aboutsummaryrefslogtreecommitdiffstats
path: root/recipes/linux/linux-turbostation/001_r1000.diff
diff options
context:
space:
mode:
Diffstat (limited to 'recipes/linux/linux-turbostation/001_r1000.diff')
-rw-r--r--recipes/linux/linux-turbostation/001_r1000.diff2334
1 files changed, 2334 insertions, 0 deletions
diff --git a/recipes/linux/linux-turbostation/001_r1000.diff b/recipes/linux/linux-turbostation/001_r1000.diff
new file mode 100644
index 0000000000..0f94d685fa
--- /dev/null
+++ b/recipes/linux/linux-turbostation/001_r1000.diff
@@ -0,0 +1,2334 @@
+Index: linux-2.6.20.1/drivers/net/Kconfig
+===================================================================
+--- linux-2.6.20.1.orig/drivers/net/Kconfig 2007-02-20 07:34:32.000000000 +0100
++++ linux-2.6.20.1/drivers/net/Kconfig 2007-02-28 20:29:04.000000000 +0100
+@@ -2085,6 +2085,16 @@
+
+ If in doubt, say Y.
+
++config R1000
++ tristate "Realtek 8169 gigabit ethernet support (R1000)"
++ depends on PCI
++ select CRC32
++ ---help---
++ Say Y here if you have a Realtek 8169 PCI Gigabit Ethernet adapter.
++
++ To compile this driver as a module, choose M here: the module
++ will be called r1000_n. This is recommended.
++
+ config SIS190
+ tristate "SiS190/SiS191 gigabit ethernet support"
+ depends on PCI
+Index: linux-2.6.20.1/drivers/net/Makefile
+===================================================================
+--- linux-2.6.20.1.orig/drivers/net/Makefile 2007-02-20 07:34:32.000000000 +0100
++++ linux-2.6.20.1/drivers/net/Makefile 2007-02-28 20:29:04.000000000 +0100
+@@ -188,6 +188,7 @@
+ obj-$(CONFIG_NET_NETX) += netx-eth.o
+ obj-$(CONFIG_DL2K) += dl2k.o
+ obj-$(CONFIG_R8169) += r8169.o
++obj-$(CONFIG_R1000) += r1000_n.o r1000_ioctl.o
+ obj-$(CONFIG_AMD8111_ETH) += amd8111e.o
+ obj-$(CONFIG_IBMVETH) += ibmveth.o
+ obj-$(CONFIG_S2IO) += s2io.o
+Index: linux-2.6.20.1/drivers/net/r1000.h
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ linux-2.6.20.1/drivers/net/r1000.h 2007-02-28 20:29:04.000000000 +0100
+@@ -0,0 +1,390 @@
++#include <linux/module.h>
++#include <linux/pci.h>
++#include <linux/netdevice.h>
++#include <linux/etherdevice.h>
++#include <linux/delay.h>
++#include <linux/version.h>
++#include <linux/types.h>
++#include <linux/errno.h>
++
++#include <linux/timer.h>
++#include <linux/init.h>
++#include <linux/ethtool.h>
++#include <linux/mii.h>
++#include <asm/uaccess.h>
++#include <linux/interrupt.h>
++#include <linux/spinlock.h>
++
++#define R1000_VERSION "1.05"
++#define RELEASE_DATE "2006/10/25"
++#define MODULENAME "r1000"
++#define R1000_DRIVER_NAME MODULENAME R1000_VERSION ", the Linux device driver for Realtek Ethernet Controllers"
++#define PFX MODULENAME ": "
++
++
++#undef R1000_DEBUG
++#undef R1000_JUMBO_FRAME_SUPPORT
++//#undef R1000_HW_FLOW_CONTROL_SUPPORT
++#define R1000_HW_FLOW_CONTROL_SUPPORT
++
++
++#undef R1000_IOCTL_SUPPORT
++#define R1000_USE_IO
++
++#define R1000_BOTTOM_HALVES
++//#undef R1000_BOTTOM_HALVES
++
++#ifdef R1000_DEBUG
++ #define assert(expr) \
++ if(!(expr)) { printk( "Assertion failed! %s,%s,%s,line=%d\n", #expr,__FILE__,__FUNCTION__,__LINE__); }
++ #define DBG_PRINT( fmt, args...) printk("r1000: " fmt, ## args);
++#else
++ #define assert(expr) do {} while (0)
++ #define DBG_PRINT( fmt, args...) ;
++#endif // end of #ifdef R1000_DEBUG
++
++/* media options */
++#define MAX_UNITS 8
++
++#define OPTION_UNSET -1
++#define OPTION_DISABLED 0
++#define OPTION_ENABLED 1
++
++/* MAC address length*/
++#define MAC_ADDR_LEN 6
++
++#define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */
++#define RX_DMA_BURST 7 /* Maximum PCI burst, '6' is 1024 */
++#define TX_DMA_BURST 7 /* Maximum PCI burst, '6' is 1024 */
++#define ETTh 0x3F /* 0x3F means NO threshold */
++
++#define ETH_HDR_LEN 14
++#define DEFAULT_MTU 1500
++#define DEFAULT_RX_BUF_LEN 1536
++
++
++#ifdef R1000_JUMBO_FRAME_SUPPORT
++#define MAX_JUMBO_FRAME_MTU ( 10000 )
++#define MAX_RX_SKBDATA_SIZE ( MAX_JUMBO_FRAME_MTU + ETH_HDR_LEN )
++#else
++//#define MAX_RX_SKBDATA_SIZE 1600
++#define MAX_RX_SKBDATA_SIZE 1608
++#endif //end #ifdef R1000_JUMBO_FRAME_SUPPORT
++
++
++#define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */
++
++#define NUM_TX_DESC 1024 /* Number of Tx descriptor registers*/
++#define NUM_RX_DESC 1024 /* Number of Rx descriptor registers*/
++
++#define RTL_MIN_IO_SIZE 0x80
++#define TX_TIMEOUT (6*HZ)
++#define R1000_TIMER_EXPIRE_TIME 100 //100
++
++#ifdef R1000_USE_IO
++#define RTL_W8(reg, val8) outb ((val8), ioaddr + (reg))
++#define RTL_W16(reg, val16) outw ((val16), ioaddr + (reg))
++#define RTL_W32(reg, val32) outl ((val32), ioaddr + (reg))
++#define RTL_R8(reg) inb (ioaddr + (reg))
++#define RTL_R16(reg) inw (ioaddr + (reg))
++#define RTL_R32(reg) ((unsigned long) inl (ioaddr + (reg)))
++#else //R1000_USE_IO
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,6)
++/* write/read MMIO register for Linux kernel 2.4.x*/
++#define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg))
++#define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg))
++#define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg))
++#define RTL_R8(reg) readb (ioaddr + (reg))
++#define RTL_R16(reg) readw (ioaddr + (reg))
++#define RTL_R32(reg) ((unsigned long) readl (ioaddr + (reg)))
++#else
++/* write/read MMIO register for Linux kernel 2.6.x*/
++#define RTL_W8(reg, val8) iowrite8 ((val8), (void *)(ioaddr + (reg)))
++#define RTL_W16(reg, val16) iowrite16 ((val16), (void *)(ioaddr + (reg)))
++#define RTL_W32(reg, val32) iowrite32 ((val32), (void *)(ioaddr + (reg)))
++#define RTL_R8(reg) ioread8 ((void *)(ioaddr + (reg)))
++#define RTL_R16(reg) ioread16 ((void *)(ioaddr + (reg)))
++#define RTL_R32(reg) ((unsigned long) ioread32 ((void *)(ioaddr + (reg))))
++#endif
++#endif //R1000_USE_IO
++
++#define MCFG_METHOD_1 0x01
++#define MCFG_METHOD_2 0x02
++#define MCFG_METHOD_3 0x03
++#define MCFG_METHOD_4 0x04
++#define MCFG_METHOD_5 0x05
++#define MCFG_METHOD_11 0x0B
++#define MCFG_METHOD_12 0x0C
++#define MCFG_METHOD_13 0x0D
++#define MCFG_METHOD_14 0x0E
++#define MCFG_METHOD_15 0x0F
++
++#define PCFG_METHOD_1 0x01 //PHY Reg 0x03 bit0-3 == 0x0000
++#define PCFG_METHOD_2 0x02 //PHY Reg 0x03 bit0-3 == 0x0001
++#define PCFG_METHOD_3 0x03 //PHY Reg 0x03 bit0-3 == 0x0002
++
++enum pci_config_header_registers {
++ VID = 0x00,
++ DID = 0x02,
++ Command = 0x04,
++ Status = 0x06,
++ Rev_ID = 0x08,
++ Class_Code = 0x09,
++ Cache_Line_Size = 0x0C,
++ Latency_Timer = 0x0D,
++ Header_type = 0x0E,
++ BIST = 0x0F,
++ IOAR = 0x10,
++ MEMAR = 0x14,
++ CIS_Pointer = 0x28,
++ Sub_VID = 0x2C,
++ Sub_DID = 0x2E,
++ BMAR = 0x30,
++ Interrupt_Line = 0x3C,
++ Interrutp_Pin = 0x3D,
++ Min_Gnt = 0x3E,
++ Max_Lat = 0x3F,
++};
++
++enum r1000_registers {
++ MAC0 = 0x00,
++ MAR0 = 0x08,
++ TxDescStartAddr = 0x20,
++ TxHDescStartAddr = 0x28,
++ FLASH = 0x30,
++ ERSR = 0x36,
++ ChipCmd = 0x37,
++ TxPoll = 0x38,
++ IntrMask = 0x3C,
++ IntrStatus = 0x3E,
++ TxConfig = 0x40,
++ RxConfig = 0x44,
++ TCTR = 0x48,
++ RxMissed = 0x4C,
++ Cfg9346 = 0x50,
++ Config0 = 0x51,
++ Config1 = 0x52,
++ Config2 = 0x53,
++ Config3 = 0x54,
++ Config4 = 0x55,
++ Config5 = 0x56,
++ TimerInt = 0x58,
++ MultiIntr = 0x5C,
++ PHYAR = 0x60,
++ TBICSR = 0x64,
++ TBI_ANAR = 0x68,
++ TBI_LPAR = 0x6A,
++ PHYstatus = 0x6C,
++ Off7Ch = 0x7C,
++ RxMaxSize = 0xDA,
++ CPlusCmd = 0xE0,
++ RxDescStartAddr = 0xE4,
++ ETThReg = 0xEC,
++ FuncEvent = 0xF0,
++ FuncEventMask = 0xF4,
++ FuncPresetState = 0xF8,
++ FuncForceEvent = 0xFC,
++};
++
++enum r1000_register_content {
++ /*InterruptStatusBits*/
++ SYSErr = 0x8000,
++ PCSTimeout = 0x4000,
++ SWInt = 0x0100,
++ TxDescUnavail = 0x80,
++ RxFIFOOver = 0x40,
++ LinkChg = 0x20,
++ RxDescUnavail = 0x10,
++ TxErr = 0x08,
++ TxOK = 0x04,
++ RxErr = 0x02,
++ RxOK = 0x01,
++
++ //TCTR/TimerInt contetn
++ CLK_tick = 0x1770, //for PCI clock=33MHz 0x1770=200usec
++
++ /*RxStatusDesc*/
++ RxRES = 0x00200000,
++ RxCRC = 0x00080000,
++ RxRUNT = 0x00100000,
++ RxRWT = 0x00400000,
++
++ /*ChipCmdBits*/
++ CmdReset = 0x10,
++ CmdRxEnb = 0x08,
++ CmdTxEnb = 0x04,
++ RxBufEmpty = 0x01,
++
++ /*Cfg9346Bits*/
++ Cfg9346_Lock = 0x00,
++ Cfg9346_Unlock = 0xC0,
++
++ /*rx_mode_bits*/
++ AcceptErr = 0x20,
++ AcceptRunt = 0x10,
++ AcceptBroadcast = 0x08,
++ AcceptMulticast = 0x04,
++ AcceptMyPhys = 0x02,
++ AcceptAllPhys = 0x01,
++
++ /*RxConfigBits*/
++ RxCfgFIFOShift = 13,
++ RxCfgDMAShift = 8,
++
++ /*TxConfigBits*/
++ TxInterFrameGapShift = 24,
++ TxDMAShift = 8,
++
++ //C+ Command Register
++ CPCR_MulRW_Enable = 0x0008,
++
++ /*rtl8169_PHYstatus (MAC offset 0x6C)*/
++ TBI_Enable = 0x80,
++ TxFlowCtrl = 0x40,
++ RxFlowCtrl = 0x20,
++ _1000Mbps = 0x10,
++ _100Mbps = 0x08,
++ _10Mbps = 0x04,
++ LinkStatus = 0x02,
++ FullDup = 0x01,
++
++ /*GIGABIT_PHY_registers*/
++ PHY_CTRL_REG = 0,
++ PHY_STAT_REG = 1,
++ PHY_AUTO_NEGO_REG = 4,
++ PHY_1000_CTRL_REG = 9,
++
++ /*GIGABIT_PHY_REG_BIT*/
++ PHY_Restart_Auto_Nego = 0x0200,
++ PHY_Enable_Auto_Nego = 0x1000,
++
++ //PHY_STAT_REG = 1;
++ PHY_Auto_Neco_Comp = 0x0020,
++
++ //PHY_AUTO_NEGO_REG = 4;
++ PHY_Cap_10_Half = 0x0020,
++ PHY_Cap_10_Full = 0x0040,
++ PHY_Cap_100_Half = 0x0080,
++ PHY_Cap_100_Full = 0x0100,
++
++ //PHY_1000_CTRL_REG = 9;
++ PHY_Cap_1000_Full = 0x0200,
++ PHY_Cap_1000_Half = 0x0100,
++
++ PHY_Cap_PAUSE = 0x0400,
++ PHY_Cap_ASYM_PAUSE = 0x0800,
++
++ PHY_Cap_Null = 0x0,
++
++ /*_MediaType*/
++ _10_Half = 0x01,
++ _10_Full = 0x02,
++ _100_Half = 0x04,
++ _100_Full = 0x08,
++ _1000_Full = 0x10,
++
++ /*_TBICSRBit*/
++ TBILinkOK = 0x02000000,
++};
++
++
++
