            col = None
            if task == "do_compile":
                col = TASK_COLOR_COMPILE
            elif task == "do_configure":
                col = TASK_COLOR_CONFIGURE
            elif task == "do_install":
                col = TASK_COLOR_INSTALL
            elif task == "do_populate_sysroot":
                col = TASK_COLOR_SYSROOT
            elif task == "do_package":
                col = TASK_COLOR_PACKAGE
            elif task == "do_package_write_rpm" or \
                     task == "do_package_write_deb" or \
                     task == "do_package_write_ipk":
                col = TASK_COLOR_PACKAGE_WRITE
            else:
                col = WHITE

            if col:
                draw_fill_rect(ctx, col, (x, y, w, proc_h))
            draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))

            draw_label_in_box(ctx, PROC_TEXT_COLOR, process, x, y + proc_h - 4, w, proc_h)
            y = y + proc_h

    return curr_y

#
# Render the chart.
#
def render(ctx, options, xscale, trace):
    (w, h) = extents (options, xscale, trace)
    global OPTIONS
    OPTIONS = options.app_options

    # x, y, w, h
    clip = ctx.clip_extents()

    sec_w = int (xscale * sec_w_base)
    ctx.set_line_width(1.0)
    ctx.select_font_face(FONT_NAME)
    draw_fill_rect(ctx, WHITE, (0, 0, max(w, MIN_IMG_W), h))
    w -= 2*off_x
    curr_y = off_y;

    if options.charts:
        curr_y = render_charts (ctx, options, clip, trace, curr_y, w, h, sec_w)

    curr_y = render_processes_chart (ctx, options, trace, curr_y, w, h, sec_w)

    return

    proc_tree = options.proc_tree (trace)

    # draw the title and headers
    if proc_tree.idle:
        duration = proc_tree.idle
    else:
        duration = proc_tree.duration

    if not options.kernel_only:
        curr_y = draw_header (ctx, trace.headers, duration)
    else:
        curr_y = off_y;

    # draw process boxes
    proc_height = h
    if proc_tree.taskstats and options.cumulative:
        proc_height -= CUML_HEIGHT

    draw_process_bar_chart(ctx, clip, options, proc_tree, trace.times,
                   curr_y, w, proc_height, sec_w)

    curr_y = proc_height
    ctx.set_font_size(SIG_FONT_SIZE)
    draw_text(ctx, SIGNATURE, SIG_COLOR, off_x + 5, proc_height - 8)

    # draw a cumulative CPU-time-per-process graph
    if proc_tree.taskstats and options.cumulative:
        cuml_rect = (off_x, curr_y + off_y, w, CUML_HEIGHT/2 - off_y * 2)
        if clip_visible (clip, cuml_rect):
            draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, STAT_TYPE_CPU)

    # draw a cumulative I/O-time-per-process graph
    if proc_tree.taskstats and options.cumulative:
        cuml_rect = (off_x, curr_y + off_y * 100, w, CUML_HEIGHT/2 - off_y * 2)
        if clip_visible (clip, cuml_rect):
            draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, STAT_TYPE_IO)

def draw_process_bar_chart(ctx, clip, options, proc_tree, times, curr_y, w, h, sec_w):
    header_size = 0
    if not options.kernel_only:
        draw_legend_box (ctx, "Running (%cpu)",
                 PROC_COLOR_R, off_x    , curr_y + 45, leg_s)
        draw_legend_box (ctx, "Unint.sleep (I/O)",
                 PROC_COLOR_D, off_x+120, curr_y + 45, leg_s)
        draw_legend_box (ctx, "Sleeping",
                 PROC_COLOR_S, off_x+240, curr_y + 45, leg_s)
        draw_legend_box (ctx, "Zombie",
                 PROC_COLOR_Z, off_x+360, curr_y + 45, leg_s)
        header_size = 45

    chart_rect = [off_x, curr_y + header_size + 15,
              w, h - 2 * off_y - (curr_y + header_size + 15) + proc_h]
    ctx.set_font_size (PROC_TEXT_FONT_SIZE)

