Poky Hardware README ==================== This file gives details about using Poky with the reference machines supported out of the box. A full list of supported reference target machines can be found by looking in the following directories: meta/conf/machine/ meta-yocto-bsp/conf/machine/ If you are in doubt about using Poky/OpenEmbedded with your hardware, consult the documentation for your board/device. Support for additional devices is normally added by creating BSP layers - for more information please see the Yocto Board Support Package (BSP) Developer's Guide - documentation source is in documentation/bspguide or download the PDF from: http://yoctoproject.org/documentation Support for physical reference hardware has now been split out into a meta-yocto-bsp layer which can be removed separately from other layers if not needed. QEMU Emulation Targets ====================== To simplify development, the build system supports building images to work with the QEMU emulator in system emulation mode. Several architectures are currently supported: * ARM (qemuarm) * x86 (qemux86) * x86-64 (qemux86-64) * PowerPC (qemuppc) * MIPS (qemumips) Use of the QEMU images is covered in the Yocto Project Reference Manual. The appropriate MACHINE variable value corresponding to the target is given in brackets. Hardware Reference Boards ========================= The following boards are supported by the meta-yocto-bsp layer: * Texas Instruments Beaglebone (beaglebone) * Freescale MPC8315E-RDB (mpc8315e-rdb) For more information see the board's section below. The appropriate MACHINE variable value corresponding to the board is given in brackets. Reference Board Maintenance =========================== Send pull requests, patches, comments or questions about meta-yocto-bsps to poky@yoctoproject.org Maintainers: Kevin Hao Bruce Ashfield Consumer Devices ================ The following consumer devices are supported by the meta-yocto-bsp layer: * Intel x86 based PCs and devices (genericx86) * Ubiquiti Networks EdgeRouter Lite (edgerouter) For more information see the device's section below. The appropriate MACHINE variable value corresponding to the device is given in brackets. Specific Hardware Documentation =============================== Intel x86 based PCs and devices (genericx86*) ============================================= The genericx86 and genericx86-64 MACHINE are tested on the following platforms: Intel Xeon/Core i-Series: + Intel NUC5 Series - ix-52xx Series SOC (Broadwell) + Intel NUC6 Series - ix-62xx Series SOC (Skylake) + Intel Shumway Xeon Server Intel Atom platforms: + MinnowBoard MAX - E3825 SOC (Bay Trail) + MinnowBoard MAX - Turbot (ADI Engineering) - E3826 SOC (Bay Trail) - These boards can be either 32bot or 64bit modes depending on firmware - See minnowboard.org for details + Intel Braswell SOC and is likely to work on many unlisted Atom/Core/Xeon based devices. The MACHINE type supports ethernet, wifi, sound, and Intel/vesa graphics by default in addition to common PC input devices, busses, and so on. Depending on the device, it can boot from a traditional hard-disk, a USB device, or over the network. Writing generated images to physical media is straightforward with a caveat for USB devices. The following examples assume the target boot device is /dev/sdb, be sure to verify this and use the correct device as the following commands are run as root and are not reversable. USB Device: 1. Build a live image. This image type consists of a simple filesystem without a partition table, which is suitable for USB keys, and with the default setup for the genericx86 machine, this image type is built automatically for any image you build. For example: $ bitbake core-image-minimal 2. Use the "dd" utility to write the image to the raw block device. For example: # dd if=core-image-minimal-genericx86.hddimg of=/dev/sdb If the device fails to boot with "Boot error" displayed, or apparently stops just after the SYSLINUX version banner, it is likely the BIOS cannot understand the physical layout of the disk (or rather it expects a particular layout and cannot handle anything else). There are two possible solutions to this problem: 1. Change the BIOS USB Device setting to HDD mode. The label will vary by device, but the idea is to force BIOS to read the Cylinder/Head/Sector geometry from the device. 2. Use a ".wic" image with an EFI partition a) With a default grub-efi bootloader: # dd if=core-image-minimal-genericx86-64.wic of=/dev/sdb b) Use systemd-boot instead - Build an image with EFI_PROVIDER="systemd-boot" then use the above dd command to write the image to a USB stick. Texas Instruments Beaglebone (beaglebone) ========================================= The Beaglebone is an ARM Cortex-A8 development board with USB, Ethernet, 2D/3D accelerated graphics, audio, serial, JTAG, and SD/MMC. The Black adds a faster CPU, more RAM, eMMC flash and a micro HDMI port. The beaglebone MACHINE is tested on the following platforms: o Beaglebone Black A6 o Beaglebone A6 (the original "White" model) The Beaglebone Black has eMMC, while the White does not. Pressing the USER/BOOT button when powering on will temporarily change the boot order. But for the sake of simplicity, these instructions assume you have erased the eMMC on the Black, so its boot behavior matches that of the White and boots off of SD card. To do this, issue the following commands from the u-boot prompt: # mmc dev 1 # mmc erase 0 512 To further tailor these instructions for your board, please refer to the documentation at http://www.beagleboard.org/bone and http://www.beagleboard.org/black From a Linux system with access to the image files perform the following steps: 1. Build an image. For example: $ bitbake core-image-minimal 2. Use the "dd" utility to write the image to the SD card. For example: # dd core-image-minimal-beaglebone.wic of=/dev/sdb 3. Insert the SD card into the Beaglebone and boot the board. Freescale MPC8315E-RDB (mpc8315e-rdb) ===================================== The MPC8315 PowerPC reference platform (MPC8315E-RDB) is aimed at hardware and software development of network attached storage (NAS) and digital media server applications. The MPC8315E-RDB features the PowerQUICC II Pro processor, which includes a built-in security accelerator. (Note: you may find it easier to order MPC8315E-RDBA; this appears to be the same board in an enclosure with accessories. In any case it is fully compatible with the instructions given here.) Setup instructions ------------------ You will need the following: * NFS root setup on your workstation * TFTP server installed on your workstation * Straight-thru 9-conductor serial cable (DB9, M/F) connected from your PC to UART1 * Ethernet connected to the first ethernet port on the board --- Preparation --- Note: if you have altered your board's ethernet MAC address(es) from the defaults, or you need to do so because you want multiple boards on the same network, then you will need to change the values in the dts file (patch linux/arch/powerpc/boot/dts/mpc8315erdb.dts within the kernel source). If you have left them at the factory default then you shouldn't need to do anything here. --- Booting from NFS root --- Load the kernel and dtb (device tree blob), and boot the system as follows: 1. Get the kernel (uImage-mpc8315e-rdb.bin) and dtb (uImage-mpc8315e-rdb.dtb) files from the tmp/deploy directory, and make them available on your TFTP server. 2. Connect the board's first serial port to your workstation and then start up your favourite serial terminal so that you will be able to interact with the serial console. If you don't have a favourite, picocom is suggested: $ picocom /dev/ttyUSB0 -b 115200 3. Power up or reset the board and press a key on the terminal when prompted to get to the U-Boot command line 4. Set up the environment in U-Boot: => setenv ipaddr => setenv serverip => setenv bootargs root=/dev/nfs rw nfsroot=: ip=:::255.255.255.0:mpc8315e:eth0:off console=ttyS0,115200 5. Download the kernel and dtb, and boot: => tftp 1000000 uImage-mpc8315e-rdb.bin => tftp 2000000 uImage-mpc8315e-rdb.dtb => bootm 1000000 - 2000000 --- Booting from JFFS2 root --- 1. First boot the board with NFS root. 2. Erase the MTD partition which will be used as root: $ flash_eraseall /dev/mtd3 3. Copy the JFFS2 image to the MTD partition: $ flashcp core-image-minimal-mpc8315e-rdb.jffs2 /dev/mtd3 4. Then reboot the board and set up the environment in U-Boot: => setenv bootargs root=/dev/mtdblock3 rootfstype=jffs2 console=ttyS0,115200 Ubiquiti Networks EdgeRouter Lite (edgerouter) ============================================== The EdgeRouter Lite is part of the EdgeMax series. It is a MIPS64 router (based on the Cavium Octeon processor) with 512MB of RAM, which uses an internal USB pendrive for storage. Setup instructions ------------------ You will need the following: * RJ45 -> serial ("rollover") cable connected from your PC to the CONSOLE port on the device * Ethernet connected to the first ethernet port on the board If using NFS as part of the setup process, you will also need: * NFS root setup on your workstation * TFTP server installed on your workstation (if fetching the kernel from TFTP, see below). --- Preparation --- Build an image (e.g. core-image-minimal) using "edgerouter" as the MACHINE. In the following instruction it is based on core-image-minimal. Another target may be similiar with it. --- Booting from NFS root / kernel via TFTP --- Load the kernel, and boot the system as follows: 1. Get the kernel (vmlinux) file from the tmp/deploy/images/edgerouter directory, and make them available on your TFTP server. 2. Connect the board's first serial port to your workstation and then start up your favourite serial terminal so that you will be able to interact with the serial console. If you don't have a favourite, picocom is suggested: $ picocom /dev/ttyS0 -b 115200 3. Power up or reset the board and press a key on the terminal when prompted to get to the U-Boot command line 4. Set up the environment in U-Boot: => setenv ipaddr => setenv serverip 5. Download the kernel and boot: => tftp tftp $loadaddr vmlinux => bootoctlinux $loadaddr coremask=0x3 root=/dev/nfs rw nfsroot=: ip=::::edgerouter:eth0:off mtdparts=phys_mapped_flash:512k(boot0),512k(boot1),64k@3072k(eeprom) --- Booting from USB disk --- To boot from the USB disk, you either need to remove it from the edgerouter box and populate it from another computer, or use a previously booted NFS image and populate from the edgerouter itself. Type 1: Use partitioned image ----------------------------- Steps: 1. Remove the USB disk from the edgerouter and insert it into a computer that has access to your build artifacts. 2. Flash the image. # dd if=core-image-minimal-edgerouter.wic of=/dev/sdb 3. Insert USB disk into the edgerouter and boot it. Type 2: NFS ----------- Note: If you place the kernel on the ext3 partition, you must re-create the ext3 filesystem, since the factory u-boot can only handle 128 byte inodes and cannot read the partition otherwise. These boot instructions assume that you have recreated the ext3 filesystem with 128 byte inodes, you have an updated uboot or you are running and image capable of making the filesystem on the board itself. 1. Boot from NFS root 2. Mount the USB disk partition 2 and then extract the contents of tmp/deploy/core-image-XXXX.tar.bz2 into it. Before starting, copy core-image-minimal-xxx.tar.bz2 and vmlinux into rootfs path on your workstation. and then, # mount /dev/sda2 /media/sda2 # tar -xvjpf core-image-minimal-XXX.tar.bz2 -C /media/sda2 # cp vmlinux /media/sda2/boot/vmlinux # umount /media/sda2 # reboot 3. Reboot the board and press a key on the terminal when prompted to get to the U-Boot command line: # reboot 4. Load the kernel and boot: => ext2load usb 0:2 $loadaddr boot/vmlinux => bootoctlinux $loadaddr coremask=0x3 root=/dev/sda2 rw rootwait mtdparts=phys_mapped_flash:512k(boot0),512k(boot1),64k@3072k(eeprom)