++enum _DescStatusBit {
++ OWNbit = 0x80000000,
++ EORbit = 0x40000000,
++ FSbit = 0x20000000,
++ LSbit = 0x10000000,
++};
++
++
++struct TxDesc {
++ u32 status;
++ u32 vlan_tag;
++ u32 buf_addr;
++ u32 buf_Haddr;
++};
++
++struct RxDesc {
++ u32 status;
++ u32 vlan_tag;
++ u32 buf_addr;
++ u32 buf_Haddr;
++};
++
++#define r1000_request_timer( timer, timer_expires, timer_func, timer_data ) \
++{ \
++ init_timer(timer); \
++ timer->expires = (unsigned long)(jiffies + timer_expires); \
++ timer->data = (unsigned long)(timer_data); \
++ timer->function = (void *)(timer_func); \
++ add_timer(timer); \
++ DBG_PRINT("request_timer at 0x%08lx\n", (unsigned long)timer); \
++}
++
++#define r1000_delete_timer( del_timer_t ) \
++{ \
++ del_timer(del_timer_t); \
++ DBG_PRINT("delete_timer at 0x%08lx\n", (unsigned long)del_timer_t); \
++}
++
++#define r1000_mod_timer( timer, timer_expires ) \
++{ \
++ mod_timer( timer, jiffies + timer_expires ); \
++}
++
++typedef struct timer_list rt_timer_t;
++
++struct r1000_private {
++ unsigned long ioaddr; /* memory map physical address*/
++ struct pci_dev *pci_dev; /* Index of PCI device */
++ struct net_device_stats stats; /* statistics of net device */
++ spinlock_t lock; /* spin lock flag */
++ spinlock_t tx_lock; /* tx spin lock flag */
++ spinlock_t rx_lock; /* rx spin lock flag */
++ int chipset;
++ int mcfg;
++ int pcfg;
++ rt_timer_t r1000_timer;
++ unsigned long expire_time;
++
++#ifdef R1000_BOTTOM_HALVES
++ struct tasklet_struct r1000_rx_tasklet;
++ struct tasklet_struct r1000_tx_tasklet;
++#endif //R1000_BOTTOM_HALVES
++
++ unsigned int tx_cnt;
++
++ unsigned long phy_link_down_cnt;
++ unsigned long cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
++ unsigned long cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
++ unsigned long dirty_tx;
++ struct TxDesc *TxDescArray; /* Index of 256-alignment Tx Descriptor buffer */
++ struct RxDesc *RxDescArray; /* Index of 256-alignment Rx Descriptor buffer */
++ struct sk_buff *Tx_skbuff[NUM_TX_DESC];/* Index of Transmit data buffer */
++ struct sk_buff *Rx_skbuff[NUM_RX_DESC];/* Receive data buffer */
++ unsigned char drvinit_fail;
++
++ dma_addr_t txdesc_array_dma_addr[NUM_TX_DESC];
++ dma_addr_t rxdesc_array_dma_addr[NUM_RX_DESC];
++ dma_addr_t rx_skbuff_dma_addr[NUM_RX_DESC];
++
++ void *txdesc_space;
++ dma_addr_t txdesc_phy_dma_addr;
++ int sizeof_txdesc_space;
++
++ void *rxdesc_space;
++ dma_addr_t rxdesc_phy_dma_addr;
++ int sizeof_rxdesc_space;
++
++ int curr_mtu_size;
++ int tx_pkt_len;
++ int rx_pkt_len;
++
++ int hw_rx_pkt_len;
++
++ u16 speed;
++ u8 duplex;
++ u8 autoneg;
++};
++
++
+Index: linux-2.6.20.1/drivers/net/r1000_ioctl.c
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ linux-2.6.20.1/drivers/net/r1000_ioctl.c 2007-02-28 20:29:04.000000000 +0100
+@@ -0,0 +1,129 @@
++#include "r1000.h"
++
++extern int R1000_READ_GMII_REG(unsigned long ioaddr, int RegAddr);
++extern int R1000_WRITE_GMII_REG(unsigned long ioaddr, int RegAddr, int value);
++extern int r1000_set_medium(struct net_device *netdev,u16 speed,u8 duplex,u8 autoneg);
++
++static int ethtool_get_settings(struct net_device *netdev,struct ethtool_cmd *ecmd){
++ struct r1000_private *priv = (struct r1000_private *)(netdev->priv);
++ unsigned long ioaddr = priv->ioaddr;
++ unsigned int bmcr = R1000_READ_GMII_REG(ioaddr,PHY_STAT_REG);
++ unsigned int bmsr = R1000_READ_GMII_REG(ioaddr,PHY_AUTO_NEGO_REG);
++ unsigned int gbcr = R1000_READ_GMII_REG(ioaddr,PHY_1000_CTRL_REG);
++
++ ecmd->supported = (SUPPORTED_10baseT_Half|
++ SUPPORTED_10baseT_Full|
++ SUPPORTED_100baseT_Half|
++ SUPPORTED_100baseT_Full|
++ SUPPORTED_1000baseT_Full|
++ SUPPORTED_Autoneg|
++ SUPPORTED_TP);
++
++ ecmd->advertising = ADVERTISED_TP;
++
++ if(bmsr&ADVERTISE_10HALF)
++ ecmd->advertising |= ADVERTISED_10baseT_Half;
++ if(bmsr&ADVERTISE_10FULL)
++ ecmd->advertising |= ADVERTISED_10baseT_Full;
++ if(bmsr&ADVERTISE_100HALF)
++ ecmd->advertising |= ADVERTISED_100baseT_Half;
++ if(bmsr&ADVERTISE_100FULL)
++ ecmd->advertising |= ADVERTISED_100baseT_Full;
++ if(gbcr&PHY_Cap_1000_Full)
++ ecmd->advertising |= ADVERTISED_1000baseT_Full;
++ if(bmcr&PHY_Enable_Auto_Nego)
++ ecmd->advertising |= ADVERTISED_Autoneg;
++
++ ecmd->port = PORT_TP;
++
++ if(priv->mcfg == MCFG_METHOD_1)
++ ecmd->transceiver = XCVR_EXTERNAL;
++ else
++ ecmd->transceiver = XCVR_INTERNAL;
++
++ if(RTL_R8(PHYstatus)&LinkStatus){
++ if(RTL_R8(PHYstatus)&_1000Mbps)
++ ecmd->speed = SPEED_1000;
++ else if(RTL_R8(PHYstatus)&_100Mbps)
++ ecmd->speed = SPEED_100;
++ else if(RTL_R8(PHYstatus)&_10Mbps)
++ ecmd->speed = SPEED_10;
++
++ if(RTL_R8(PHYstatus)&FullDup)
++ ecmd->duplex = DUPLEX_FULL;
++ else
++ ecmd->duplex = DUPLEX_HALF;
++
++ }else{
++ ecmd->speed = -1;
++ ecmd->duplex = -1;
++ }
++ ecmd->autoneg = AUTONEG_ENABLE;
++ return 0;
++}
++
++static int ethtool_set_settings(struct net_device *netdev,struct ethtool_cmd *ecmd){
++ return r1000_set_medium(netdev,ecmd->speed,ecmd->duplex,ecmd->autoneg);
++}
++
++static void ethtool_get_drvinfo(struct net_device *netdev,struct ethtool_drvinfo *drvinfo){
++ struct r1000_private *priv = netdev_priv(netdev);
++
++ strncpy(drvinfo->driver, MODULENAME,32);
++ strncpy(drvinfo->version, R1000_VERSION,32);
++ strncpy(drvinfo->fw_version, "N/A", 32);
++ strncpy(drvinfo->bus_info, pci_name(priv->pci_dev), 32);
++}
++
++static int ethtool_nway_reset(struct net_device *netdev){
++// struct r1000_private *priv = netdev_priv(netdev);
++
++ if(netif_running(netdev)){
++ }
++
++ return 0;
++}
++
++uint32_t ethtool_get_link(struct net_device *netdev){
++ return netif_carrier_ok(netdev) ? 1 : 0;
++}
++
++int ethtool_ioctl(struct ifreq *ifr){
++ struct net_device *netdev=__dev_get_by_name(ifr->ifr_name);
++ void *useraddr=(void *)ifr->ifr_data;
++ uint32_t ethcmd;
++
++ if(!capable(CAP_NET_ADMIN))
++ return -EPERM;
++
++ if(!netdev || !netif_device_present(netdev))
++ return -ENODEV;
++ if(copy_from_user(&ethcmd, useraddr, sizeof(ethcmd)))
++ return -EFAULT;
++
++ switch (ethcmd){
++ case ETHTOOL_GSET:
++ return ethtool_get_settings(netdev,useraddr);
++ case ETHTOOL_SSET:
++ return ethtool_set_settings(netdev,useraddr);
++ case ETHTOOL_GDRVINFO:
++ ethtool_get_drvinfo(netdev,useraddr);
++ case ETHTOOL_NWAY_RST:
++ return ethtool_nway_reset(netdev);
++ case ETHTOOL_GLINK:
++ return ethtool_get_link(netdev);
++ default:
++ return -EOPNOTSUPP;
++ }
++ return -EOPNOTSUPP;
++}
++
++#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
++struct ethtool_ops r1000_ethtool_ops = {
++ .get_settings = ethtool_get_settings,
++ .set_settings = ethtool_set_settings,
++ .get_drvinfo = ethtool_get_drvinfo,
++ .nway_reset = ethtool_nway_reset,
++ .get_link = ethtool_get_link,
++};
++#endif
+Index: linux-2.6.20.1/drivers/net/r1000_n.c
+===================================================================
+--- /dev/null 1970-01-01 00:00:00.000000000 +0000
++++ linux-2.6.20.1/drivers/net/r1000_n.c 2007-02-28 20:29:04.000000000 +0100
+@@ -0,0 +1,1767 @@
++//=========================================================================
++//Realtek Ethernet driver for Linux kernel 2.4.x. and 2.6.x
++//=========================================================================
++
++#include "r1000.h"
++
++#ifdef MODULE_PARM
++static int speed[MAX_UNITS] = {-1,-1,-1,-1,-1,-1,-1,-1};
++
++static int duplex[MAX_UNITS] = {-1,-1,-1,-1,-1,-1,-1,-1};
++
++static int autoneg[MAX_UNITS] = {-1,-1,-1,-1,-1,-1,-1,-1};
++#endif //MODULE_PARM
++
++/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
++static int max_interrupt_work = 20;
++
++/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
++ The RTL chips use a 64 element hash table based on the Ethernet CRC. */
++static int multicast_filter_limit = 32;
++
++const static struct {
++ const char *name;
++ u8 mcfg; /* depend on documents of Realtek */
++ u32 RxConfigMask; /* should clear the bits supported by this chip */
++} rtl_chip_info[] = {
++ { "RTL8169", MCFG_METHOD_1, 0xff7e1880 },
++ { "RTL8169S/8110S", MCFG_METHOD_2, 0xff7e1880 },
++ { "RTL8169S/8110S", MCFG_METHOD_3, 0xff7e1880 },
++ { "RTL8169SB/8110SB", MCFG_METHOD_4, 0xff7e1880 },
++ { "RTL8110SC", MCFG_METHOD_5, 0xff7e1880 },
++ { "RTL8168B/8111B", MCFG_METHOD_11, 0xff7e1880 },
++ { "RTL8168B/8111B", MCFG_METHOD_12, 0xff7e1880 },
++ { "RTL8101E", MCFG_METHOD_13, 0xff7e1880 },
++ { "RTL8100E", MCFG_METHOD_14, 0xff7e1880 },
++ { "RTL8100E", MCFG_METHOD_15, 0xff7e1880 },
++ { 0 }
++};
++
++
++static struct pci_device_id r1000_pci_tbl[] __devinitdata = {
++ { 0x10ec, 0x8169, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
++ { 0x10ec, 0x8167, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
++ { 0x10ec, 0x8168, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
++ { 0x10ec, 0x8136, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
++ {0,}
++};
++
++
++MODULE_DEVICE_TABLE (pci, r1000_pci_tbl);
++MODULE_AUTHOR ("Realtek");
++MODULE_DESCRIPTION ("Linux device driver for Realtek Ethernet Controllers");
++
++#ifdef MODULE_PARM
++MODULE_PARM (speed, "1-" __MODULE_STRING(MAX_UNITS) "i");
++MODULE_PARM_DESC(speed,"Link speed");
++MODULE_PARM (duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
++MODULE_PARM_DESC(duplex,"Link duplex");
++MODULE_PARM (autoneg, "1-" __MODULE_STRING(MAX_UNITS) "i");
++MODULE_PARM_DESC(autoneg,"Autonegotiation");
++#else //MODULE_PARM
++/* Module Parameters are always initialized to -1, so that the driver
++ * can tell the difference between no user specified value or the
++ * user asking for the default value.