    draw_box_ticks (ctx, chart_rect, sec_w)
    if sec_w > 100:
        nsec = 1
    else:
        nsec = 5
    draw_sec_labels (ctx, options, chart_rect, sec_w, nsec)
    draw_annotations (ctx, proc_tree, times, chart_rect)

    y = curr_y + 60
    for root in proc_tree.process_tree:
        draw_processes_recursively(ctx, root, proc_tree, y, proc_h, chart_rect, clip)
        y = y + proc_h * proc_tree.num_nodes([root])


def draw_header (ctx, headers, duration):
    toshow = [
      ('system.uname', 'uname', lambda s: s),
      ('system.release', 'release', lambda s: s),
      ('system.cpu', 'CPU', lambda s: re.sub('model name\s*:\s*', '', s, 1)),
      ('system.kernel.options', 'kernel options', lambda s: s),
    ]

    header_y = ctx.font_extents()[2] + 10
    ctx.set_font_size(TITLE_FONT_SIZE)
    draw_text(ctx, headers['title'], TEXT_COLOR, off_x, header_y)
    ctx.set_font_size(TEXT_FONT_SIZE)

    for (headerkey, headertitle, mangle) in toshow:
        header_y += ctx.font_extents()[2]
        if headerkey in headers:
            value = headers.get(headerkey)
        else:
            value = ""
        txt = headertitle + ': ' + mangle(value)
        draw_text(ctx, txt, TEXT_COLOR, off_x, header_y)

    dur = duration / 100.0
    txt = 'time : %02d:%05.2f' % (math.floor(dur/60), dur - 60 * math.floor(dur/60))
    if headers.get('system.maxpid') is not None:
        txt = txt + '      max pid: %s' % (headers.get('system.maxpid'))

    header_y += ctx.font_extents()[2]
    draw_text (ctx, txt, TEXT_COLOR, off_x, header_y)

    return header_y

def draw_processes_recursively(ctx, proc, proc_tree, y, proc_h, rect, clip) :
    x = rect[0] +  ((proc.start_time - proc_tree.start_time) * rect[2] / proc_tree.duration)
    w = ((proc.duration) * rect[2] / proc_tree.duration)

    draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, clip)
    draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h))
    ipid = int(proc.pid)
    if not OPTIONS.show_all:
        cmdString = proc.cmd
    else:
        cmdString = ''
    if (OPTIONS.show_pid or OPTIONS.show_all) and ipid is not 0:
        cmdString = cmdString + " [" + str(ipid // 1000) + "]"
    if OPTIONS.show_all:
        if proc.args:
            cmdString = cmdString + " '" + "' '".join(proc.args) + "'"
        else:
            cmdString = cmdString + " " + proc.exe

    draw_label_in_box(ctx, PROC_TEXT_COLOR, cmdString, x, y + proc_h - 4, w, rect[0] + rect[2])

    next_y = y + proc_h
    for child in proc.child_list:
        if next_y > clip[1] + clip[3]:
            break
        child_x, child_y = draw_processes_recursively(ctx, child, proc_tree, next_y, proc_h, rect, clip)
        draw_process_connecting_lines(ctx, x, y, child_x, child_y, proc_h)
        next_y = next_y + proc_h * proc_tree.num_nodes([child])

    return x, y


def draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, clip):

    if y > clip[1] + clip[3] or y + proc_h + 2 < clip[1]:
        return

    draw_fill_rect(ctx, PROC_COLOR_S, (x, y, w, proc_h))

    last_tx = -1
    for sample in proc.samples :
        tx = rect[0] + round(((sample.time - proc_tree.start_time) * rect[2] / proc_tree.duration))