++ * The true default values are loaded in when e1000_check_options is called.
++ *
++ * This is a GCC extension to ANSI C.
++ * See the item "Labeled Elements in Initializers" in the section
++ * "Extensions to the C Language Family" of the GCC documentation.
++ */
++#define R1000_PARAM_INIT { [0 ... MAX_UNITS] = OPTION_UNSET }
++/* All parameters are treated the same, as an integer array of values.
++ * This macro just reduces the need to repeat the same declaration code
++ * over and over (plus this helps to avoid typo bugs).
++ */
++#define R1000_PARAM(X, S) \
++ static int __devinitdata X[MAX_UNITS+1] = R1000_PARAM_INIT; \
++ static int num_##X = 0; \
++ module_param_array(X, int, &num_##X, 0); \
++ MODULE_PARM_DESC(X, S);
++/* Link Speed
++ * Valid Values: 10Mbps, 100Mbps, and 1000Mbps
++ * Defaule value: 100Mbps
++ */
++R1000_PARAM(speed, "Link speed");
++/* Link duplex
++ * Valid Values: half duplex and full duplex
++ * Defaule value: full duplex
++ */
++R1000_PARAM(duplex, "Link duplex");
++/* Autonegotiation
++ * Valid Values: enable and disable
++ * Defaule value: enable
++ */
++R1000_PARAM(autoneg, "Autonegotiation");
++#endif //MODULE_PARM
++
++MODULE_LICENSE("GPL");
++
++
++static int r1000_open (struct net_device *netdev);
++static int r1000_start_xmit (struct sk_buff *skb, struct net_device *netdev);
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
++//typedef int irqreturn_t;
++#define IRQ_NONE 0
++#define IRQ_HANDLED 1
++static void r1000_interrupt (int irq, void *dev_instance, struct pt_regs *regs);
++#else
++static irqreturn_t r1000_interrupt (int irq, void *dev_instance, struct pt_regs *regs);
++#endif
++
++static void r1000_init_ring (struct net_device *netdev);
++static void r1000_hw_start (struct net_device *netdev);
++static int r1000_close (struct net_device *netdev);
++static inline u32 ether_crc (int length, unsigned char *data);
++static void r1000_set_rx_mode (struct net_device *netdev);
++static void r1000_tx_timeout (struct net_device *netdev);
++static struct net_device_stats *r1000_get_stats(struct net_device *netdev);
++
++#ifdef R1000_JUMBO_FRAME_SUPPORT
++static int r1000_change_mtu(struct net_device *netdev, int new_mtu);
++#endif //end #ifdef R1000_JUMBO_FRAME_SUPPORT
++
++static void r1000_hw_PHY_config (struct net_device *netdev);
++static void r1000_hw_PHY_reset(struct net_device *netdev);
++//static const u16 r1000_intr_mask=LinkChg|RxDescUnavail|RxFIFOOver|TxErr|TxOK|RxErr|RxOK;
++static const u16 r1000_intr_mask=LinkChg|RxDescUnavail|TxErr|TxOK|RxErr|RxOK;
++static const unsigned int r1000_rx_config=(RX_FIFO_THRESH<<RxCfgFIFOShift)|(RX_DMA_BURST<<RxCfgDMAShift)|0x0000000E;
++
++static int r1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
++extern int ethtool_ioctl(struct ifreq *ifr);
++extern struct ethtool_ops r1000_ethtool_ops;
++static int r1000_set_speed_duplex(unsigned long ioaddr, unsigned int anar, unsigned int gbcr, unsigned int bmcr);
++
++static void r1000_rx_action(struct net_device *netdev);
++static void r1000_tx_action(struct net_device *netdev);
++
++#ifdef R1000_BOTTOM_HALVES
++static void r1000_rx_interrupt(unsigned long ndev);
++static void r1000_tx_interrupt(unsigned long ndev);
++#else
++static void r1000_rx_interrupt(struct net_device *netdev, struct r1000_private *priv, unsigned long ioaddr);
++static void r1000_tx_interrupt (struct net_device *netdev, struct r1000_private *priv, unsigned long ioaddr);
++#endif //R1000_BOTTOM_HALVES
++
++
++
++#ifdef R1000_DEBUG
++unsigned alloc_rxskb_cnt = 0;
++#define R1000_ALLOC_RXSKB(bufsize) dev_alloc_skb(bufsize); alloc_rxskb_cnt ++ ;
++#define R1000_FREE_RXSKB(skb) kfree_skb(skb); alloc_rxskb_cnt -- ;
++#define R1000_NETIF_RX(skb) netif_rx(skb); alloc_rxskb_cnt -- ;
++#else
++#define R1000_ALLOC_RXSKB(bufsize) dev_alloc_skb(bufsize);
++#define R1000_FREE_RXSKB(skb) kfree_skb(skb);
++#define R1000_NETIF_RX(skb) netif_rx(skb);
++#endif //end #ifdef R1000_DEBUG
++
++
++//=================================================================
++// PHYAR
++// bit Symbol
++// 31 Flag
++// 30-21 reserved
++// 20-16 5-bit GMII/MII register address
++// 15-0 16-bit GMII/MII register data
++//=================================================================
++void R1000_WRITE_GMII_REG( unsigned long ioaddr, int RegAddr, int value )
++{
++ int i;
++
++ RTL_W32 ( PHYAR, 0x80000000 | (RegAddr&0xFF)<<16 | value);
++ udelay(1000);
++
++ for( i = 2000; i > 0 ; i -- ){
++ // Check if the RTL8169 has completed writing to the specified MII register
++ if( ! (RTL_R32(PHYAR)&0x80000000) ){
++ break;
++ }
++ else{
++ udelay(100);
++ }// end of if( ! (RTL_R32(PHYAR)&0x80000000) )
++ }// end of for() loop
++}
++//=================================================================
++int R1000_READ_GMII_REG( unsigned long ioaddr, int RegAddr )
++{
++ int i, value = -1;
++
++ RTL_W32 ( PHYAR, 0x0 | (RegAddr&0xFF)<<16 );
++ udelay(1000);
++
++ for( i = 2000; i > 0 ; i -- ){
++ // Check if the RTL8169 has completed retrieving data from the specified MII register
++ if( RTL_R32(PHYAR) & 0x80000000 ){
++ value = (int)( RTL_R32(PHYAR)&0xFFFF );
++ break;
++ }
++ else{
++ udelay(100);
++ }// end of if( RTL_R32(PHYAR) & 0x80000000 )
++ }// end of for() loop
++ return value;
++}
++
++void r1000_phy_timer_t_handler( void *timer_data )
++{
++ struct net_device *netdev = (struct net_device *)timer_data;
++ struct r1000_private *priv = (struct r1000_private *) (netdev->priv);
++ unsigned long ioaddr = priv->ioaddr;
++
++ assert( priv->mcfg > MCFG_METHOD_1 );
++ assert( priv->pcfg < PCFG_METHOD_3 );
++
++ if( RTL_R8(PHYstatus) & LinkStatus ){
++ priv->phy_link_down_cnt = 0 ;
++ }
++ else{
++ priv->phy_link_down_cnt ++ ;
++ if( priv->phy_link_down_cnt >= 12 ){
++ // If link on 1000, perform phy reset.
++ if( R1000_READ_GMII_REG( ioaddr, PHY_1000_CTRL_REG ) & PHY_Cap_1000_Full )
++ {
++ DBG_PRINT("r1000_hw_PHY_reset\n");
++ r1000_hw_PHY_reset(netdev);
++ }
++
++ priv->phy_link_down_cnt = 0 ;
++ }
++ }
++
++ //---------------------------------------------------------------------------
++ //mod_timer is a more efficient way to update the expire field of an active timer.
++ //---------------------------------------------------------------------------
++// r1000_mod_timer( (&priv->phy_timer_t), 100 );
++}
++
++void r1000_timer_handler( void *timer_data )
++{
++ struct net_device *netdev = (struct net_device *)timer_data;
++ struct r1000_private *priv = (struct r1000_private *) (netdev->priv);
++
++ if( (priv->mcfg > MCFG_METHOD_1) && (priv->pcfg < PCFG_METHOD_3) ){
++ DBG_PRINT("FIX PCS -> r1000_phy_timer_t_handler\n");
++ priv->phy_link_down_cnt = 0;
++ r1000_phy_timer_t_handler( timer_data );
++ }
++
++ r1000_mod_timer( (&priv->r1000_timer), priv->expire_time );
++}
++
++static int r1000_set_speed_duplex(unsigned long ioaddr, unsigned int anar, unsigned int gbcr, unsigned int bmcr){
++ unsigned int i = 0;
++ unsigned int bmsr;
++
++ R1000_WRITE_GMII_REG(ioaddr,PHY_AUTO_NEGO_REG,anar);
++ R1000_WRITE_GMII_REG(ioaddr,PHY_1000_CTRL_REG,gbcr);
++ R1000_WRITE_GMII_REG(ioaddr,PHY_CTRL_REG,bmcr);
++
++ for(i=0;i<10000;i++){
++ bmsr = R1000_READ_GMII_REG(ioaddr,PHY_STAT_REG);
++ if(bmsr&PHY_Auto_Neco_Comp)
++ return 0;
++ }
++ return -1;
++}
++
++static int __devinit r1000_init_board ( struct pci_dev *pdev, struct net_device **netdev_out, unsigned long *ioaddr_out)
++{
++ unsigned long ioaddr = 0;
++ struct net_device *netdev;
++ struct r1000_private *priv;
++ int rc, i;
++#ifndef R1000_USE_IO
++ unsigned long mmio_start, mmio_end, mmio_flags, mmio_len;
++#endif
++
++ assert (pdev != NULL);
++ assert (ioaddr_out != NULL);
++
++ *ioaddr_out = 0;
++ *netdev_out = NULL;
++
++ // dev zeroed in init_etherdev
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0)
++ netdev = init_etherdev (NULL, sizeof (*priv));
++#else
++ netdev = alloc_etherdev (sizeof (*priv));
++#endif
++
++ if (netdev == NULL) {
++ printk (KERN_ERR PFX "unable to alloc new ethernet\n");
++ return -ENOMEM;
++ }
++
++ SET_MODULE_OWNER(netdev);
++
++#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
++ SET_NETDEV_DEV(netdev, &pdev->dev);
++#endif
++
++ priv = netdev->priv;
++
++ // enable device (incl. PCI PM wakeup and hotplug setup)
++ rc = pci_enable_device (pdev);
++ if (rc)
++ goto err_out;
++
++#ifndef R1000_USE_IO
++ mmio_start = pci_resource_start (pdev, 1);
++ mmio_end = pci_resource_end (pdev, 1);
++ mmio_flags = pci_resource_flags (pdev, 1);
++ mmio_len = pci_resource_len (pdev, 1);
++
++ // make sure PCI base addr 1 is MMIO
++ if (!(mmio_flags & IORESOURCE_MEM)) {
++ printk (KERN_ERR PFX "region #1 not an MMIO resource, aborting\n");
++ rc = -ENODEV;
++ goto err_out;
++ }
++
++ // check for weird/broken PCI region reporting
++ if ( mmio_len < RTL_MIN_IO_SIZE ) {
++ printk (KERN_ERR PFX "Invalid PCI region size(s), aborting\n");
++ rc = -ENODEV;
++ goto err_out;
++ }
++#endif
++
++ rc = pci_request_regions (pdev, netdev->name);
++ if (rc)
++ goto err_out;
++
++ // enable PCI bus-mastering
++ pci_set_master (pdev);
++
++#ifdef R1000_USE_IO
++ ioaddr = pci_resource_start(pdev, 0);
++#else
++ // ioremap MMIO region
++ ioaddr = (unsigned long)ioremap (mmio_start, mmio_len);
++ if (ioaddr == 0) {
++ printk (KERN_ERR PFX "cannot remap MMIO, aborting\n");
++ rc = -EIO;
++ goto err_out_free_res;
++ }
++#endif
++
++ // Soft reset the chip.
++ RTL_W8 ( ChipCmd, CmdReset);
++
++ // Check that the chip has finished the reset.
++ for (i = 1000; i > 0; i--){
++ if ( (RTL_R8(ChipCmd) & CmdReset) == 0){
++ break;
++ }
++ else{
++ udelay (10);
++ }
++ }
++
++ // identify config method
++ {
++ unsigned long val32 = (RTL_R32(TxConfig)&0x7c800000);
++
++ if( val32 == 0x38800000)
++ priv->mcfg = MCFG_METHOD_15;
++ else if( val32 == 0x30800000)
++ priv->mcfg = MCFG_METHOD_14;
++ else if( val32 == 0x34000000)
++ priv->mcfg = MCFG_METHOD_13;
++ else if( val32 == 0x38000000)
++ priv->mcfg = MCFG_METHOD_12;
++ else if( val32 == 0x30000000)
++ priv->mcfg = MCFG_METHOD_11;
++ else if( val32 == 0x18000000)
++ priv->mcfg = MCFG_METHOD_5;
++ else if( val32 == 0x10000000 )
++ priv->mcfg = MCFG_METHOD_4;
++ else if( val32 == 0x04000000 )
++ priv->mcfg = MCFG_METHOD_3;
++ else if( val32 == 0x00800000 )
++ priv->mcfg = MCFG_METHOD_2;
++ else if( val32 == 0x00000000 )
++ priv->mcfg = MCFG_METHOD_1;
++ else
++ priv->mcfg = MCFG_METHOD_1;
++ }
++ {
++ unsigned char val8 = (unsigned char)(R1000_READ_GMII_REG(ioaddr,3)&0x000f);
++ if( val8 == 0x00 ){
++ priv->pcfg = PCFG_METHOD_1;
++ }
++ else if( val8 == 0x01 ){
++ priv->pcfg = PCFG_METHOD_2;
++ }
++ else if( val8 == 0x02 ){
++ priv->pcfg = PCFG_METHOD_3;
++ }
++ else{
++ priv->pcfg = PCFG_METHOD_3;
++ }
++ }
++
++
++ for (i = ARRAY_SIZE (rtl_chip_info) - 1; i >= 0; i--){
++ if (priv->mcfg == rtl_chip_info[i].mcfg) {
++ priv->chipset = i;
++ goto match;
++ }
++ }
++
++ //if unknown chip, assume array element #0, original RTL-8169 in this case
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
++ printk (KERN_DEBUG PFX "PCI device %s: unknown chip version, assuming RTL-8169\n", pdev->slot_name);
++#endif
++ priv->chipset = 0;
++
++match:
++ *ioaddr_out = ioaddr;
++ *netdev_out = netdev;
++ return 0;
++
++#ifndef R1000_USE_IO
++err_out_free_res:
++ pci_release_regions (pdev);
++#endif
++
++err_out:
++ unregister_netdev(netdev);
++ kfree(netdev);
++ return rc;
++}
++
++int r1000_set_medium(struct net_device *netdev,u16 speed,u8 duplex,u8 autoneg){
++ struct r1000_private *priv = (struct r1000_private *)(netdev->priv);
++ unsigned long ioaddr = priv->ioaddr;
++ unsigned int anar=0,gbcr=0,bmcr=0,ret=0,val=0;
++
++ val = R1000_READ_GMII_REG( ioaddr, PHY_AUTO_NEGO_REG );
++#ifdef R1000_HW_FLOW_CONTROL_SUPPORT
++ val |= PHY_Cap_PAUSE | PHY_Cap_ASYM_PAUSE ;
++#endif //end #define R1000_HW_FLOW_CONTROL_SUPPORT
++
++ bmcr = PHY_Restart_Auto_Nego|PHY_Enable_Auto_Nego;
++
++ if(autoneg==AUTONEG_ENABLE){
++ priv->autoneg = AUTONEG_ENABLE;
++ anar = PHY_Cap_10_Half|PHY_Cap_10_Full|PHY_Cap_100_Half|PHY_Cap_100_Full;
++ gbcr = PHY_Cap_1000_Half|PHY_Cap_1000_Full;
++ }else{
++ priv->autoneg = AUTONEG_DISABLE;
++ if(speed==SPEED_1000){
++ priv->speed = SPEED_1000;
++ priv->duplex = DUPLEX_FULL;
++
++ anar = PHY_Cap_10_Half|PHY_Cap_10_Full|PHY_Cap_100_Half|PHY_Cap_100_Full;
++ if((priv->mcfg==MCFG_METHOD_13)||(priv->mcfg==MCFG_METHOD_14)||(priv->mcfg==MCFG_METHOD_15))
++ gbcr = PHY_Cap_Null;
++ else
++ gbcr = PHY_Cap_1000_Half|PHY_Cap_1000_Full;
++ }else if((speed==SPEED_100)&&(duplex==DUPLEX_FULL)){
++ priv->speed = SPEED_100;
++ priv->duplex = DUPLEX_FULL;
++
++ anar = PHY_Cap_10_Half|PHY_Cap_10_Full|PHY_Cap_100_Half|PHY_Cap_100_Full;
++ gbcr = PHY_Cap_Null;
++ }else if((speed==SPEED_100)&&(duplex==DUPLEX_HALF)){
++ priv->speed = SPEED_100;
++ priv->duplex = DUPLEX_HALF;
++
++ anar = PHY_Cap_10_Half|PHY_Cap_10_Full|PHY_Cap_100_Half;
++ gbcr = PHY_Cap_Null;
++ }else if((speed==SPEED_10)&&(duplex==DUPLEX_FULL)){
++ priv->speed = SPEED_10;
++ priv->duplex = DUPLEX_FULL;
++
++ anar = PHY_Cap_10_Half|PHY_Cap_10_Full;
++ gbcr = PHY_Cap_Null;
++ }else if((speed==SPEED_10)&&(duplex==DUPLEX_HALF)){
++ priv->speed = SPEED_10;
++ priv->duplex = DUPLEX_HALF;
++
++ anar = PHY_Cap_10_Half;
++ gbcr = PHY_Cap_Null;
++ }else{
++ priv->speed = SPEED_100;
++ priv->duplex = DUPLEX_FULL;
++
++ anar = PHY_Cap_10_Half|PHY_Cap_10_Full|PHY_Cap_100_Half|PHY_Cap_100_Full;
++ gbcr = PHY_Cap_Null;
++ }
++ }
++
++ //enable flow control
++ anar |= val&0xC1F;
++
++ ret = r1000_set_speed_duplex(ioaddr,anar,gbcr,bmcr);
++
++ return ret;
++}
++
++
++static int r1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd){
++
++ if(!netif_running(netdev))
++ return -EINVAL;
++
++ switch(cmd){
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
++ case SIOCETHTOOL:
++ return ethtool_ioctl(ifr);
++#endif
++ default:
++ return -EOPNOTSUPP;
++ }
++}
++
++
++
++
++
++//======================================================================================================
++static int __devinit r1000_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
++{
++ struct net_device *netdev = NULL;
++ struct r1000_private *priv = NULL;
++ unsigned long ioaddr = 0;
++ static int board_idx = -1;
++ int i,rc;
++// int val=0;
++ int speed_opt = SPEED_100;
++ int duplex_opt = DUPLEX_FULL;
++ int autoneg_opt = AUTONEG_ENABLE;
++
++
++ assert (pdev != NULL);
++ assert (ent != NULL);
++
++ board_idx++;
++
++
++ i = r1000_init_board (pdev, &netdev, &ioaddr);
++ if (i < 0) {
++ return i;
++ }
++
++ priv = netdev->priv;
++
++ assert (ioaddr != NULL);
++ assert (netdev != NULL);
++ assert (priv != NULL);
++
++ // Get MAC address //
++ for (i = 0; i < MAC_ADDR_LEN ; i++){
++ netdev->dev_addr[i] = RTL_R8( MAC0 + i );
++ }
++
++ netdev->open = r1000_open;
++ netdev->hard_start_xmit = r1000_start_xmit;
++ netdev->get_stats = r1000_get_stats;
++ netdev->stop = r1000_close;
++ netdev->tx_timeout = r1000_tx_timeout;
++ netdev->set_multicast_list = r1000_set_rx_mode;
++ netdev->watchdog_timeo = TX_TIMEOUT;
++ netdev->irq = pdev->irq;
++ netdev->base_addr = (unsigned long) ioaddr;
++
++#ifdef R1000_JUMBO_FRAME_SUPPORT
++ netdev->change_mtu = r1000_change_mtu;
++#endif //end #ifdef R1000_JUMBO_FRAME_SUPPORT
++
++ netdev->do_ioctl = r1000_ioctl;
++#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
++ netdev->ethtool_ops = &r1000_ethtool_ops;
++#endif
++
++#ifdef R1000_BOTTOM_HALVES
++ tasklet_init(&priv->r1000_rx_tasklet,r1000_rx_interrupt,(unsigned long)netdev);
++ tasklet_init(&priv->r1000_tx_tasklet,r1000_tx_interrupt,(unsigned long)netdev);
++#endif //R1000_BOTTOM_HALVES
++
++
++ priv = netdev->priv; // private data //