        # samples are sorted chronologically
        if tx < clip[0]:
            continue
        if tx > clip[0] + clip[2]:
            break

        tw = round(proc_tree.sample_period * rect[2] / float(proc_tree.duration))
        if last_tx != -1 and abs(last_tx - tx) <= tw:
            tw -= last_tx - tx
            tx = last_tx
        tw = max (tw, 1) # nice to see at least something

        last_tx = tx + tw
        state = get_proc_state( sample.state )

        color = STATE_COLORS[state]
        if state == STATE_RUNNING:
            alpha = min (sample.cpu_sample.user + sample.cpu_sample.sys, 1.0)
            color = tuple(list(PROC_COLOR_R[0:3]) + [alpha])
#            print "render time %d [ tx %d tw %d ], sample state %s color %s alpha %g" % (sample.time, tx, tw, state, color, alpha)
        elif state == STATE_SLEEPING:
            continue

        draw_fill_rect(ctx, color, (tx, y, tw, proc_h))

def draw_process_connecting_lines(ctx, px, py, x, y, proc_h):
    ctx.set_source_rgba(*DEP_COLOR)
    ctx.set_dash([2, 2])
    if abs(px - x) < 3:
        dep_off_x = 3
        dep_off_y = proc_h / 4
        ctx.move_to(x, y + proc_h / 2)
        ctx.line_to(px - dep_off_x, y + proc_h / 2)
        ctx.line_to(px - dep_off_x, py - dep_off_y)
        ctx.line_to(px, py - dep_off_y)
    else:
        ctx.move_to(x, y + proc_h / 2)
        ctx.line_to(px, y + proc_h / 2)
        ctx.line_to(px, py)
    ctx.stroke()
    ctx.set_dash([])

# elide the bootchart collector - it is quite distorting
def elide_bootchart(proc):
    return proc.cmd == 'bootchartd' or proc.cmd == 'bootchart-colle'

class CumlSample:
    def __init__(self, proc):
        self.cmd = proc.cmd
        self.samples = []
        self.merge_samples (proc)
        self.color = None

    def merge_samples(self, proc):
        self.samples.extend (proc.samples)
        self.samples.sort (key = lambda p: p.time)

    def next(self):
        global palette_idx
        palette_idx += HSV_STEP
        return palette_idx

    def get_color(self):
        if self.color is None:
            i = self.next() % HSV_MAX_MOD
            h = 0.0
            if i is not 0:
                h = (1.0 * i) / HSV_MAX_MOD
            s = 0.5
            v = 1.0
            c = colorsys.hsv_to_rgb (h, s, v)
            self.color = (c[0], c[1], c[2], 1.0)
        return self.color


def draw_cuml_graph(ctx, proc_tree, chart_bounds, duration, sec_w, stat_type):
    global palette_idx
    palette_idx = 0

    time_hash = {}
    total_time = 0.0
    m_proc_list = {}

    if stat_type is STAT_TYPE_CPU:
        sample_value = 'cpu'
    else:
        sample_value = 'io'
    for proc in proc_tree.process_list:
        if elide_bootchart(proc):
            continue

        for sample in proc.samples:
            total_time += getattr(sample.cpu_sample, sample_value)
            if not sample.time in time_hash:
                time_hash[sample.time] = 1

        # merge pids with the same cmd
        if not proc.cmd in m_proc_list:
            m_proc_list[proc.cmd] = CumlSample (proc)
            continue
        s = m_proc_list[proc.cmd]
        s.merge_samples (proc)

    # all the sample times
    times = sorted(time_hash)
    if len (times) < 2:
        print("degenerate boot chart")
        return

    pix_per_ns = chart_bounds[3] / total_time
#    print "total time: %g pix-per-ns %g" % (total_time, pix_per_ns)

    # FIXME: we have duplicates in the process list too [!] - why !?

    # Render bottom up, left to right
    below = {}
    for time in times:
        below[time] = chart_bounds[1] + chart_bounds[3]

    # same colors each time we render
    random.seed (0)

    ctx.set_line_width(1)

    legends = []
    labels = []