++ priv->pci_dev = pdev;
++ priv->ioaddr = ioaddr;
++
++//#ifdef R1000_JUMBO_FRAME_SUPPORT
++ priv->curr_mtu_size = netdev->mtu;
++ priv->tx_pkt_len = netdev->mtu + ETH_HDR_LEN;
++ priv->rx_pkt_len = netdev->mtu + ETH_HDR_LEN;
++ priv->hw_rx_pkt_len = priv->rx_pkt_len + 8;
++//#endif //end #ifdef R1000_JUMBO_FRAME_SUPPORT
++
++ DBG_PRINT("-------------------------- \n");
++ DBG_PRINT("netdev->mtu = %d \n", netdev->mtu);
++ DBG_PRINT("priv->curr_mtu_size = %d \n", priv->curr_mtu_size);
++ DBG_PRINT("priv->tx_pkt_len = %d \n", priv->tx_pkt_len);
++ DBG_PRINT("priv->rx_pkt_len = %d \n", priv->rx_pkt_len);
++ DBG_PRINT("priv->hw_rx_pkt_len = %d \n", priv->hw_rx_pkt_len);
++ DBG_PRINT("-------------------------- \n");
++
++ spin_lock_init(&priv->lock);
++ spin_lock_init(&priv->tx_lock);
++ spin_lock_init(&priv->rx_lock);
++
++ rc = register_netdev(netdev);
++ if(rc){
++#ifndef R1000_USE_IO
++ iounmap ((void *)(netdev->base_addr));
++#endif
++ pci_release_regions(pdev);
++ pci_disable_device(pdev);
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
++ kfree(netdev);
++#else
++ free_netdev(netdev);
++#endif
++ return rc;
++ }
++
++ pci_set_drvdata(pdev,netdev); // pdev->driver_data = data;
++
++
++ printk (KERN_DEBUG "%s: Identified chip type is '%s'.\n",netdev->name,rtl_chip_info[priv->chipset].name);
++ printk (KERN_INFO "%s: %s at 0x%lx, "
++ "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, "
++ "IRQ %d\n",
++ netdev->name,
++ R1000_DRIVER_NAME,
++ netdev->base_addr,
++ netdev->dev_addr[0],netdev->dev_addr[1],
++ netdev->dev_addr[2],netdev->dev_addr[3],
++ netdev->dev_addr[4],netdev->dev_addr[5],
++ netdev->irq);
++
++
++ // Config PHY
++ r1000_hw_PHY_config(netdev);
++
++ DBG_PRINT("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
++ RTL_W8( 0x82, 0x01 );
++
++ if( priv->mcfg < MCFG_METHOD_3 ){
++ DBG_PRINT("Set PCI Latency=0x40\n");
++ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x40);
++ }
++
++ if( priv->mcfg == MCFG_METHOD_2 ){
++ DBG_PRINT("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
++ RTL_W8( 0x82, 0x01 );
++ DBG_PRINT("Set PHY Reg 0x0bh = 0x00h\n");
++ R1000_WRITE_GMII_REG( ioaddr, 0x0b, 0x0000 ); //w 0x0b 15 0 0
++ }
++
++ // if TBI is not endbled
++ if( !(RTL_R8(PHYstatus) & TBI_Enable) ){
++// val = R1000_READ_GMII_REG( ioaddr, PHY_AUTO_NEGO_REG );
++
++//#ifdef R1000_HW_FLOW_CONTROL_SUPPORT
++// val |= PHY_Cap_PAUSE | PHY_Cap_ASYM_PAUSE ;
++//#endif //end #define R1000_HW_FLOW_CONTROL_SUPPORT
++
++ if(speed[board_idx] == -1)
++ speed[board_idx] = SPEED_1000;
++
++ if((duplex[board_idx] == -1) || ((duplex[board_idx] == DUPLEX_HALF) && (speed[board_idx] == SPEED_1000)))
++ duplex[board_idx] = DUPLEX_FULL;
++
++ if(autoneg[board_idx] == -1)
++ autoneg[board_idx] = AUTONEG_ENABLE;
++
++ speed_opt = (board_idx >= MAX_UNITS) ? -1 : speed[board_idx];
++ duplex_opt = (board_idx >= MAX_UNITS) ? -1 : duplex[board_idx];
++ autoneg_opt = (board_idx >= MAX_UNITS) ? -1 : autoneg[board_idx];
++
++ r1000_set_medium(netdev,speed_opt,duplex_opt,autoneg_opt);
++ }// end of TBI is not enabled
++ else{
++ udelay(100);
++ DBG_PRINT("1000Mbps Full-duplex operation, TBI Link %s!\n",(RTL_R32(TBICSR) & TBILinkOK) ? "OK" : "Failed" );
++ }// end of TBI is not enabled
++
++ //show some information after the driver is inserted
++ if(( priv->mcfg == MCFG_METHOD_11 )||( priv->mcfg == MCFG_METHOD_12 ))
++ printk("Realtek RTL8168/8111 Family PCI-E Gigabit Ethernet Network Adapter\n");
++ else if((priv->mcfg==MCFG_METHOD_13)||(priv->mcfg==MCFG_METHOD_14)||(priv->mcfg==MCFG_METHOD_15))
++ printk("Realtek RTL8139/810x Family Fast Ethernet Network Adapter\n");
++ else
++ printk("Realtek RTL8169/8110 Family Gigabit Ethernet Network Adapter\n");
++
++ printk("Driver version:%s\n",R1000_VERSION);
++ printk("Released date:%s\n",RELEASE_DATE);
++ if(RTL_R8(PHYstatus) & LinkStatus){
++ printk("Link Status:%s\n","Linked");
++
++ if(RTL_R8(PHYstatus) & _1000Mbps)
++ printk("Link Speed:1000Mbps\n");
++ else if(RTL_R8(PHYstatus) & _100Mbps)
++ printk("Link Speed:100Mbps\n");
++ else if(RTL_R8(PHYstatus) & _10Mbps)
++ printk("Link Speed:10Mbps\n");
++
++ printk("Duplex mode:%s\n",RTL_R8(PHYstatus)&FullDup?"Full-Duplex":"Half-Duplex");
++ }else{
++ printk("Link Status:%s\n","Not Linked");
++ }
++#ifdef R1000_USE_IO
++ printk("I/O Base:0x%X(I/O port)\n",(unsigned int)(priv->ioaddr));
++#else
++ printk("I/O Base:0x%X(I/O memory)\n",(unsigned int)(priv->ioaddr));
++#endif //R1000_USE_IO
++ printk("IRQ:%d\n",netdev->irq);
++
++ return 0;
++}
++
++static void __devexit r1000_remove_one (struct pci_dev *pdev)
++{
++ struct net_device *netdev = pci_get_drvdata(pdev);
++
++ assert (netdev != NULL);
++ assert (priv != NULL);
++
++ unregister_netdev(netdev);
++
++#ifndef R1000_USE_IO
++ iounmap ((void *)(netdev->base_addr));
++#endif
++ pci_release_regions (pdev);
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
++ kfree(netdev);
++#else
++ free_netdev(netdev);
++#endif
++
++ pci_set_drvdata (pdev, NULL);
++}
++
++static int r1000_open (struct net_device *netdev)
++{
++ struct r1000_private *priv = netdev->priv;
++ struct pci_dev *pdev = priv->pci_dev;
++ int retval;
++// u8 diff;
++// u32 TxPhyAddr, RxPhyAddr;
++
++
++ if( priv->drvinit_fail == 1 ){
++ printk("%s: Gigabit driver open failed.\n", netdev->name );
++ return -ENOMEM;
++ }
++
++ retval = request_irq (netdev->irq, r1000_interrupt, SA_SHIRQ, netdev->name, netdev);
++ if (retval) {
++ return retval;
++ }
++
++ //2004-05-11
++ // Allocate tx/rx descriptor space
++ priv->sizeof_txdesc_space = NUM_TX_DESC * sizeof(struct TxDesc)+256;
++ priv->txdesc_space = pci_alloc_consistent( pdev, priv->sizeof_txdesc_space, &priv->txdesc_phy_dma_addr );
++ if( priv->txdesc_space == NULL ){
++ printk("%s: Gigabit driver alloc txdesc_space failed.\n", netdev->name );
++ return -ENOMEM;
++ }
++ priv->sizeof_rxdesc_space = NUM_RX_DESC * sizeof(struct RxDesc)+256;
++ priv->rxdesc_space = pci_alloc_consistent( pdev, priv->sizeof_rxdesc_space, &priv->rxdesc_phy_dma_addr );
++ if( priv->rxdesc_space == NULL ){
++ printk("%s: Gigabit driver alloc rxdesc_space failed.\n", netdev->name );
++ return -ENOMEM;
++ }
++
++ if(priv->txdesc_phy_dma_addr & 0xff){
++ printk("%s: Gigabit driver txdesc_phy_dma_addr is not 256-bytes-aligned.\n", netdev->name );
++ }
++ if(priv->rxdesc_phy_dma_addr & 0xff){
++ printk("%s: Gigabit driver rxdesc_phy_dma_addr is not 256-bytes-aligned.\n", netdev->name );
++ }
++ // Set tx/rx descriptor space
++ priv->TxDescArray = (struct TxDesc *)priv->txdesc_space;
++ priv->RxDescArray = (struct RxDesc *)priv->rxdesc_space;
++
++ {
++ int i;
++ struct sk_buff *skb = NULL;
++
++ for(i=0;i<NUM_RX_DESC;i++){
++ skb = R1000_ALLOC_RXSKB(MAX_RX_SKBDATA_SIZE);
++ if( skb != NULL ) {
++ skb_reserve (skb, 8); // 16 byte align the IP fields. //
++ priv->Rx_skbuff[i] = skb;
++ }
++ else{
++ printk("%s: Gigabit driver failed to allocate skbuff.\n", netdev->name);
++ priv->drvinit_fail = 1;
++ }
++ }
++ }
++
++
++ //////////////////////////////////////////////////////////////////////////////
++ r1000_init_ring(netdev);
++ r1000_hw_start(netdev);
++
++
++ // ------------------------------------------------------
++ DBG_PRINT("FIX PCS -> r1000_request_timer\n");
++ priv->expire_time = R1000_TIMER_EXPIRE_TIME;
++ r1000_request_timer( (&priv->r1000_timer), priv->expire_time, r1000_timer_handler, ((void *)netdev) ); //in open()
++
++
++ DBG_PRINT("%s: %s() alloc_rxskb_cnt = %d\n", netdev->name, __FUNCTION__, alloc_rxskb_cnt );
++
++ return 0;
++
++}//end of r1000_open (struct net_device *netdev)
++
++static void r1000_hw_PHY_reset(struct net_device *netdev)
++{
++ int val, phy_reset_expiretime = 50;
++ struct r1000_private *priv = netdev->priv;
++ unsigned long ioaddr = priv->ioaddr;
++
++ DBG_PRINT("%s: Reset RTL8169s PHY\n", netdev->name);
++
++ val = ( R1000_READ_GMII_REG( ioaddr, 0 ) | 0x8000 ) & 0xffff;
++ R1000_WRITE_GMII_REG( ioaddr, 0, val );
++
++ do //waiting for phy reset
++ {
++ if( R1000_READ_GMII_REG( ioaddr, 0 ) & 0x8000 ){
++ phy_reset_expiretime --;
++ udelay(100);
++ }
++ else{
++ break;
++ }
++ }while( phy_reset_expiretime >= 0 );
++
++ assert( phy_reset_expiretime > 0 );
++}
++
++static void r1000_hw_PHY_config (struct net_device *netdev)
++{
++ struct r1000_private *priv = netdev->priv;
++ void *ioaddr = (void*)priv->ioaddr;
++
++ DBG_PRINT("priv->mcfg=%d, priv->pcfg=%d\n",priv->mcfg,priv->pcfg);
++
++ if( priv->mcfg == MCFG_METHOD_4 ){
++#if 0
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1F, 0x0001 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1b, 0x841e );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x0e, 0x7bfb );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x09, 0x273a );
++#endif
++
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1F, 0x0002 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x90D0 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1F, 0x0000 );
++ }else if((priv->mcfg == MCFG_METHOD_2)||(priv->mcfg == MCFG_METHOD_3)){
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1f, 0x0001 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x06, 0x006e );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x08, 0x0708 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x15, 0x4000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x18, 0x65c7 );
++
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1f, 0x0001 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0x00a1 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0x0008 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x0120 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0x1000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x0800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x0000 );
++
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0xff41 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0xdf60 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x0140 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0x0077 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x7800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x7000 );
++
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0x802f );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0x4f02 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x0409 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0xf0f9 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x9800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x9000 );
++
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0xdf01 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0xdf20 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0xff95 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0xba00 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xa800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xa000 );
++
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0xff41 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0xdf20 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x0140 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0x00bb );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xb800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xb000 );
++
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0xdf41 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0xdc60 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x6340 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0x007d );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xd800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xd000 );
++
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0xdf01 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0xdf20 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x100a );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0xa0ff );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xf800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xf000 );
++
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1f, 0x0000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x0b, 0x0000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0x9200 );
++#if 0
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1F, 0x0001 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x15, 0x1000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x18, 0x65C7 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x0000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0x00A1 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0x0008 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x1020 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0x1000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x0800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x0000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x7000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0xFF41 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0xDE60 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x0140 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0x0077 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x7800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x7000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xA000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0xDF01 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0xDF20 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0xFF95 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0xFA00 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xA800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xA000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xB000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0xFF41 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0xDE20 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0x0140 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0x00BB );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xB800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xB000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xF000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x03, 0xDF01 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x02, 0xDF20 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x01, 0xFF95 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x00, 0xBF00 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xF800 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0xF000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x04, 0x0000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x1F, 0x0000 );
++ R1000_WRITE_GMII_REG( (unsigned long)ioaddr, 0x0B, 0x0000 );
++#endif
++ }
++ else{
++ DBG_PRINT("priv->mcfg=%d. Discard hw PHY config.\n",priv->mcfg);
++ }
++}
++
++static void r1000_hw_start (struct net_device *netdev)
++{
++ struct r1000_private *priv = netdev->priv;
++ struct pci_dev *pdev = priv->pci_dev;
++ unsigned long ioaddr = priv->ioaddr;
++ u32 i;
++ u8 i8;
++ u16 i16;
++
++ if((priv->mcfg!=MCFG_METHOD_5)&&(priv->mcfg!=MCFG_METHOD_11)&&
++ (priv->mcfg!=MCFG_METHOD_12)&&(priv->mcfg!=MCFG_METHOD_13)&&
++ (priv->mcfg!=MCFG_METHOD_14)&&(priv->mcfg!=MCFG_METHOD_15)){
++ /* Soft reset the chip. */
++ RTL_W8 ( ChipCmd, CmdReset);
++
++ /* Check that the chip has finished the reset. */
++ for (i = 1000; i > 0; i--){
++ if ((RTL_R8( ChipCmd ) & CmdReset) == 0) break;
++ else udelay (10);
++ }
++
++ RTL_W8 ( Cfg9346, Cfg9346_Unlock);
++ RTL_W8 ( ChipCmd, CmdTxEnb | CmdRxEnb);
++ RTL_W8 ( ETThReg, ETTh);
++
++ RTL_W16(CPlusCmd,RTL_R16(CPlusCmd)|CPCR_MulRW_Enable);
++ pci_write_config_byte(pdev,Cache_Line_Size,0x08);
++
++ // For gigabit rtl8169
++ RTL_W16 ( RxMaxSize, (unsigned short)priv->hw_rx_pkt_len );
++
++ // Set Rx Config register
++ i = r1000_rx_config | ( RTL_R32( RxConfig ) & rtl_chip_info[priv->chipset].RxConfigMask);
++ RTL_W32 ( RxConfig, i);
++
++
++ /* Set DMA burst size and Interframe Gap Time */
++ RTL_W32 ( TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift) );
++
++
++
++ RTL_W16( CPlusCmd, RTL_R16(CPlusCmd) );
++
++ if(priv->mcfg==MCFG_METHOD_2||priv->mcfg==MCFG_METHOD_3){
++ RTL_W16( CPlusCmd, (RTL_R16(CPlusCmd)|(1<<14)|(1<<3)) );
++ DBG_PRINT("Set MAC Reg C+CR Offset 0xE0: bit-3 and bit-14\n");
++ }else{
++ RTL_W16( CPlusCmd, (RTL_R16(CPlusCmd)|(1<<3)) );
++ DBG_PRINT("Set MAC Reg C+CR Offset 0xE0: bit-3.\n");
++ }
++
++ {
++ RTL_W16(0xE2,0x0000);
++ }
++
++ priv->cur_rx = 0;
++
++ RTL_W32 ( TxDescStartAddr, priv->txdesc_phy_dma_addr);
++ RTL_W32 ( TxDescStartAddr + 4, 0x00);
++ RTL_W32 ( RxDescStartAddr, priv->rxdesc_phy_dma_addr);
++ RTL_W32 ( RxDescStartAddr + 4, 0x00);
++
++ RTL_W8 ( Cfg9346, Cfg9346_Lock );
++ udelay (10);
++
++ RTL_W32 ( RxMissed, 0 );
++
++ r1000_set_rx_mode(netdev);
++
++ RTL_W16 ( MultiIntr, RTL_R16(MultiIntr) & 0xF000);
++
++ RTL_W16 ( IntrMask, r1000_intr_mask);
++ }else{
++ /* Soft reset the chip. */
++ RTL_W8 ( ChipCmd, CmdReset);
++
++ /* Check that the chip has finished the reset. */
++ for (i = 1000; i > 0; i--){
++ if ((RTL_R8( ChipCmd ) & CmdReset) == 0) break;
++ else udelay (10);
++ }
++
++ if(priv->mcfg==MCFG_METHOD_5){
++ RTL_W16(CPlusCmd,RTL_R16(CPlusCmd)|CPCR_MulRW_Enable);
++ pci_write_config_byte(pdev,Cache_Line_Size,0x08);
++ }
++
++ if( priv->mcfg == MCFG_METHOD_13 ){
++ pci_write_config_word(pdev,0x68,0x00);
++ pci_write_config_word(pdev,0x69,0x08);
++ }
++
++ if( priv->mcfg == MCFG_METHOD_5 ){
++ i8=RTL_R8(Config2);
++ i8=i8&0x07;
++ if(i8&&0x01)
++ RTL_W32(Off7Ch,0x0007FFFF);
++
++ i=0x0007FF00;
++ RTL_W32(Off7Ch, i);
++
++ pci_read_config_word(pdev,0x04,&i16);
++ i16=i16&0xEF;
++ pci_write_config_word(pdev,0x04,i16);
++ }
++
++ RTL_W8 ( Cfg9346, Cfg9346_Unlock);
++ RTL_W8 ( ETThReg, ETTh);
++
++ // For gigabit rtl8169
++ RTL_W16 ( RxMaxSize, (unsigned short)priv->hw_rx_pkt_len );
++
++ RTL_W16( CPlusCmd, RTL_R16(CPlusCmd) );
++
++ if(priv->mcfg==MCFG_METHOD_2||priv->mcfg==MCFG_METHOD_3){
++ RTL_W16( CPlusCmd, (RTL_R16(CPlusCmd)|(1<<14)|(1<<3)) );
++ DBG_PRINT("Set MAC Reg C+CR Offset 0xE0: bit-3 and bit-14\n");
++ }else{
++ RTL_W16( CPlusCmd, (RTL_R16(CPlusCmd)|(1<<3)) );
++ DBG_PRINT("Set MAC Reg C+CR Offset 0xE0: bit-3.\n");
++ }
++
++ {
++ RTL_W16(0xE2,0x0000);
++ }
++
++ priv->cur_rx = 0;
++
++ RTL_W32 ( TxDescStartAddr, priv->txdesc_phy_dma_addr);
++ RTL_W32 ( TxDescStartAddr + 4, 0x00);
++ RTL_W32 ( RxDescStartAddr, priv->rxdesc_phy_dma_addr);
++ RTL_W32 ( RxDescStartAddr + 4, 0x00);
++ RTL_W8 ( ChipCmd, CmdTxEnb | CmdRxEnb);
++ // Set Rx Config register
++ i = r1000_rx_config | ( RTL_R32( RxConfig ) & rtl_chip_info[priv->chipset].RxConfigMask);
++ RTL_W32 ( RxConfig, i);
++
++ /* Set DMA burst size and Interframe Gap Time */
++ RTL_W32 ( TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift) );
++
++ RTL_W8 ( Cfg9346, Cfg9346_Lock );
++ udelay (10);
++
++ RTL_W32 ( RxMissed, 0 );
++
++ r1000_set_rx_mode(netdev);
++
++ RTL_W16 ( MultiIntr, RTL_R16(MultiIntr) & 0xF000);
++