    # render each pid in order
    for cs in m_proc_list.values():
        row = {}
        cuml = 0.0

        # print "pid : %s -> %g samples %d" % (proc.cmd, cuml, len (cs.samples))
        for sample in cs.samples:
            cuml += getattr(sample.cpu_sample, sample_value)
            row[sample.time] = cuml

        process_total_time = cuml

        # hide really tiny processes
        if cuml * pix_per_ns <= 2:
            continue

        last_time = times[0]
        y = last_below = below[last_time]
        last_cuml = cuml = 0.0

        ctx.set_source_rgba(*cs.get_color())
        for time in times:
            render_seg = False

            # did the underlying trend increase ?
            if below[time] != last_below:
                last_below = below[last_time]
                last_cuml = cuml
                render_seg = True

            # did we move up a pixel increase ?
            if time in row:
                nc = round (row[time] * pix_per_ns)
                if nc != cuml:
                    last_cuml = cuml
                    cuml = nc
                    render_seg = True

#            if last_cuml > cuml:
#                assert fail ... - un-sorted process samples

            # draw the trailing rectangle from the last time to
            # before now, at the height of the last segment.
            if render_seg:
                w = math.ceil ((time - last_time) * chart_bounds[2] / proc_tree.duration) + 1
                x = chart_bounds[0] + round((last_time - proc_tree.start_time) * chart_bounds[2] / proc_tree.duration)
                ctx.rectangle (x, below[last_time] - last_cuml, w, last_cuml)
                ctx.fill()
#                ctx.stroke()
                last_time = time
                y = below [time] - cuml

            row[time] = y

        # render the last segment
        x = chart_bounds[0] + round((last_time - proc_tree.start_time) * chart_bounds[2] / proc_tree.duration)
        y = below[last_time] - cuml
        ctx.rectangle (x, y, chart_bounds[2] - x, cuml)
        ctx.fill()
#        ctx.stroke()

        # render legend if it will fit
        if cuml > 8:
            label = cs.cmd
            extnts = ctx.text_extents(label)
            label_w = extnts[2]
            label_h = extnts[3]
#            print "Text extents %g by %g" % (label_w, label_h)
            labels.append((label,
                       chart_bounds[0] + chart_bounds[2] - label_w - off_x * 2,
                       y + (cuml + label_h) / 2))
            if cs in legends:
                print("ARGH - duplicate process in list !")

        legends.append ((cs, process_total_time))

        below = row

    # render grid-lines over the top
    draw_box_ticks(ctx, chart_bounds, sec_w)

    # render labels
    for l in labels:
        draw_text(ctx, l[0], TEXT_COLOR, l[1], l[2])

    # Render legends
    font_height = 20
    label_width = 300
    LEGENDS_PER_COL = 15
    LEGENDS_TOTAL = 45
    ctx.set_font_size (TITLE_FONT_SIZE)
    dur_secs = duration / 100
    cpu_secs = total_time / 1000000000

    # misleading - with multiple CPUs ...
#    idle = ((dur_secs - cpu_secs) / dur_secs) * 100.0
    if stat_type is STAT_TYPE_CPU:
        label = "Cumulative CPU usage, by process; total CPU: " \
            " %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)
    else:
        label = "Cumulative I/O usage, by process; total I/O: " \
            " %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs)

    draw_text(ctx, label, TEXT_COLOR, chart_bounds[0] + off_x,
          chart_bounds[1] + font_height)

    i = 0
    legends = sorted(legends, key=itemgetter(1), reverse=True)
    ctx.set_font_size(TEXT_FONT_SIZE)
    for t in legends:
        cs = t[0]
        time = t[1]
        x = chart_bounds[0] + off_x + int (i/LEGENDS_PER_COL) * label_width
        y = chart_bounds[1] + font_height * ((i % LEGENDS_PER_COL) + 2)
        str = "%s - %.0f(ms) (%2.2f%%)" % (cs.cmd, time/1000000, (time/total_time) * 100.0)
        draw_legend_box(ctx, str, cs.color, x, y, leg_s)
        i = i + 1
        if i >= LEGENDS_TOTAL:
            break