++ RTL_W16 ( IntrMask, r1000_intr_mask);
++ }
++
++ netif_start_queue(netdev);
++
++}//end of r1000_hw_start (struct net_device *netdev)
++
++static void r1000_init_ring (struct net_device *netdev)
++{
++ struct r1000_private *priv = netdev->priv;
++ struct pci_dev *pdev = priv->pci_dev;
++ int i;
++ struct sk_buff *skb;
++
++
++ priv->cur_rx = 0;
++ priv->cur_tx = 0;
++ priv->dirty_tx = 0;
++ memset(priv->TxDescArray, 0x0, NUM_TX_DESC*sizeof(struct TxDesc));
++ memset(priv->RxDescArray, 0x0, NUM_RX_DESC*sizeof(struct RxDesc));
++
++
++ for (i=0 ; i<NUM_TX_DESC ; i++){
++ priv->Tx_skbuff[i]=NULL;
++ priv->txdesc_array_dma_addr[i] = pci_map_single(pdev, &priv->TxDescArray[i], sizeof(struct TxDesc), PCI_DMA_TODEVICE);
++ }
++
++ for (i=0; i <NUM_RX_DESC; i++) {
++ if(i==(NUM_RX_DESC-1)){
++ priv->RxDescArray[i].status = cpu_to_le32((OWNbit | EORbit) | (unsigned long)priv->hw_rx_pkt_len);
++ }
++ else{
++ priv->RxDescArray[i].status = cpu_to_le32(OWNbit | (unsigned long)priv->hw_rx_pkt_len);
++ }
++
++ {//-----------------------------------------------------------------------
++ skb = priv->Rx_skbuff[i];
++ priv->rx_skbuff_dma_addr[i] = pci_map_single(pdev, skb->data, MAX_RX_SKBDATA_SIZE, PCI_DMA_FROMDEVICE);
++
++ if( skb != NULL ){
++ priv->RxDescArray[i].buf_addr = cpu_to_le32(priv->rx_skbuff_dma_addr[i]);
++ priv->RxDescArray[i].buf_Haddr = 0;
++ }
++ else{
++ DBG_PRINT("%s: %s() Rx_skbuff == NULL\n", netdev->name, __FUNCTION__);
++ priv->drvinit_fail = 1;
++ }
++ }//-----------------------------------------------------------------------
++ priv->rxdesc_array_dma_addr[i] = pci_map_single(pdev, &priv->RxDescArray[i], sizeof(struct RxDesc), PCI_DMA_TODEVICE);
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
++ pci_dma_sync_single(pdev, priv->rxdesc_array_dma_addr[i], sizeof(struct RxDesc), PCI_DMA_TODEVICE);
++#endif
++ }
++}
++
++static void r1000_tx_clear (struct r1000_private *priv)
++{
++ int i;
++
++ priv->cur_tx = 0;
++ for ( i = 0 ; i < NUM_TX_DESC ; i++ ){
++ if ( priv->Tx_skbuff[i] != NULL ) {
++ dev_kfree_skb ( priv->Tx_skbuff[i] );
++ priv->Tx_skbuff[i] = NULL;
++ priv->stats.tx_dropped++;
++ }
++ }
++}
++
++static void r1000_tx_timeout (struct net_device *netdev)
++{
++ struct r1000_private *priv = netdev->priv;
++ unsigned long ioaddr = priv->ioaddr;
++ u8 tmp8;
++
++ /* disable Tx, if not already */
++ tmp8 = RTL_R8(ChipCmd);
++ if(tmp8&CmdTxEnb){
++ RTL_W8(ChipCmd,tmp8 & ~CmdTxEnb);
++ }
++
++ /* Disable interrupts by clearing the interrupt mask. */
++ RTL_W16(IntrMask,0x0000);
++
++ /* Stop a shared interrupt from scavenging while we are. */
++// spin_lock_irq(&priv->lock);
++ spin_lock_irq(&priv->tx_lock);
++ r1000_tx_clear(priv);
++// spin_unlock_irq(&priv->lock);
++ spin_unlock_irq(&priv->tx_lock);
++
++
++ r1000_hw_start(netdev);
++
++ netif_wake_queue(netdev);
++}
++
++static int r1000_start_xmit (struct sk_buff *skb, struct net_device *netdev)
++{
++ struct r1000_private *priv = netdev->priv;
++ unsigned long ioaddr = priv->ioaddr;
++ struct pci_dev *pdev = priv->pci_dev;
++ int entry = priv->cur_tx % NUM_TX_DESC;
++ int buf_len = 60;
++ dma_addr_t txbuf_dma_addr;
++
++// spin_lock_irq(&priv->lock);
++ spin_lock(&priv->tx_lock);
++ if( (le32_to_cpu(priv->TxDescArray[entry].status) & OWNbit)==0 ){
++ priv->Tx_skbuff[entry] = skb;
++ txbuf_dma_addr = pci_map_single(pdev, skb->data, skb->len, PCI_DMA_TODEVICE);
++
++ priv->TxDescArray[entry].buf_addr = cpu_to_le32(txbuf_dma_addr);
++ DBG_PRINT("%s: TX pkt_size = %d\n", __FUNCTION__, skb->len);
++ if( skb->len <= priv->tx_pkt_len ){
++ buf_len = skb->len;
++ }
++ else{
++ printk("%s: Error -- Tx packet size(%d) > mtu(%d)+14\n", netdev->name, skb->len, netdev->mtu);
++ buf_len = priv->tx_pkt_len;
++ }
++
++ if( entry != (NUM_TX_DESC-1) ){
++ priv->TxDescArray[entry].status = cpu_to_le32((OWNbit | FSbit | LSbit) | buf_len);
++ }
++ else{
++ priv->TxDescArray[entry].status = cpu_to_le32((OWNbit | EORbit | FSbit | LSbit) | buf_len);
++ }
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
++ pci_dma_sync_single(pdev, priv->txdesc_array_dma_addr[entry], sizeof(struct TxDesc), PCI_DMA_TODEVICE);
++#endif
++
++
++ RTL_W8(TxPoll,0x40); //set polling bit
++
++ netdev->trans_start = jiffies;
++
++ priv->stats.tx_bytes += ( (skb->len > ETH_ZLEN) ? skb->len : ETH_ZLEN);
++ priv->cur_tx++;
++ }//end of if( (priv->TxDescArray[entry].status & 0x80000000)==0 )
++
++// spin_unlock_irq(&priv->lock);
++
++ if ( (priv->cur_tx - NUM_TX_DESC) == priv->dirty_tx ){
++ netif_stop_queue(netdev);
++ }
++ else{
++ if (netif_queue_stopped(netdev)){
++ netif_wake_queue(netdev);
++ }
++ }
++
++ spin_unlock(&priv->tx_lock);
++
++ return 0;
++}
++
++#ifdef R1000_BOTTOM_HALVES
++static void r1000_tx_interrupt(unsigned long ndev){
++ struct net_device *netdev = (void *)ndev;
++ struct r1000_private *priv = netdev->priv;
++#else
++static void r1000_tx_interrupt(struct net_device *netdev, struct r1000_private *priv, unsigned long ioaddr){
++#endif //R1000_BOTTOM_HALVES
++
++ unsigned long flags;
++
++ spin_lock_irqsave(&priv->tx_lock,flags);
++ r1000_tx_action(netdev);
++ spin_unlock_irqrestore(&priv->tx_lock,flags);
++}
++
++static void FASTCALL (r1000_tx_action(struct net_device *netdev));
++static void fastcall r1000_tx_action(struct net_device *netdev){
++
++ struct r1000_private *priv = netdev->priv;
++ unsigned long dirty_tx, tx_left=0;
++ int entry = priv->cur_tx % NUM_TX_DESC;
++ int txloop_cnt = 0;
++
++ assert (netdev != NULL);
++ assert (priv != NULL);
++ assert (ioaddr != NULL);
++
++ dirty_tx = priv->dirty_tx;
++ tx_left = priv->cur_tx - dirty_tx;
++
++ while( (tx_left > 0) && (txloop_cnt < max_interrupt_work) ){
++ if( (le32_to_cpu(priv->TxDescArray[entry].status) & OWNbit) == 0 ){
++ dev_kfree_skb_irq( priv->Tx_skbuff[dirty_tx % NUM_TX_DESC] );
++ priv->Tx_skbuff[dirty_tx % NUM_TX_DESC] = NULL;
++ priv->stats.tx_packets++;
++ dirty_tx++;
++ tx_left--;
++ entry++;
++ }
++ txloop_cnt ++;
++ }
++
++ if (priv->dirty_tx != dirty_tx) {
++ priv->dirty_tx = dirty_tx;
++ if (netif_queue_stopped(netdev))
++ netif_wake_queue(netdev);
++ }
++}
++
++#ifdef R1000_BOTTOM_HALVES
++static void r1000_rx_interrupt(unsigned long ndev){
++ struct net_device *netdev = (void *)ndev;
++ struct r1000_private *priv = netdev->priv;
++#else
++static void r1000_rx_interrupt(struct net_device *netdev, struct r1000_private *priv, unsigned long ioaddr){
++#endif //R1000_BOTTOM_HALVES
++
++ unsigned long flags;
++
++ spin_lock_irqsave(&priv->rx_lock,flags);
++ r1000_rx_action(netdev);
++ spin_unlock_irqrestore(&priv->rx_lock,flags);
++}
++
++static void FASTCALL (r1000_rx_action(struct net_device *netdev));
++static void fastcall r1000_rx_action(struct net_device *netdev){
++
++ struct r1000_private *priv = netdev->priv;
++ struct pci_dev *pdev = priv->pci_dev;
++ int cur_rx;
++ int pkt_size = 0 ;
++ int rxdesc_cnt = 0;
++ int ret;
++ struct sk_buff *n_skb = NULL;
++ struct sk_buff *cur_skb;
++ struct sk_buff *rx_skb;
++ struct RxDesc *rxdesc;
++
++ assert(netdev != NULL);
++ assert (priv != NULL);
++ assert (ioaddr != NULL);
++
++ cur_rx = priv->cur_rx;
++
++ rxdesc = &priv->RxDescArray[cur_rx];
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
++ pci_dma_sync_single(pdev, priv->rxdesc_array_dma_addr[cur_rx], sizeof(struct RxDesc), PCI_DMA_FROMDEVICE);
++#endif
++
++ while (((le32_to_cpu(rxdesc->status) & OWNbit)== 0) && (rxdesc_cnt < max_interrupt_work)){
++
++ rxdesc_cnt++;
++
++ if( le32_to_cpu(rxdesc->status) & RxRES ){
++ printk(KERN_INFO "%s: Rx ERROR!!!\n", netdev->name);
++ priv->stats.rx_errors++;
++ if ( le32_to_cpu(rxdesc->status) & (RxRWT|RxRUNT) )
++ priv->stats.rx_length_errors++;
++ if ( le32_to_cpu(rxdesc->status) & RxCRC)
++ priv->stats.rx_crc_errors++;
++ }
++ else{
++ pkt_size=(int)(le32_to_cpu(rxdesc->status) & 0x00001FFF)-4;
++
++ if( pkt_size > priv->rx_pkt_len ){
++ printk("%s: Error -- Rx packet size(%d) > mtu(%d)+14\n", netdev->name, pkt_size, netdev->mtu);
++ pkt_size = priv->rx_pkt_len;
++ }
++
++ DBG_PRINT("%s: RX pkt_size = %d\n", __FUNCTION__, pkt_size);
++
++ {// -----------------------------------------------------
++ rx_skb = priv->Rx_skbuff[cur_rx];
++ n_skb = R1000_ALLOC_RXSKB(MAX_RX_SKBDATA_SIZE);
++ if( n_skb != NULL ) {
++ skb_reserve (n_skb, 8); // 16 byte align the IP fields. //
++
++ // Indicate rx_skb
++ if( rx_skb != NULL ){
++ rx_skb->dev = netdev;
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
++ pci_dma_sync_single(pdev, priv->rx_skbuff_dma_addr[cur_rx], sizeof(struct RxDesc), PCI_DMA_FROMDEVICE);
++#endif
++
++ skb_put ( rx_skb, pkt_size );
++ rx_skb->protocol = eth_type_trans ( rx_skb, netdev );
++ ret = R1000_NETIF_RX (rx_skb);
++
++// netdev->last_rx = jiffies;
++ priv->stats.rx_bytes += pkt_size;
++ priv->stats.rx_packets++;
++
++ }//end if( rx_skb != NULL )
++
++ priv->Rx_skbuff[cur_rx] = n_skb;
++ }
++ else{
++ DBG_PRINT("%s: Allocate n_skb failed!\n",__FUNCTION__ );
++ priv->Rx_skbuff[cur_rx] = rx_skb;
++ }
++
++
++ // Update rx descriptor
++ if( cur_rx == (NUM_RX_DESC-1) ){
++ priv->RxDescArray[cur_rx].status = cpu_to_le32((OWNbit | EORbit) | (unsigned long)priv->hw_rx_pkt_len);
++ }
++ else{
++ priv->RxDescArray[cur_rx].status = cpu_to_le32(OWNbit | (unsigned long)priv->hw_rx_pkt_len);
++ }
++
++ cur_skb = priv->Rx_skbuff[cur_rx];
++
++ if( cur_skb != NULL ){
++ priv->rx_skbuff_dma_addr[cur_rx] = pci_map_single(pdev, cur_skb->data, MAX_RX_SKBDATA_SIZE, PCI_DMA_FROMDEVICE);
++ rxdesc->buf_addr = cpu_to_le32(priv->rx_skbuff_dma_addr[cur_rx]);
++ }
++ else{
++ DBG_PRINT("%s: %s() cur_skb == NULL\n", netdev->name, __FUNCTION__);
++ }
++
++ }//------------------------------------------------------------
++
++ }// end of if( priv->RxDescArray[cur_rx].status & RxRES )
++
++ cur_rx = (cur_rx +1) % NUM_RX_DESC;
++ rxdesc = &priv->RxDescArray[cur_rx];
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10)
++ pci_dma_sync_single(pdev, priv->rxdesc_array_dma_addr[cur_rx], sizeof(struct RxDesc), PCI_DMA_FROMDEVICE);
++#endif
++
++ }// end of while ( (priv->RxDescArray[cur_rx].status & 0x80000000)== 0)
++
++ if( rxdesc_cnt >= max_interrupt_work ){
++ DBG_PRINT("%s: Too much work at Rx interrupt.\n", netdev->name);
++ }
++
++ priv->cur_rx = cur_rx;
++}
++
++/* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
++static void r1000_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
++#else
++static irqreturn_t r1000_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
++#endif
++{
++ struct net_device *netdev = (struct net_device *) dev_instance;
++ struct r1000_private *priv = netdev->priv;
++ unsigned long ioaddr = priv->ioaddr;
++ unsigned int status = 0;
++
++ unsigned int phy_status = 0;
++
++ RTL_W16(IntrMask,0x0000);
++
++ status=RTL_R16(IntrStatus);
++
++ if(status==0xFFFF){
++ RTL_W16(IntrMask,r1000_intr_mask);
++ return IRQ_HANDLED;
++ }
++
++ if((status&r1000_intr_mask)==0)
++ return IRQ_NONE;
++
++#if 0
++ if(status&(RxOK|TxOK|TxErr)){
++#ifdef R1000_BOTTOM_HALVES
++ tasklet_schedule(&priv->r1000_rx_tasklet);
++ tasklet_schedule(&priv->r1000_tx_tasklet);
++#else
++ r1000_rx_interrupt(netdev,priv,ioaddr);
++ r1000_tx_interrupt(netdev,priv,ioaddr);
++#endif //R1000_BOTTOM_HALVES
++ RTL_W16(IntrStatus,RxOK|TxOK|TxErr);
++ }
++#endif
++
++ if(status&RxOK){
++#ifdef R1000_BOTTOM_HALVES
++ tasklet_schedule(&priv->r1000_rx_tasklet);
++#else
++ r1000_rx_interrupt(netdev,priv,ioaddr);
++#endif //R1000_BOTTOM_HALVES
++ RTL_W16(IntrStatus,RxOK);
++ }
++
++ if(status&(TxOK|TxErr)){
++#ifdef R1000_BOTTOM_HALVES
++ tasklet_schedule(&priv->r1000_tx_tasklet);
++#else
++ r1000_tx_interrupt(netdev,priv,ioaddr);
++#endif //R1000_BOTTOM_HALVES
++ RTL_W16(IntrStatus,TxOK|TxErr);
++ }
++
++ if(status&RxErr){
++ RTL_W16(IntrStatus,RxErr);
++ }
++
++ if((status&TxOK)&&(status&TxDescUnavail)){
++ RTL_W8(TxPoll,0x40);
++ RTL_W16(IntrStatus,TxOK|TxDescUnavail);
++ }
++
++ if(status & LinkChg){
++ if(((priv->mcfg==MCFG_METHOD_2)||(priv->mcfg==MCFG_METHOD_3))&&(phy_status&_100Mbps)){
++ phy_status = RTL_R8(PHYstatus);
++
++ if(phy_status & LinkStatus){
++ R1000_WRITE_GMII_REG((unsigned long)ioaddr,0x1f,0x0001);
++ R1000_WRITE_GMII_REG((unsigned long)ioaddr,0x10,0xf01b);
++ R1000_WRITE_GMII_REG((unsigned long)ioaddr,0x1f,0x0000);
++ }else{
++ R1000_WRITE_GMII_REG((unsigned long)ioaddr,0x1f,0x0001);
++ R1000_WRITE_GMII_REG((unsigned long)ioaddr,0x10,0xf41b);
++ R1000_WRITE_GMII_REG((unsigned long)ioaddr,0x1f,0x0000);
++ }
++
++ }
++ RTL_W16(IntrStatus,LinkChg);
++ }
++
++ RTL_W16 ( IntrMask, r1000_intr_mask);
++
++#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
++ return IRQ_HANDLED;
++#endif
++
++}
++
++static int r1000_close(struct net_device *netdev)
++{
++ struct r1000_private *priv = netdev->priv;
++ unsigned long ioaddr = priv->ioaddr;
++ int i;
++
++ // -----------------------------------------
++ r1000_delete_timer( &(priv->r1000_timer) );
++
++ netif_stop_queue(netdev);
++
++#ifdef R1000_BOTTOM_HALVES
++ tasklet_kill(&priv->r1000_rx_tasklet);
++ tasklet_kill(&priv->r1000_tx_tasklet);
++#endif //R1000_BOTTOM_HALVES
++
++ spin_lock_irq(&priv->lock);
++
++ /* Stop the chip's Tx and Rx processes. */
++ RTL_W8(ChipCmd,0x00);
++
++ /* Disable interrupts by clearing the interrupt mask. */
++ RTL_W16(IntrMask,0x0000);
++
++ /* Update the error counts. */
++ priv->stats.rx_missed_errors += RTL_R32(RxMissed);
++ RTL_W32(RxMissed,0);
++
++ spin_unlock_irq(&priv->lock);
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
++ synchronize_irq ();
++#else
++ synchronize_irq(netdev->irq);
++#endif
++ free_irq (netdev->irq, netdev);
++
++ r1000_tx_clear (priv);
++
++ //2004-05-11
++ if(priv->txdesc_space != NULL){
++ pci_free_consistent(
++ priv->pci_dev,
++ priv->sizeof_txdesc_space,
++ priv->txdesc_space,
++ priv->txdesc_phy_dma_addr
++ );
++ priv->txdesc_space = NULL;
++ }
++
++ if(priv->rxdesc_space != NULL){
++ pci_free_consistent(
++ priv->pci_dev,
++ priv->sizeof_rxdesc_space,
++ priv->rxdesc_space,
++ priv->rxdesc_phy_dma_addr
++ );
++ priv->rxdesc_space = NULL;
++ }
++
++ priv->TxDescArray = NULL;
++ priv->RxDescArray = NULL;
++
++ {//-----------------------------------------------------------------------------
++ for(i=0;i<NUM_RX_DESC;i++){
++ if( priv->Rx_skbuff[i] != NULL ) {
++ R1000_FREE_RXSKB ( priv->Rx_skbuff[i] );
++ }
++ }
++ }//-----------------------------------------------------------------------------
++
++ DBG_PRINT("%s: %s() alloc_rxskb_cnt = %d\n", netdev->name, __FUNCTION__, alloc_rxskb_cnt );
++
++ return 0;
++}
++
++static unsigned const ethernet_polynomial = 0x04c11db7U;
++static inline u32 ether_crc (int length, unsigned char *data)
++{
++ int crc = -1;
++
++ while (--length >= 0) {
++ unsigned char current_octet = *data++;
++ int bit;
++ for (bit = 0; bit < 8; bit++, current_octet >>= 1)
++ crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0);
++ }
++
++ return crc;
++}
++
++static void r1000_set_rx_mode (struct net_device *netdev)
++{
++ struct r1000_private *priv = netdev->priv;
++ unsigned long ioaddr = priv->ioaddr;
++ unsigned long flags;
++ u32 mc_filter[2]; /* Multicast hash filter */
++ int i, rx_mode;
++ u32 tmp=0;
++
++
++ if (netdev->flags & IFF_PROMISC) {
++ /* Unconditionally log net taps. */
++ printk (KERN_NOTICE "%s: Promiscuous mode enabled.\n", netdev->name);
++ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys;
++ mc_filter[1] = mc_filter[0] = 0xffffffff;
++ } else if ((netdev->mc_count > multicast_filter_limit) || (netdev->flags & IFF_ALLMULTI)) {
++ /* Too many to filter perfectly -- accept all multicasts. */
++ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
++ mc_filter[1] = mc_filter[0] = 0xffffffff;
++ } else {
++ struct dev_mc_list *mclist;
++ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
++ mc_filter[1] = mc_filter[0] = 0;
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
++ for (i = 0, mclist = netdev->mc_list; mclist && i < netdev->mc_count; i++, mclist = mclist->next)
++ {
++ set_bit (ether_crc (ETH_ALEN, mclist->dmi_addr) >> 26, mc_filter);
++ }
++#else
++ for (i = 0, mclist = netdev->mc_list; mclist && i < netdev->mc_count; i++, mclist = mclist->next)
++ {
++ int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
++
++ mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
++ rx_mode |= AcceptMulticast;
++ }
++#endif
++ }
++
++// spin_lock_irqsave(&priv->lock,flags);
++ spin_lock_irqsave(&priv->rx_lock,flags);
++
++ tmp = r1000_rx_config | rx_mode | (RTL_R32(RxConfig) & rtl_chip_info[priv->chipset].RxConfigMask);
++
++ RTL_W32 ( RxConfig, tmp);
++ if((priv->mcfg==MCFG_METHOD_11)||(priv->mcfg==MCFG_METHOD_12)||
++ (priv->mcfg==MCFG_METHOD_13)||(priv->mcfg==MCFG_METHOD_14)||
++ (priv->mcfg==MCFG_METHOD_15)){
++ RTL_W32 ( MAR0 + 0, 0xFFFFFFFF);
++ RTL_W32 ( MAR0 + 4, 0xFFFFFFFF);
++ }else{
++ RTL_W32 ( MAR0 + 0, mc_filter[0]);
++ RTL_W32 ( MAR0 + 4, mc_filter[1]);
++ }
++
++// spin_unlock_irqrestore(&priv->lock,flags);
++ spin_unlock_irqrestore(&priv->rx_lock,flags);
++
++}//end of r1000_set_rx_mode (struct net_device *netdev)
++
++struct net_device_stats *r1000_get_stats(struct net_device *netdev)
++
++{
++ struct r1000_private *priv = netdev->priv;
++
++ return &priv->stats;
++}
++
++static struct pci_driver r1000_pci_driver = {
++ name: MODULENAME,
++ id_table: r1000_pci_tbl,
++ probe: r1000_init_one,
++ remove: __devexit_p(r1000_remove_one),
++ suspend: NULL,
++ resume: NULL,
++};
++
++static int __init r1000_init_module (void)
++{
++ return pci_module_init (&r1000_pci_driver); // pci_register_driver (drv)
++}
++
++static void __exit r1000_cleanup_module (void)
++{
++ pci_unregister_driver (&r1000_pci_driver);
++}
++
++#ifdef R1000_JUMBO_FRAME_SUPPORT
++static int r1000_change_mtu(struct net_device *netdev, int new_mtu)
++{
++ struct r1000_private *priv = netdev->priv;
++ unsigned long ioaddr = priv->ioaddr;
++
++ if( new_mtu > MAX_JUMBO_FRAME_MTU ){
++ printk("%s: Error -- new_mtu(%d) > MAX_JUMBO_FRAME_MTU(%d).\n", netdev->name, new_mtu, MAX_JUMBO_FRAME_MTU);
++ return -1;
++ }
++
++ netdev->mtu = new_mtu;
++
++ priv->curr_mtu_size = new_mtu;
++ priv->tx_pkt_len = new_mtu + ETH_HDR_LEN;
++ priv->rx_pkt_len = new_mtu + ETH_HDR_LEN;
++ priv->hw_rx_pkt_len = priv->rx_pkt_len + 8;
++
++ RTL_W8 ( Cfg9346, Cfg9346_Unlock);
++ RTL_W16 ( RxMaxSize, (unsigned short)priv->hw_rx_pkt_len );
++ RTL_W8 ( Cfg9346, Cfg9346_Lock);
++
++ DBG_PRINT("-------------------------- \n");
++ DBG_PRINT("netdev->mtu = %d \n", netdev->mtu);
++ DBG_PRINT("priv->curr_mtu_size = %d \n", priv->curr_mtu_size);
++ DBG_PRINT("priv->rx_pkt_len = %d \n", priv->rx_pkt_len);
++ DBG_PRINT("priv->tx_pkt_len = %d \n", priv->tx_pkt_len);
++ DBG_PRINT("RTL_W16( RxMaxSize, %d )\n", priv->hw_rx_pkt_len);
++ DBG_PRINT("-------------------------- \n");
++
++ r1000_close(netdev);
++ r1000_open(netdev);
++
++ return 0;
++}
++#endif //end #ifdef R1000_JUMBO_FRAME_SUPPORT
++
++module_init(r1000_init_module);
++module_exit(r1000_cleanup_module);